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Abstract—Interventional imaging scenarios are rich in prior

knowledge of patient anatomy (e.g., preoperative CT and/or
successive CBCT scans) and tend to have a specific and well-
defined imaging tasks. This presents an opportunity to integrate
such information into the image acquisition process by means of a
customized CBCT scan orbit in which the source-detector
trajectory is chosen based on a knowledge of the task and
anatomical context in a manner to maximize performance. We
adopt task-based performance predictors based on a numerical
(non-prewhitening matched filter) observer model and
approximations to the local noise and spatial resolution properties
of penalized-likelihood reconstruction. These predictions are then
used to identify projections that maximize task performance,
beginning with the projection view that maximizes detectability,
proceeding to the next-best view, and continuing in an (arbitrarily
constrained) orbit that can be physically realized on advanced
robotic C-arm platforms. We illustrate the approach in
simulations considering a robotic C-arm capable of rotational
orbits with oblique angulations to compute orbits that are optimal
to a specified imaging task.  We demonstrate the performance of
task-based trajectory versus simple and complex orbits to
illustrate the advantages of integrating prior knowledge and the
imaging task into customized acquisitions.

Index Terms—CT Reconstruction, Task-Based Detectability,
Interventional Imaging, Cone-beam CT, Model-based
Reconstruction, Projection View Optimization.

I. INTRODUCTION

Advanced model-based reconstruction has shown a great
deal of promise in its ability to improve noise-resolution
tradeoffs over traditional approaches [1] and to accommodate
low-fidelity data through exposure reductions or sparse
projection sampling[2]. While such methods are now being
adopted clinically for diagnostic CT, their use in interventional
imaging (e.g., intraoperative CBCT) has yet to be fully
explored. There are many aspects of interventional imaging
that make it distinct from diagnostic imaging, including:
1) Virtually all patients undergoing image-guided interventions
have pre-operative imaging studies offering a wealth of patient-
specific anatomical prior knowledge; 2) Interventional systems
are well-suited to sparse acquisitions and more general source-
detector trajectories (e.g., non-circular orbits); and 3) Imaging
tasks associated with interventional imaging are well-defined
and highly focused for specific procedures (e.g., detection and
localization of known targets). Thus, in many respects,
interventional imaging is an ideal target for leveraging
advanced model-based reconstruction approaches that
accommodate arbitrary orbits and sparsity to customize data
acquisitions based on prior knowledge of the patient for
maximal performance in specific imaging tasks.
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Recent attempts to define acquisitions for increased
performance with iterative reconstruction include selection of
the number of projections based on condition number [3] and
methods that choose projections based on edge content [4]. In
this paper, we introduce a framework that leverages previously
acquired patient-specific anatomical information to predict the
task-based performance of a model-based penalized-likelihood
reconstruction for given source-detector trajectories. We then
use this framework to select the most information-rich
projections that maximize task performance predictions and
then assemble a customized task- and patient-specific source-
detector trajectory subject to physical / geometrical constraints
of the source-detector (robotic C-arm) platform.

II. METHODS
A. System Models
Both iterative reconstruction and performance predictors

require a system model that must be general enough to
accommodate particular acquisition geometries and include
measurement noise to leverage the advantages of statistical
approaches. We adopt the following general vectorized
forward model for the mean measurements:

   expy b  D A , (1)

where the measurement vector, y, is related to the volume 
through Beer’s Law and includes measurement-dependent
gains in the diagonal matrix D{b}. Each element of the system
matrix, A, models the contribution of a specific voxel to a
specific projection measurement. This model can accommodate
arbitrary geometries like those obtainable with robotic C-arms
(see Figure 1). We note that the system matrix for an entire
orbit is comprised of smaller matrices for each 2D projection:
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In the current work, we focus on a system orbit
parameterized by two angles, rotation angle () and obliquity
angle ().While the two angle scenario is an interesting subset
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Figure 1: Robotically controlled C-arms are capable of a wide range of
source-detector positions. Traditional cone-beam CT acquisitions are typically
acquired over a standard 180°+fan angle orbit with no inclination; however,
robotic C-arms allow oblique orbits or arbitrarily complex variations in
rotation angle ( ) and obliquity () throughout the orbit.
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of achievable projections, robotic C-arms are capable of
translations and modifications of the source-detector distance
yielding many more possibilities.

B. Penalized-Likelihood Reconstruction
Once a specific forward model and trajectory has been

chosen, it is straightforward to adopt a penalized-likelihood
estimation approach for reconstruction. Unlike many analytic
approaches, arbitrary trajectories and data sparsity are handled
inherently, without modification of weighting factors, etc.,
once A has been defined. We consider the following estimator:

   ˆ arg max ;L y R     , (3)
that adopts a Poisson log-likelihood, L, and a quadratic
penalty, R()=TR. A separable paraboloidal surrogates
approach [5] is applied to iteratively solve (3).

C. Performance Prediction
The estimator in (3) is convenient, since one may write

approximate predictors for the local point spread function
(PSF) and local covariance [6], or equivalently, the local
modulation transfer function (MTF) and local noise-power
spectrum (NPS) [7]. Such imaging performance metrics are
prevalent in image quality assessment and are leveraged here
directly toward the 3D image acquisition and reconstruction
process. From [6], the local PSF and covariance are
approximately:
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where D=D{y} and ej denotes a vector with unity jth element
and zero otherwise (specifying the location of interest as with a
Kronecker delta function). Note that object-dependence enters
(4) through D, which is dependent on the measurements. While
(4) can be computed precisely using iterative approaches, such
methods have high computational burden. Alternately, one may
use a Fourier approximation to (4) as in [8]:
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where F denotes a discrete Fourier transform and the divisions
are element-by-element. With expressions for local MTF and
NPS, one may predict estimator performance using a model
observer. For example, using a non-prewhitening matched-
filter observer one can express the detectability index [9, 10] as
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where WTask is the so-called task function given by the Fourier
transform of the difference of two hypotheses (e.g., signal
absent vs. signal present). Many other choices of numerical
observer are possible, including those that more closely model
the human visual system; however, the current initial
investigations employ this simple model, which has
demonstrated reasonable agreement with human observers in
tomographic imaging relative to simple imaging tasks. [10]
Thus, using (6), one may then predict performance for a given

task (WTask), object (via D in (5)), location (subscript j), and
acquisition trajectory (A in (5)).

D. Methodology for Projection Selection
Because we are interested in finding the best source-detector

trajectory for a given task and patient in an interventional
setting where anatomical information is available from
preoperative CT (or prior CBCT), we choose to optimize (6)
over A. Recalling (2), we may substitute
A=A({1,1},…,{N,N}) for different sets of projections into
(6) to obtain d’2({1,1},…,{N,N}).

The general optimization task is difficult, and performing a
search over all possible combinations of N angles is prohibitive
for larger N. Therefore, we introduce the following notation:

    2
1 1, , , , ,N Nd        , (7)

which denotes a 2D function over  and  that expresses the
overall detectability that a given projection angle yields when
added to an orbit already containing a specified set of N
projections. In other words, (7) yields a function whose
maximum identifies the “next best projection view” based on
task detectability. Thus, we may find highly performing sets of
projections via a greedy approach where new angles are added
to a growing set of projection angles starting with an empty set.
That is, a set of projection angles is then constructed by
iteratively finding the next most valuable projection (N+1,)
in the detectability map and adding it to the existing set of N
angle pairs. Stopping criteria may be formed based on number
of angles, dose allocation, acquisition time, detectability, etc.

This greedy optimization approach is illustrated in Figure 2
for a simulated thoracic interventional imaging scenario. In this
case, the patient anatomy contains a high-density surgical tool
that is part of the intervention as well as a low-contrast
pulmonary spherical nodule in a collapsed lung that is difficult
to identify in projection images. The task function is the
Fourier transform of the spherical nodule, and the location j is

Figure 2: Illustration of the optimization approach used to find angle pairs
that contribute to high detectability. The left column shows a detectability
map for possible (rotation, obliquity) angle pair additions, the magenta
asterisk identifies the new angle pair with highest detectability, and the right
column illustrates the projection associated with that particular angle choice.
(Since the low-contrast nodule is not visible in the projections, its location is
identified with a red circle.) Three passes of the iterative design are shown
including: A) Detectability given no previous angles. B) Detectability after
addition of the first angle pair. C) Detectability after 11 angle pairs have been
added. Note that “best” projections tend to be oblique angles that avoid nodule
overlap with the dense surgical tool, and AP/PA projections (with decreased
net attenuation) are preferred over lateral projections. Similarly, once an angle
is chosen, subsequent detectability maps are decreased in the neighborhood of
that angle (and the angle associated with the opposing view – see lower left of
2nd detectability map in (B)).
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matched to the true location of the nodule. Detectability is
computed over a limited -30° to 30° obliquity and a 220°
rotational range (samples every 6° in each direction); however,
these limits may be adjusted to accommodate the mechanical
capabilities and constraints for particular devices and
interventional scenarios.

III. RESULTS

We continue with the thoracic intervention scenario
discussed in the previous section to illustrate the results of the
proposed task-based trajectory design approach. In this
investigation, a system with 1200 mm source-detector distance,
600 mm source-axis distance, and a 300x800 detector with
0.776 mm pixel pitch was simulated. A 3003 volume (1 mm
voxels) was used for all experiments, and an exposure
equivalent of 103 photons per detector element was used for
Poisson noise generation.

For these studies, we assumed that the image volume is
known and perfectly registered for orbital trajectory design. To
design a custom orbit for the spherical lung nodule detection
task, we conducted 36 passes of the optimization approach
detailed in the previous section. The final detectability map and
selected angle pairs are shown in Figure 3A. Note that the
selected projection angles tend to avoid overlap of the high-
density surgical tool and the low-contrast nodule in
projections. The influence of the surgical tool is apparent in the
upper dark arc in the detectability map. Similarly, while lateral
views are discouraged early in the optimization (dark vertical
band in Figure 2), these views become important in later

iterations (in Figure 3A this dark band is absent).
Interestingly, despite the lack of a constraint for a

continuous trajectory, the task-based design has produced
largely contiguous projection angle pairs. To produce a
completely continuous orbit, we performed a polynomial curve
fit through the 36 selected positions to produce a 220° orbit
with 1° steps. A second “bad” orbit was also designed via a
curve fit through regions of minimum detectability for
comparison. These two orbits are illustrated in Figure 3B and
C relative to the bony anatomy, lung nodule, and surgical tool.
Note that while the task-based orbit avoids projections of the
lung nodule that overlap with the surgical tool and bone, the
“bad” trajectory is that in which the nodule and tool overlap in
nearly every view.

The penalized-likelihood reconstructions associated with
each trajectory are shown in Figure 3D and E. The low-
contrast pulmonary nodule has qualitatively better detectability
in the designed orbit, while the “bad” trajectory results in
significantly increased blur and noise due to the low-fidelity
data associated with projections through the high-density
surgical tool. These effects are most pronounced in the axial
images; however, significant streaking and noise is also
apparent in the “bad” orbit in the sagittal and coronal slices.

A second experiment using the task-based trajectory design
was conducted for a second task function. All simulation
settings except for exposure (here set to 105 photons per
detector element) remain the same as the previous experiment.
In this scenario, we selected a task function based on a binary
hypothesis test consisting of the same spherical nodule shifted

Figure 3: Illustration of a task-based source-detector trajectory using the proposed performance prediction approach. A) The detectability map after 36 passes of
optimization. The “best” 36 angular positions are indicated with small magenta asterisks. To obtain a continuous orbit, a polynomial fit was made through these
points (magenta curve). Another line fit through the detectability minima represents a particularly “bad” orbit (cyan curve). Representations of the task-based
orbit (B) and “bad” orbit scenario (C) are also displayed, showing the source-detector ray that pierces the center of the lung nodule across all projections.
Penalized-likelihood reconstruction of acquisitions based on the (D) task-based orbit and (E) “bad” orbit illustrate the relative performance of the two
trajectories with all other acquisition and reconstruction parameters held constant. Note that the nodule is more easily detected in the task-based orbit, whereas
severe blur around the high-density surgical tool and noise associated with poor data fidelity significantly degrade the image for the “bad” orbit.
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1 mm laterally in the patient, emulating a lateral localization
task that is very different from the nodule detection task in the
first experiment and emphasizing higher spatial frequencies in
maximizing the detectability index.

The results of the lateral localization task are summarized in
Figure 4. Figure 4A shows the detectability maps for the 1st,
5th, and 10th passes of the trajectory design. The maps reveal a
number of interesting features. Not surprisingly, lateral
projections contribute little to task performance for the lateral
localization task (particularly in early iterations), and AP/PA
views with high obliquities that separate the surgical tool and
the low-contrast nodule are preferred. In addition, the initial
angular pairs are spaced at intervals before filling in later
iterations. A trajectory using a 3° sampling interval was fit to
the best 10 angle pairs and is illustrated in Figure 4B. The
resulting task-based trajectory for lateral localization is a
limited angle acquisition (i.e., tomosynthesis). Coronal slices
of a penalized-likelihood reconstruction are shown in Figure
4C. Even though the acquisition is highly limited in angle with
a small number of views, the nodule is easily localized laterally
based on this limited-angle reconstruction.

IV. DISCUSSION

We have introduced a methodology for designing task-based
trajectories for interventional imaging using penalized-
likelihood reconstruction. The preliminary results show the
potential for increased performance over standard orbits,
including conventional circular orbits and (unlucky) oblique
orbits that align patient anatomy, interventional tools, and/or
the structure of interest in a manner that reduces detectability.
There are a number of possible extensions to the proposed
methodology including generalizations to more arbitrary
geometries (e.g., including translation, magnification, etc.),
optimization of detectability over a volume-of-interest instead
of a single point, optimization of multiple task functions,
limited field-of-view reconstructions, and addition of
additional constraints (e.g., radiation dose and acquisition
time). Another important challenge is an extension of these
concepts to nonquadratic penalty approaches that are
commonly used in CT.

One important practical consideration for this work is that
the methodology presumes having a registered preoperative CT
for design. Thus, a functional workflow must include a

registration step, perhaps based on an initial projection image
and 2D-3D registration. Since this registration is likely
imperfect, there is also the possibility of an adaptive design
technique that adjusts the orbit “on-the-fly.” That is, as more
information is obtained about the patient volume, the imaging
system adapts its trajectory to maximize performance. The
underlying framework presented in this paper is general and
can accommodate much of the future work discussed above.

The proposed method leverages the wealth of information
available in interventional imaging and combines it with
methods of task-based performance evaluation to define
optimal trajectories. Whereas traditional approaches tend to
neglect the wealth of prior knowledge or use it in only a very
coarse manner, the proposed framework integrates it
fundamentally into the acquisition process. This is an important
step in making imaging systems more aware of the objects they
are imaging and the imaging tasks for which they intended,
leading to increased imaging performance and potential
reduction in dose.
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Figure 4: An application of the task-based trajectory design using a lateral localization task function. A) The 1st, 5th, and 10th passes of the optimization
procedure show clustering of “next best” angles in the PA/AP direction with a high obliquity that avoids overlap of the nodule and surgical tool. B) A trajectory
based on a 3° sampling interval on the best 10 angles is shown. C) Coronal views (appropriate for lateral localization) of a penalized-likelihood reconstruction
show strong discrimination of the position of the nodule despite the limited-angle acquisition and small number of projection angles.


