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Abstract—Prompt and reliable detection of acute intracranial 

hemorrhage (ICH) is critical to treatment of a number of 

neurological disorders. Cone-beam CT (CBCT) systems are 

potentially suitable for detecting ICH (contrast 40-80 HU, size 

down to 1 mm) at the point of care but face major challenges in 

image quality requirements. Statistical reconstruction 

demonstrates improved noise-resolution tradeoffs in CBCT head 

imaging, but its capability in improving image quality with 

respect to the task of ICH detection remains to be fully 

investigated. Moreover, statistical reconstruction typically 

exhibits nonuniform spatial resolution and noise characteristics, 

leading to spatially varying detectability of ICH for a 

conventional penalty. In this work, we propose a spatially 

varying penalty design that maximizes detectability of ICH at 

each location throughout the image. We leverage theoretical 

analysis of spatial resolution and noise for a penalized weighted 

least-squares (PWLS) estimator, and employ a task-based 

imaging performance descriptor in terms of detectability index 

using a nonprewhitening observer model. Performance 

prediction was validated using a 3D anthropomorphic head 

phantom. The proposed penalty achieved superior detectability 

throughout the head and improved detectability in regions 

adjacent to the skull base by ~10% compared to a conventional 

uniform penalty. PWLS reconstruction with the proposed 

penalty demonstrated excellent visualization of simulated ICH in 

different regions of the head and provides further support for 

development of dedicated CBCT head scanning at the 

point-of-care in the neuro ICU and OR. 

I. INTRODUCTION 

Intracranial hemorrhage (ICH) is associated with a variety 

of neurological disorders, including hemorrhagic stroke and 

traumatic brain injury [1]. Non-contrast-enhanced 

multi-detector CT (MDCT) is the current front-line modality 

for diagnosis of acute ICH with high sensitivity but is 

commonly only available in a dedicated radiology suite or 

emergency department. Compared to MDCT, cone-beam CT 

(CBCT) systems typically have smaller footprint, greater 

portability, and lower cost, and therefore are potentially more 

suitable for diagnosis of acute ICH at the point of care (e.g., 

neurological ICU, urgent care, ambulance, and sports and 

military theatres). However, current CBCT systems face 

major challenges in image quality required for detecting ICH 

(blood-to-brain contrast 40-80 HU, size down to 1 mm) [1]. 

Recent research aims to develop high-quality CBCT for 

detection of ICH using mobile C-arms or a dedicated head 

CBCT system designed specifically to provide optimal 

performance in ICH detection [2]. A high-fidelity artifact 

correction framework has also been proposed and 

demonstrates major reduction in artifacts in CBCT of the 

head, including scatter, beam hardening, and detector lag and 

glare [3]. Moreover, a statistical reconstruction method has 

been proposed to compute statistical weights that account for 

noise in the measurements following artifact corrections, 

demonstrating improved noise-resolution tradeoffs in CBCT 

of ICH compared to conventional filtered backprojection [4]. 
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This work addresses two important questions with respect 

to high-quality CBCT of ICH. First, statistical reconstruction 

tends to produce nonuniform spatial resolution and noise in 

the image. For example, Figure 1 shows an image 

reconstructed using penalized weighted least-squares (PWLS) 

as in [4], and the conspicuity of the same ICH lesion in various 

locations of the head is seen to depend strongly on the local 

spatial resolution and noise characteristics. Various methods 

have been developed to address this problem by designing a 

spatially varying penalty that encourages uniform spatial 

resolution or noise. For example, Fessler et al. designed a 

penalty that includes a spatially varying certainty term to 

encourage a uniform point spread function (PSF), providing 

uniform spatial resolution throughout the image [5]. A second 

important consideration is that imaging performance should 

be defined with respect to a specific task [6]. In the case of 

ICH detection, the task is to discriminate a low-contrast, 

mid-frequency lesion from a relatively uniform background. 

One way in which statistical reconstruction can be leveraged 

to maximize performance is to design a penalty that 

maximizes detectability index (d') [7] for a particular task. 

However, due to nonuniform spatial resolution and noise, a 

penalty designed to maximize detectability at one location 

may not necessarily maximize detectability at another. The 

two considerations described above are therefore intimately 

connected, and one may design a spatially varying penalty 

(analogous to the one in [5]) to maximize detectability. 

In this work, we propose a spatially varying penalty that 

optimizes detectability for ICH detection at all locations 

through a CBCT image of the head. Previous related work by 

Qi et al. optimized directional weights in a penalty to improve 

detectability for breast lesion detection at an unknown 

location in 3D PET [8]. Gang et al. optimized a parameter that 

weights the regularization term in 2D CT to maximize 

detectability at an unknown location for a few generic 

detection tasks [9]. This work builds on the method in [9] but 

differs in two aspects. First, this work introduces a 

comprehensive and general framework to design a spatially 

varying penalty for maximal detectability. Second, we extend 

the design from 2D CT in [9] to 3D CBCT and focus on 

designing a penalty for a specific task in head imaging. We 

first validate prediction of spatial resolution and noise 

characteristics at various locations in 3D, and we then define a 

3D detectability index that provides an objective function in 

penalty design. The performance of the proposed penalty is 

evaluated on a 3D anthropomorphic head phantom in 

comparison to a conventional penalty. 
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Figure 1: Illustration of nonuniform spatial resolution and noise in 

a 3D image reconstructed by PWLS. The anthropomorphic head 

phantom containing simulated ICH was scanned on a FPD-CBCT 

test-bench at 24 mGy. Grayscale window: [-10, 110] HU. 
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II. METHODS 

A. Penalized Weighted Least-Squares Reconstruction 

We choose a PWLS reconstruction method previously 

developed for CBCT head imaging [4], whose forward model 

assumes mono-energetic x-rays and independent 

measurements as: 

   expy g  D A                              (1) 

where 𝑦̅  denotes the mean measurements, μ is the image 

estimate, A is the linear projection operator (and AT is the 

linear backprojection operator), g are the 

measurement-dependent gains, and D is an operator that 

converts a vector into a diagonal matrix.  

The PWLS objective can be written as: 
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where l denotes line integrals derived from the measurements 

y, and W is a diagonal weighting matrix. The statistical 

weights in W are computed to account for noise in the 

measurements and noise following artifact corrections (if such 

corrections are present in the data processing) [4]. The 

regularization term in Eq. (2) penalizes differences between 

every voxel μj and its neighboring voxel μk by a penalty 

function 𝜓 along with directional weights wjk, and is weighted 

by a scalar regularization parameter β. We refer to this penalty 

below as the "conventional penalty". 

To design a penalty that maximizes detectability, one can 

modify the regularization parameter, directional weights, 

and/or penalty function. In this work, we focus on designing a 

spatially varying β map while keeping the directional weights 

(wjk=1 for first-order neighbors) and penalty function 

(quadratic function) the same throughout the image. 

Optimization of the directional weights and penalty function 

for maximal detectability are subjects of future work. The 

proposed spatially varying penalty can be written as: 
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where 𝑅′ denotes the new regularization term. 

As a point of reference, we consider another form of 

spatially varying penalty derived by Fessler et al. [5] that 

encourages uniform spatial resolution (referred to below as the 

"uniform resolution penalty") and can be written as: 
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where κj represents the certainty of all rays that intersect the jth 

voxel and aij denotes the (i, j)th element of matrix A. 

B. Task-Based Performance Prediction 

Previous work [5] shows that if the spatially varying term is 

spatially smooth, its effects on image quality are essentially 

local. Thus, while β will be spatially dependent in the resulting 

penalty, in the design stage, we assume β values at other 

voxels are the same as the β value at the voxel of interest (i.e., 

assumes a conventional penalty). One can then derive 

analytical expressions of the local PSF and local covariance 

for the PWLS estimator in Eq. (2) using a first-order Taylor 

expansion and the Implicit Function Theorem as in [5]: 
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where F is the Fisher information matrix defined as 𝐅(𝜇) =
𝐀𝑇𝐃[𝑦̅(𝜇)]𝐀, R is the Hessian of R(μ) in the PWLS objective 

(and is not dependent on the input image when a quadratic 

penalty function is used), ej is a unit vector specifying location 

in the image (with unity jth element and zero elsewhere). In 

real data when μtrue (truth image) and 𝜇̆ (PWLS reconstruction 

of noiseless data) are not available, a “plug-in” method [5] can 

be used. 

Since the local PSF and covariance are evaluated in a 

relatively uniform region (brain), the matrix of local PSF and 

covariance can be approximated as circulant in a small 

region-of-interest (ROI). Their discrete Fourier transform are 

then the local modulation transfer function (MTF) and 

noise-power spectrum (NPS) within the ROI: 
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With predictions of local MTF and NPS, one may predict 

the task-based performance of the PWLS estimator in terms of 

detectability index 𝑑′ [7], which relates metrics of MTF and 

NPS to a spatial-frequency-dependent task function and an 

observer model. Many observer models can be formulated - in 

this work, the nonprewhitening (NPW) matched filter 

observer model. This model does not bias the results 

according to the characteristics of the observer and has 

demonstrated reasonable agreement with human observer 

performance for simple tasks in tomosynthesis and CBCT 

[10]. The detectability index with a NPW observer model can 

be written as: 
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The task function WTask in this work is defined as the 

difference of two Gaussian functions, representing a 

low-contrast, mid-frequency task such as ICH detection 

expressed as follows: 
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where C is the blood-to-brain contrast (0.011 mm-1), σ1 = 0.35 

mm-1, and σ2 = 0.25 mm-1 corresponding to discrimination of a 

characteristic feature length of ~2 mm, approximated using 

the average of four standard deviations of each Gaussian 

function in the spatial domain. 

C. Proposed Regularization Design Framework 

While the design goal is to maximize 𝑑′ at every location in 

the image, one may start with maximizing 𝑑′ at one location. 

The optimization problem can be written as: 
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While directly solving Eq. (11) might be possible, we choose a 

simple scheme in this work to maximize 𝑑′ by evaluating 𝑑′ 

for different β values with regular spacing and choosing the β 

that yields the maximum 𝑑′.  

Repeating the optimization at every voxel is 

computationally impractical for 3D CBCT. We accelerate the 

design process in two steps. First, we exploit the observation 

that the optimal β is slowly varying between neighboring 

voxels and therefore perform the optimization on a 25×25×25 

downsampled grid (internal to the cranium) and then 

interpolate β at intermediate voxels using radial basis 

functions. Second, since the local PSF reduces toward zero at 



 

voxels sufficiently far from the impulse, one may divide the 

grid into K subgrids, and in each kth subgrid place Nk unity 

impulses in the input ek and predict for Nk locations 

simultaneously. The prediction accuracy is not affected 

provided that the impulses are far apart. This applies to the 

prediction of the local covariance as well. The combination of 

the downsampled grid and simultaneous prediction reduced 

the number of calculations needed from the number of voxels 

(e.g., ~5123 in 3D CBCT) to the number of subgrids. In this 

work, we placed impulses at 50 voxels apart, which divided 

the grid into 23=8 subgrids. A pseudocode outline of the 

design framework is shown in Algorithm 1.  
 

Algorithm 1: Spatially varying penalty design for maximum 𝒅′ 
 

Input precomputed R 

for each subgrid k = 1 to K 

   Construct ek with Nk unity elements (uniform spacing) 

   Use Eq. (5-6) to predict local PSF and covariance for Nk locations 

   simultaneously 

   for each voxel j on the kth subgrid 

          Use Eq. (7-9) to compute MTF, NPS, and 𝑑′ at different β  

          Estimate β that maximizes 𝑑′  

   end for  

end for 

for each voxel not on the grid 

   Interpolate β based on the optimal β on the grid 

end for 

return a β map 

 

III. EXPERIMENTAL RESULTS 

We evaluated the proposed penalty in simulation studies 

using the 3D digital head phantom shown in Fig. 2(a-b). The 

digital phantom was created by performing a CT scan of a 

realistic physical head phantom at high dose and setting all 

soft tissues (including the brain) to a constant value (40 HU). 

The resulting phantom preserves realistic bone attenuation and 

exhibits no noise or artifact in soft tissue. A system geometry 

previously identified for a dedicated CBCT head scanner [2] 

was used, with a 100 cm source-to-detector distance, 55 cm 

source-to-axis distance, and 0.556 × 0.556 mm2 detector pixel 

sizes. Projections (N = 720) without noise and with Poisson 

noise were simulated over 360° using 2×105 photons per 

detector pixel. Images were reconstructed with 390×485×498 

voxels and 0.5×0.5×0.5 mm3 voxel sizes. Artifact corrections 

were not considered in this work. 

We first validated the prediction of 3D local MTF and NPS, 

including locations throughout the brain and adjacent to the 

cranium. Figure 2(c-d) shows the 3D local MTF and NPS at 

four locations denoted in Fig. 2 with a nominal β value for this 

dataset (106.4). In each plot, the left side shows the prediction 

from Eq. (5-8), and the right side shows the measurements 

from PWLS reconstructions. For prediction, we used 100 

iterations of the conjugate gradient (CG) algorithm in Eq. (5) 

for complete convergence of the local PSF, and we applied the 

CG algorithm twice in Eq. (6) to achieve convergence in the 

local covariance. For measurements, the local PSF was 

measured by subtracting two PWLS reconstructions with and 

without an impulse (no noise added), and local covariance was 

measured from a large ensemble (n = 100) of PWLS 

reconstructions with different noise realizations following the 

method in [9]. 100 iterations of separable quadratic surrogate 

updates [11] were performed to achieve a nearly converged 

PWLS image. A ROI size of 21×21×21 voxels was large 

enough to cover the main extent of the local PSF and 

covariance and was therefore used in DFT operations. For 

both MTF and NPS, good overall agreement can be seen 

between prediction and measurements at all four locations in 

both x-y plane and z direction. The spatial dependence of MTF 

and NPS can also be seen. For example, the MTF broadens 

and is less isotropic near the periphery, whereas the NPS is 

reduced at certain frequencies according to the magnitude of 

line integrals from location 1 to 4.  

To design a β that maximizes 𝑑′  at one location, we 

predicted the local MTF and NPS at different β values and 

computed 𝑑′ as a function of β. Figure 3(a) shows the 3D task 

function from Eq. (10). Figure 3(b) shows a calculation of d' 

as a function of β at the four locations in Fig. 2. At each 

location, the function 𝑑′(𝛽) exhibited a concave shape and a 

clear optimum, suggesting the possibility of directly solving 

for β - for example, using gradient-based optimization. For 

each location, the 𝑑′ reduced at lower β (dominate  d by high 

NPS) and higher β (dominated by over-smoothing). The 

optimal β is also seen to vary over an order of magnitude, 

suggesting the design of a spatially varying penalty. It is worth 

mentioning that we observed a lower level of agreement 

between prediction and measurement in the limit of very low β 

(~105.0), which is attributed to the high conditioning number 

of the matrices to be inverted in Eq. (5-6) and could potentially 

be solved by preconditioning. However, such disagreement is 

 
Figure 2: Validation of 3D MTF and NPS prediction. (a-b) 3D head phantom used in this work. Grayscale window: [0, 0.04] mm-1. (c-d) 

Predicted and measured 3D local MTF (c) and NPS (d) at location 1-4 denoted in Fig. 2. In each plot, the left half is prediction from Eq. 

(5-8), and the right half is measurements from PWLS reconstructions. Units are scalar for the 3D MTF and [(mm-1)2(mm)3] for the 3D NPS. 
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Figure 3: (1) A 3D task function for ICH detection. Grayscale 

window: [0, 3.3×10-4] mm-1 (b) Detectability index computed 

as a function of regularization parameter β at 4 locations 

denoted in Fig. 2. The optimal β were at 𝛽̂𝑗 (𝑗 = {1,2,3,4}). 
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not believed to affect the results, since those β values are much 

smaller than the range of interest about the optimal β value.  

Figure 4 shows the results for the proposed penalty in 

comparison to the (spatially uniform) conventional penalty 

and the (spatially varying) uniform resolution penalty. For the 

conventional penalty, a scalar β value of 106.4 was chosen to 

achieve the highest mean 𝑑′  in the head. For the uniform 

resolution penalty (shown simply as a point of reference as 

another form of spatially varying penalty), regularization was 

such as to encourage uniform PSF width of 0.95 mm (FWHM 

averaged over all radial directions). Fig. 4(f) shows the β map 

resulting for the proposed 𝑑′ optimization penalty, which is 

seen to follow a similar overall trend as the uniform resolution 

penalty: penalty strength is lower in regions of high 

attenuation near the interior skull base and is higher at the 

periphery near the cranium. Fig. 4 (b), (d), and (g) show the 𝑑′ 

map from each penalty, each exhibiting strong spatial 

variation in 𝑑′  with highest value near the periphery and 

reduced performance in the interior of the cranial vault. Fig. 4 

(e) and (h) show the change in 𝑑′ (relative to the conventional 

penalty) achieved by the two spatially varying penalties. 

Compared to the conventional penalty, the uniform resolution 

penalty provides a 10% increase in 𝑑′ in the interior of the 

brain near the skull base but a slight (5%) reduction in 𝑑′ at 

the periphery adjacent to the cranium. This is somewhat 

expected, since the uniform resolution penalty was designed 

to achieve uniform spatial resolution (and not maximum 

detectability). Figure 4(h) shows that the proposed penalty 

improves 𝑑′  up to ~10% and preserves the highest 𝑑′  (i.e., 

does not reduce d') in comparison to the best conventional 

penalty. 

PWLS image reconstructions corresponding to each type of 

penalty are shown in Fig. 5. Three simulated 3D spherical ICH 

lesions of 2 mm diameter and 50 HU contrast were added to 

regions in the deep interior of the brain near the skull base and 

at the periphery adjacent to the cranium. The best 

conventional penalty exhibited good visualization of ICH 

adjacent to the cranium but yielded an over-smoothed image 

in the deep interior near the skull base. The uniform resolution 

penalty improved conspicuity of the lesion (particularly near 

the skull base) and achieved a more uniform appearance of 

spatial resolution in the image compared to the conventional 

penalty. The proposed d'-optimization penalty yielded 

improved visualization of ICH in both regions, particularly in 

the deep interior region near the skull base. 

IV. CONCLUSION 

Image reconstruction in a manner that specifically 

incorporates a formulation of the imaging task and optimizes 

penalty design with respect to local, task-based imaging 

performance presents a promising approach for "task-driven 

image reconstruction." For high-quality CBCT imaging of the 

head, this paper shows that the spatially varying penalty 

strength could be reliably predicted with respect to an ICH 

detection task, providing optimal detectability at each location 

throughout the 3D image. The proposed penalty demonstrated 

improved or equivalent visualization of ICH in PWLS images 

compared to a conventional penalty and supports the 

application of CBCT for ICH detection at the point of care in 

the ICU and/or operating theater. 
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Figure 5: Image reconstruction of a 3D spherical ICH lesion of 2 

mm diameter and 50 HU contrast. Grayscale: [-50, 130] HU. 
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Figure 4: Maps of penalty strength and detectability in ICH detection. (a-b) Scalar β and resulting d' distribution for the conventional PWLS 

penalty. (c-e) For the uniform resolution penalty: (c) product of certainty (𝜅𝑗
 ) and a scalar β, (d) the resulting 𝑑′ distribution, and (e) 

relative change in 𝑑′ compared to the conventional penalty (f-h) For the proposed d'-optimization penalty: (f) the β map, (g) the resulting 𝑑′ 
distribution, and (h) relative change in 𝑑′ from the “best” conventional penalty. 
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