
 

Abstract — A task-driven imaging framework for 

prospective fluence field modulation (FFM) is developed in 

this paper. The design approach uses a system model that 

includes a parameterized FFM acquisition and model-based 

iterative reconstruction (MBIR) for image formation. Using 

prior anatomical knowledge (e.g. from a low-dose 3D scout 

image), accurate predictions of spatial resolution and noise 

as a function of FFM are integrated into a task-based 

objective function. Specifically, detectability index (d’), a 

common metric for task-based image quality assessment, is 

computed for a specific formulation of the imaging task. To 

optimize imaging performance in across an image volume, 

a maximin objective function was adopted to maximize the 

minimum detectability index for many locations sampled 

throughout the volume. To reduce the dimensionality, FFM 

patterns were represented using wavelet bases, the 

coefficients of which were optimized using the covariance 

matrix adaptation evolutionary strategy (CMA-ES) 

algorithm. The optimization was performed for a mid-

frequency discrimination task involving a cluster of micro-

calcifications in an abdomen phantom. The task-driven 

design yielded FFM patterns that were significantly 

different from traditional strategies proposed for FBP 

reconstruction. In addition to a higher minimum d’ 

consistent with the objective function, the task-driven 

approach also improved d’ to a greater extent over a larger 

area of the phantom. Results from this work suggests that 

FFM strategies suitable for FBP reconstruction need to be 

reevaluated in the context of MBIR and that a task-driven 

imaging framework provides a promising approach for 

such optimization. 

 Index Terms—Task-based optimization, detectability 

index, model-based reconstruction, fluence field 

modulation, CT 

I. INTRODUCTION 

Computed tomography plays an invaluable role in diagnostic 

imaging, yet increased usage and public concern about risk 

associated with ionizing radiation has motivated a large body of 

research in dose reduction techniques. [1] Among such efforts, 

there has been increased interest in integrating fluence field 

modulation (FFM) devices with diagnostic CT. [2]–[4] 

Compared to automatic exposure control on current scanners, 

FFM permits much greater freedom in shaping the dose 

distribution in the patient as well as satisfying more flexible 

(e.g., spatially-varying or uniform) image quality requirements 

in the reconstructed image. While previous work has 

concentrated largely on FFM designs for filtered-

backprojection (FBP) reconstruction, this work extends such 

investigation to model-based iterative reconstruction (MBIR).  

It is widely acknowledged that dose reduction techniques 

must be coupled with image quality needs [5] and that image 

performance metrics need to be defined based on the imaging 

task [6]. Towards this end, in this work, we present a task-

driven imaging approach to prospectively optimize FFM based 

on prior specification of the imaging task (e.g., based on disease 

prevalence, anatomical target, etc.) and the patient anatomy 

(e.g., from a very low dose 3D scout acquisition). This 

framework is developed for MBIR using predictors of noise and 

resolution properties that may be integrated into an expression 

for task-based detectability. We compare conventional FFM 

strategies (typically designed based on FBP reconstruction) and 

the task-driven FFM approach using a penalized-likelihood 

reconstruction.  

II. THEORETICAL METHODS 

A. Task-Driven Imaging Framework 

Task-driven frameworks have previously been used in the 

context of regularization optimization [7], tube current 

modulation [8], source-detector trajectory [9]. Figure 1 presents 

a general task-driven imaging framework. Central to the 

framework is an optimization loop to identify acquisition 

parameters (Ω𝐴) and reconstruction parameters (Ω𝑅) of interest 

that maximizes an objective function based on a task-based 

image quality metric - detectability index (d’).  

The mathematical form of d’ is given in Eq.1, corresponding 

to a non-pre-whitening observer model: 

𝑑′2(Ω𝐴, Ω𝑅) =
[∭|𝑇(Ω𝐴,Ω𝑅)∙𝑊𝑇𝑎𝑠𝑘|2𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧]

2

∭𝑆(Ω𝐴,Ω𝑅)|𝑇(Ω𝐴,Ω𝑅)∙𝑊𝑇𝑎𝑠𝑘|2𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧
     (1) 

where 𝑇  and 𝑆  respectively represents the local modulation 

transfer function (MTF) and noise power spectrum (NPS) in the 

reconstructed image and can be predicted by the system model. 

The MTF and NPS carry dependence on both (Ω𝐴 , Ω𝑅) and the 

patient-specific measurements computed from the anatomical 

model provided by a low-dose 3D scout. In diagnostic imaging, 

the imaging task can be predefined based on suspected 

abnormalities and disease prevalence in the anatomical site to 

be imaged.  

 In these initial investigations, binary classification tasks 

were considered, where the task function, 𝑊𝑇𝑎𝑠𝑘, corresponds 

to the difference between the Fourier transform of two possible 

outcomes (e.g., one signal vs. another, or signal-present vs. 

signal absent which simplifies to a detection task). 
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Fig.1. Framework for task-driven imaging. 

B. Quadratic Penalized Likelihood Reconstruction 

The MBIR method investigated in this work adopts a 

penalized-likelihood (PL) objective whose solution is given by: 

     𝜇̂ = argmax
𝜇

[log 𝐿(𝜇; 𝑦) − 𝛽𝑅(𝜇)] ,    (2) 

where 𝐿(𝜇; 𝑦)  is the likelihood term, 𝑅(𝜇)  is a roughness 

penalty, and 𝛽  controls the tradeoff between the two. The 

measurements, 𝑦, are assumed to be independent and Poisson-

distributed, with means given by the following forward model: 

𝑦̅ = 𝐼0𝑒
−𝐀𝜇            (3) 

where 𝐼0 is the number of bare-beam photons per detector pixel 

and 𝐀 is the forward projection operator. We adopt a traditional 

quadratic roughness penalty with first-order neighborhood. 

C. System Model for Fast Prediction for Noise and 

Resolution  

The noise and resolution predictors for PL reconstruction are 

based on previous derivations in Refs [10], [11], [12]. Both the 

spatial resolution and noise are spatially varying in a PL 

reconstruction. Thus, the MTF, NPS, and d’ are only 

meaningful in a local context. [7] A Fourier approximation of 

the MTF and NPS is given by: 

     𝑇𝑗 ≈
ℱ{𝐀𝑇𝐷{𝑦̅(𝜇)}𝐀𝑒𝑗}

ℱ{𝐀𝑇𝐷{𝑦̅(𝜇)}𝐀𝑒𝑗+𝛽𝐑𝑒𝑗}
         4(a) 

     𝑆𝑗 ≈
ℱ{𝐀𝑇𝐷{𝑦̅(𝜇)}𝐀𝑒𝑗}

|ℱ{𝐀𝑇𝐷{𝑦̅(𝜇)}𝐀𝑒𝑗+𝛽𝐑𝑒𝑗}|
2         4(b) 

where subscript j denotes voxel location and 𝑒𝑗 is the j-th unit 

vector. The operator D{∙} converts its vector argument to a 

diagonal matrix and R is the Hessian matrix of the quadratic 

penalty that is independent of 𝜇 or 𝑦̅.  

Since a large number of evaluations of Eq.4 and Eq.1 are 

required for optimization, several techniques were adopted to 

speed up computation.  First, using i to denote projection 

number, ℱ{𝐀𝐢
𝑇𝐀𝐢𝑒𝑗}  is precomputed and stored for each 

projection. This expression is scaled by the appropriate 𝑦̅𝑗 

according to a specific FFM (which determines y) and is 

summed over all projections to get ℱ{𝐀𝑇𝐷{𝑦̅(𝜇)}𝐀𝑒𝑗}. Second, 

ℱ{𝐀𝐢
𝑇𝐀𝐢𝑒𝑗} was assumed to be independent of voxel location j, 

i.e., only one set of ℱ{𝐀𝐢
𝑇𝐀𝐢𝑒𝑗} needs to be stored for d’ 

calculation in multiple locations. Such an assumption is 

reasonable for good angular sampling and voxel locations in the 

central plane. Lastly, instead of using the full image volume 

support for 𝑒𝑗 , ℱ{𝐀𝐢
𝑇𝐀𝐢𝑒𝑗} is only computed and stored for a 

49×49×49 voxel VOI centered at j. The VOI size is chosen to 

be bigger than the correlation length between voxels. Since R 

is independent of   𝜇 or 𝑦̅ ,  ℱ{𝛽𝐑𝑒𝑗}  only needs to be 

precomputed once and stored.   These techniques allows fast 

computation of the MTF, NPS and d’ – e.g., evaluating d’ for 

50 voxel locations requires 0.06 s.  

D. Low Dimensional Parameterization of Fluence Field  

An arbitrary fluence field could potentially be specified for 

each horizontal detector element (denoted as u) and each 

projection number (denoted as p).  Thus, a modulated fluence 

field pattern is a 2D function on (𝑢, 𝑝).  To reduce the 

dimensionality of the optimization, and to enforce smoothness 

constraints, we parameterize the fluence field (FF) using 

coefficents for a set of 2D wavelet bases, such that 

𝐹𝐹(𝑢, 𝑝) = ∑ 𝜔ff
𝑖 Β𝑖(𝑢, 𝑝)𝑛

𝑖        (5) 

 This permits low-dimensional estimation of the coefficient 

vector, Ω⃑⃑ ff = [𝜔ff
1 , 𝜔ff

2 , … , 𝜔ff
𝑛]𝑇 .   Practical FFM systems are 

likely to be smoothly-varying in both u and p. That is, x-ray 

beam profiles are spatially smooth and do not change abruptly 

from angle to angle. For this reason, the basis functions, Β𝑖(𝑟 ), 

were chosen to be 2D Gaussian wavelets on (𝑢, 𝑝). In addition, 

projections traversing the same voxel that are 180o apart are 

assumed to have the same fluence to enforce a symmetric 

design in 360o rotations. An example set of wavelet functions 

are illustrated in Fig.2 with coarse sampling along both 

directions. For the actual optimization, the Gaussians are 

centered at 17 locations in u and 6 locations in p, giving a total 

of 17×6=102 coefficients.    

 
Fig.2. Wavelet bases for low dimensional parameterization of fluence field. 

E. Objective Function and Optimizer 

To optimize FFM, d’ values over multiple locations within 

the reconstruction need to be considered. There are many ways 

to formulate an objective function, e.g., maximize the mean d’, 

equalizing d’, etc. In this work, a maximin objective is used to 

maximize the minimum d’, i.e.: 

max
Ω⃑⃑ ff

min
𝑣⃑ 

𝑑′(𝑣 ; Ω⃑⃑ ff)    s.t. ∑ 𝐹𝐹(𝑢∗, 𝑝)(𝑢∗,𝑝) = 𝐼𝑡𝑜𝑡 (6) 

where 𝑣  is the coordinate vector for the 3D reconstructed image 

and represent a set of discrete points within the object over 

which d’ is evaluated. By maximizing the minimum d’, one 

guarantees a specific level of detectability in the volume. The 

optimization is subjected to a total exposure constraint (the sum 

of the barebeam fluence over all projections and detector 

locations behind the object, denoted 𝑢∗). Due to the non-linear, 

non-convex nature of the problem, a stochastic and derivative-

free optimizer - Covariance Matrix Adaptation Evolution 

Strategy (CMA-ES) [13] is used to solve this objective.  

III. EXPERIMENTAL METHODS 

A. Phantom and Imaging Task 

The CT scan of a cadaver abdomen was used as a digital 

phantom. The central plane is illustrated in Fig.3(a) with a large 

number of stimuli shown in Fig.3(b) inserted at locations 

randomly perturbed around a 11×16 grid. The imaging task is 

the “detection” of a calcification cluster constructed of three 



 

Gaussian stimuli (width=0.8 mm) evenly distributed along the 

perimeter of a 4mm diameter circle. Specifically the task is to 

discriminate the three calcification cluster from a monolithic 

stimulus – a Gaussian with width equal to 4 mm. We enforce a 

task definition where all rotational orientations are equally 

likely (e.g. a symmetric task function). Specifically, the task 

function is equal to the Hankel transform of the Fourier 

transform of the stimulus minus the Fourier transform of the 

larger Gaussian, the result of which is plotted in Fig.3(c). 
 

 
Fig.3. (a) The abdomen phantom is based on a diagnostic CT scan of a cadaver. 

(b) The stimulus consisting of three narrow Gaussians simulating a cluster of 

micro-calcifications. (c) The Fourier domain task function corresponding to the 

discrimination of (b) from a larger Gaussian stimulus. Rotational symmetry is 

introduced to account for other orientations of the cluster.  

B. Image Simulation and Reconstruction 

A bare beam fluence of 2.5×104 to 4.5×104 photons/mm2 was 

used to simulate projection images. We considered a system 

geometry with an 80 cm source-to-axis distance and a 120 cm 

source-to-detector distance. The detector pixel size was 

1.3×1.3 mm and reconstruction voxel size was 

0.87×0.87×0.87 mm. A GPU-implemented linear projector was 

used. Penalized-likelihood reconstruction was performed using 

80 iterations of paraboloidal surrogate updates with 20 ordered-

subsets in the first 40 iterations and 1 subset in the last 40 to 

encourage convergence. 

C. Comparison with Other Strategies 

The task-driven fluence field design was compared with three 

other strategies. All strategies were subjected to the same total 

fluence constraint in Eq.6.  

(1) Unmodulated: Constant bare-beam fluence with no 

modulation as a function of either u or p. 

(2) Flat fluence on the detector (denoted as “Flat”): Extending 

the parameterization developed by Gies et al. from tube current 

modulation to FFM, the fluence field can be expressed as a 

function of the line integral, 𝑙, and a scalar, 𝛼, as:  

𝐹𝐹(𝑢∗, 𝑝) =
𝑒𝛼𝑙(𝑢∗,𝑝)

∑ 𝑒𝛼𝑙(𝑢∗,𝑝)
𝑝

𝐼0
𝑡𝑜𝑡 .         (7) 

When 𝛼 = 1,  the fluence behind the object incident on the 

detector becomes flat. This modulation pattern is attractive 

because the reconstructed image would have isotropic and 

uniform noise and resolution (hence d’) throughout the image.  

(3) Extension of the Minimum variance solution in FBP 

(denoted as “𝛼 = 0.5”): Gies et al. derived that when 𝛼 = 0.5, 

the tube current modulation simplified from Eq.7 by tracing the 

detector elements corresponding to one voxel location achieves 

minimum variance in that particular voxel in an FBP 

reconstruction. Rather than setting a single tube current value 

per projection angle, we extend this approach to FFM by 

applying the same strategy to compute a beam shape. The third 

FFM is calculated from Eq.7 when 𝛼 = 0.5. 

D. Image Quality Assessment 

Detectability index was computed for locations on a 11×16 

grid within the phantom (including skin line) and interpolated 

using radial basis functions to obtain a detectability map, d’(x, 

y). Reconstructions using FFM from all four strategies were 

presented for the four ROIs illustrated in Fig.3(a) for visual 

assessment.  

IV. RESULTS 

The fluence field for all three strategies are shown in Fig.4. 

The 𝛼 = 1.0 field peaks at projections at 90º and 270º degrees 

which traverse the lateral direction of the phantom. The 𝛼 =
0.5  strategy follows the same trend, but the modulation is 

smaller. Interestingly, the task-driven fluence field is the 

opposite of the previous two, with peak fluence around 0o, 180o, 

and 360o. 

This trend can be explained by the local MTF and NPS plots 

in Fig.5. (Only one location at the center of the image is shown 

for brevity.) Both the MTF and NPS are anisotropic according 

to the stastical weighting in each view and applying FFM can, 

to a certain degree, control the noise-resolution tradeoff with 

respect to an imaging task. Quadratic PL penalizes noisy data 

more heavily, resulting in MTF and NPS with almost 

complementary shapes, i.e., radial directions corresponding to 

low noise projection data has intrinsically higher resolution and 

vice versa. The task-driven approach takes advantage of this 

behavior and further enhances spatial resolution along the fx 

direction by increasing fluence in anterior-posterior views, thus 

boosting signal power [numerator of d’ in Eq.1]. Although 

noise is increased along the fy direction, the intrinsic smoothing 

of PL alleviates this effect and d’ is improved overall. 

The detectability map, d’(x, y), for the Unmodulated, Flat, 

𝛼 = 0.5, and Task-Driven strategies are shown in Fig.6 with the 

minimum d’ value superimposed. As expected, d’(x, y) for the 

 
Fig.4. Fluence field modulation patterns for the Flat, 𝛼 = 0.5, and Task-Driven strategies. 



 

Unmodulated strategy is the lowest at the center (minimum 

d’=0.92) and gradually increases towards the edge of the 

phantom. In comparison, the Flat field results in uniform d’ 

throughout, therefore improving d’ at the center but decrease d’ 

at the edge, with a minimum (uniform) d’ of 1.25. The 𝛼 = 0.5 

field has a d’ map that falls between the previous two cases with 

a minimum d’ of 1.06. Relative to the unmodulated case, d’ is 

improved for a larger area over the phantom but to a lesser 

degree compared to the “Flat” field. The task-driven approach 

achieved higher minimum d’ (=1.36) than other strategies. This 

is consistent with the maximin objective, according to which 

the rank order follows Task-driven > Flat >  𝛼 = 0.5  > 

Unmodulated. The task-driven d’(x, y) is almost uniform within 

the ribcage where the optimization was performed, suggesting 

that there is more than one solution that can achieve uniform d’. 

In addition to a higher minimum d’, the task-driven case also 

achieved a higher d’ at every location compared to the Flat field, 

and improved d’ in a large area around the center of the 

phantom compared to the Unmodulated and 𝛼 = 0.5 strategies.  

 

 
Fig.5. The local MTF (top row) and NPS (bottom row) at the center of the 

reconstruction for the four FFM strategies. 
 

Trends in d’ are generally supported by the reconstructions 

shown Fig.7 using the four FFM strategies (columns) for the 

four ROIs (rows) in Fig.3(a). In both the Unmodulated and 𝛼 =
0.5 reconstructions, the imaging task (i.e., distinguish the three 

separate dots) is visibly easier to perform at the edge of the 

phantom (left side of ROI 1, upper right corner of ROI 3) than 

the center (ROIs 2 and 4). The Flat and Task-driven FFM, on 

the other hand, achieve relative uniform performance across all 

four ROIs. Comparing across strategies, on the edge of the 

phantom, the imaging task is the easiest to perform in the 

unmodulated strategy compared to all others. An example 

stimulus is marked by the yellow arrow in ROI 1. As one moves 

towards the right of ROI 1 (i.e., towards the center of the 

phantom), the Unmodulated reconstruction starts to deteriorate 

and the task-driven strategy starts showing greater performance 

as seen by the stimulus indicated by the red arrow. At the center 

of the phantom (ROIs 2 and 4), the task-driven strategy 

outperforms the rest, followed closely by the Flat field. Both the 

unmodulated and 𝛼 = 0.5 strategies fall short in these regions. 

Example stimuli are indicated in ROIs 2 and 4.  

 
Fig.7. Reconstructions using fluence field modulation from the four imagine 

strategies (columns) in four ROIs (rows) in the abdomen phantom illustrated in 
Fig.3(a). 

V. DISCUSSION AND CONCLUSIONS 

This work presented FFM optimization for MBIR within a 

task-driven imaging framework. For the mid-frequency task in 

this investigation, the task-driven approach outperformed 

conventional strategies originally proposed for FBP 

reconstruction and yielded unconventional modulation patterns.  

This suggests that imaging strategies suitable for FBP needs to 

be reevaluated in the context of MBIR and the task-driven 

imaging framework provides a promising approach in 

optimizing imaging performance.  
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