
Abstract— Recent advances in imaging hardware, such as the 

development of CMOS x-ray detectors, have the potential to 

enhance spatial resolution of cone-beam CT (CBCT) systems to a 

level consistent with quantitative imaging of bone microarchitecture 

(~100 µµµµm detail size). This capability would be of particular value 
in dedicated extremities CBCT.  The accuracy in such applications 

will be diminished by subtle, sub-mm patient motion that cannot be 

managed with immobilization.  

We propose an image-based motion compensation method for 

high-resolution extremities CBCT that requires no fiducials or 

external trackers. The algorithm allows for the compensation to be 

applied only within a Region of Interest (RoI), so that the motion 

can be assumed to be locally rigid. Motion estimation is achieved by 

optimizing a cost-function that contains an autofocus term that 

favors sharp images and a penalty term that penalizes non-smooth 

motion. The non-convex optimization problem is solved using the 

CMA-ES algorithm. Following evaluation of several image 

sharpness metrics for application in extremities motion estimation, 

the variance of image gradient was chosen as the autofocus term. 

The effects of other parameters of the objective function (e.g. 

regularization strength) were evaluated in simulation studies of a 

hand phantom with synthetic motion patterns of variable amplitude 

(0.25-10 mm). Small motion amplitudes benefited from strong 

regularization, whereas weaker regularization was preferred for 

large motions.  

Excellent motion compensation was obtained in the simulated 

data. After compensation, the structural similarity index (SSIM) 

computed against a static reference volume was > 0.95 for motions 

up to 1 mm and >0.8 for larger motions. An 80% increase in SSIM 

compared to uncompensated image was found for the largest 

motion (10 mm). Real data of a wrist phantom acquired on a CMOS 

testbench with 0.5 – 10 mm amplitude object motion confirmed 

improved visualization of the trabeculae and increased SSIM after 

motion compensation. The method was applied to motion 

contaminated patient data from the dedicated extremities CBCT, 

yielding visible reduction of motion artifacts.  

The proposed image-based motion compensation provides robust 

correction of RoI motion in extremities imaging by using a simple, 

locally rigid motion model coupled with a penalized image 

sharpness criterion.  

 
Index Terms—High-resolution CBCT, motion compensation, 

extremities imaging, autofocus. 

I. INTRODUCTION 

uantitative metrics of bone microarchitecture have been 

extensively studied in pre-clinical micro-CT imaging and 

found to provide a sensitive biomarker with potential 

applications in early detection and staging of osteoarthritis and 

osteoporosis [1]. Clinical implementation of such metrics is 

challenged by the relatively small size of the pertinent bone 

features (e.g. ~100 µm for trabeculae). Encouraging initial 

results in in-vivo assessment of bone microarchitecture were 

obtained with dedicated Flat-Panel Detector (FPD) extremities 

CBCT (Fig. 1A) owing to the high spatial resolution of FPDs [2]. 

Further improvements in spatial resolution are necessary to 

establish extremities CBCT as a platform for clinical evaluation 

of bone morphology. This will involve improvement in 

hardware, in particular implementation of a CMOS detector, and 

algorithmic developments, including compensation of patient 

motion.  

The CMOS technology offers smaller pixel size, higher 

readout speed, and reduced electronic noise compared to FPDs. 

Fig. 1B shows an experimental testbench emulating the 

extremities CBCT system and equipped with a CMOS detector 

with 100 µm pixel pitch. Point Spread Function measurements 

showed >20% improvement in FWHM with CMOS-based 

CBCT compared to the current FPD-based CBCT (194 µm pixel 

pitch). 

 
Figure 1. (A) FPD-based extremities CBCT. The system will be upgraded to a 

CMOS detector to enhance spatial resolution and enable in-vivo quantitative 
imaging of bone microarchitecture. In addition to the improved hardware, 

compensation of small, involuntary patient motion will be essential for 

achieving the required spatial resolution. (B) Experimental testbench 
implementing the CMOS detector in the geometric configuration of the 

extremities CBCT. An additional horizontal translation stage is included to 

enable simulated sample motion. 

The application of a CMOS detector is a significant step 

toward reliable visualization of bone detail. However, even 

slight, sub-mm patient motion will challenge the accuracy of 

quantitative assessment of bone microarchitecture. For such 

small motions, patient immobilization (typically adequate for 

current applications of extremities CBCT) is not sufficient, and 

robust motion compensation will be necessary. 
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We propose a motion compensation strategy for extremities 

CBCT based on the “autofocus” concept [3, 4]. The motion 

trajectory is estimated by maximizing a metric of image 

sharpness. Compared to approaches based on fiducial markers [5, 

6] or external trackers [7], the proposed method does not require 

changes in the imaging workflow. Moreover, since the autofocus 

approach is purely image-based, the motion compensation can be 

restricted to a specific region of interest (RoI) (in contrast to 

algorithms relying on 3D-2D registration [8]). In application to 

bone microarchitecture, the RoIs will often consist 

predominately of bone voxels. This supports the assumption that 

the local motion is rigid, greatly simplifying the motion 

estimation compared to the complex and deformable motion of 

the whole extremity.   

We introduce a new form of the autofocus objective that 

employs a novel regularization term penalizing large object 

displacements, and uses a spline-based model of rigid motion. 

The performance of a variety of image sharpness metrics in 

extremity motion estimation is investigated. The proposed 

autofocus objective is non-convex and exhibits local minima. A 

statistical optimization method is thus applied for motion 

estimation (compared to the more common choice of a simplex 

algorithm) and a restart strategy is introduced to homogenize 

performance across a wide range of motion amplitudes. The 

method is evaluated with simulated and experimental data. 

Application to patient data from current clinical CBCT prototype 

is presented.  

II. MOTION COMPENSATION FRAMEWORK 

A flowchart of the algorithm is shown in Fig 2. An initial, 

motion-contaminated reconstruction is obtained and the RoI to 

be compensated is selected. It is assumed that the motion of the 

RoI is rigid, even if the extremity as a whole undergoes a more 

complex transformation. The motion trajectory T consists of a 6 

DoF rigid transformation of the RoI at each projection angle θ. 

Each DoF is represented as a cubic b-spline (B): 
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where j enumerates the DoF (j = 1,…,6) and N is the number of 

spline knots. The motion trajectory of the RoI is estimated by 

finding the b-spline coefficients cij through maximization of the 

following objective function: 
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where µ is the reconstructed RoI, and S(T,µ) is an image 

sharpness metric. In each iteration, S is computed on a volume 

obtained from a reconstruction for which the current motion 

estimate T was applied during the backprojection. R(T) is a 

penalty (regularization) term encouraging smooth motion 

trajectories, and β is a scalar penalty strength. The regularization 

penalizes the first order difference of the positions of the RoI in 

subsequent projections: 
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where xkq, ykq, and zkq are the coordinates of the k-th corner of the 

RoI in projection q. 

The optimization in Eq. 2 is not convex and exhibits multiple 

minima that challenge conventional gradient-based methods. 

Instead, the minimization was performed with the Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES) [8]. At each 

iteration, a population of 20 RoI volumes was generated in 

parallel for a set of candidate motion trajectories using a GPU 

implementation of Feldkamp (FDK) reconstruction. Failure to 

converge or residual motion after a fixed number of iterations 

was handled by restart of the CMA-ES iterations with increased 

size of the solution space to be explored (σ) [9]. 

Several image sharpness metrics have been proposed for 

autofocus compensation of motion and geometric misalignment. 

In the latter context, entropy and gradient based metrics were 

shown to be the most appropriate [10]. Here, four metrics were 

evaluated for the task of extremity motion correction: (i) image 

variance, previously used in microscopy autofocus applications 

[11]; (ii) Entropy )��, �� � 	∑ ,-��� ∙ log	,-���- ,  where hi in an 
intensity histogram with 256 bins; (ii) the (negative) squared 

spatial gradient [3]; and (iv) the (negative) gradient variance. 

 The performance of the metrics was evaluated in a population 

of motion-contaminated bone images obtained by simulating 

3000 random motion trajectories over a 0-50 mm range of 

average motion amplitudes (where the average amplitude is 

equivalent to mean displacement in each motion trajectory). 

III. EXPERIMENTAL EVALUATION 

The evaluation used data acquired on a CMOS-based x-ray 

testbench (Fig. 1B).  The system geometry emulated the 

extremities CBCT prototype. The CMOS detector was a Dalsa 

Xineos 3030 (Eindhoven, NL) with a pixel size of 0.1 mm and 

600 µm-thick CsI columnar scintillator. A 3kW, small focal spot 

(0.3 FS), rotating anode x-ray source (IMD RTM 37, Italy) was 

operated at 90 kV (+0.2 mm Cu), and 0.12 mAs per projection; 

720 projections were acquired over 360o. The bench included a 

linear translation stage that was synchronized with the rotation 

stage to simulate patient motion. Reconstruction voxel size was 

0.075 mm for image evaluation and 0.5 mm for motion 

 
Figure 2. Workflow of the motion compensation. The compensation is applied locally to a RoI where the motion can be assumed rigid. The motion trajectory is 

represented using a b-spline model and estimated by CMA-ES optimization of a non-convex cost function that maximizes image sharpness.  



estimation; FDK algorithm with Hann apodization and cutoff at 

the Nyquist frequency was used.  

A simulation study was performed to explore the performance 

of motion compensation as a function of number of spline knots 

N and regularization strength β. A cadaveric wrist was imaged 

on the testbench and reconstructed to obtain a static image. 

Motion contaminated projections were simulated by applying a 

projection-wise rigid transformation to the volume followed by 

a forward projection. Simulated motion trajectories involved 

translations in the transaxial (x-y) plane with amplitudes ranging 

from 0.25 mm to 10.0 mm. Each translation was performed as 

linear motion that began at 90o gantry rotation and finished at 

150o gantry rotation.  Motion was modelled with spline 

interpolation with 360 control points to obtain 

smooth trajectories. Motion compensation involved a maximum 

of 4000 iterations of CMA-ES applied to a 200x200x20 voxels 

RoI including 3 carpal bones (see Fig. 5). The optimization was 

considered converged for changes in the cost function smaller 

than 10-4. A restart with 4-fold increase in σ was performed for 

cases for which convergence was not achieved. Maximum 

runtime was ~30 min if convergence was not reached earlier.  

Experimental evaluation involved an anthropomorphic hand 

phantom acquired on the testbench with motion implemented as 

a lateral translation of the linear stage with a slope of 1 mm per 

degree of rotation. A static volume (no motion) and scans with 

0.5, 1.0 and 10 mm amplitude motions were acquired    

The performance of motion compensation in the simulation 

and experimental studies was quantified using the structural 

similarity index (SSIM), with the static image as reference [12]: 
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where �;<  is the average attenuation and σj is the variance of 
the attenuation values in image j. The index ref denotes the 

reference static image, MC denotes the motion compensated 

image, and σref-MC is the covariance between the two images. 

The method was also applied to a motion contaminated patient 

knee scan obtained on the current generation FPD-based 

extremities CBCT. 

IV. RESULTS 

The normalized value of the various image sharpness metrics 

is shown as a function of average motion amplitude in Fig. 3 (the 

metrics were normalized by subtracting their minimum value and 

dividing by maximum value so that 0 represents a perfectly 

focused image). 

 

Figure 3. Normalized 

autofocus sharpness 
metrics as a function 

of average motion 
amplitude for an 

ensemble of fifty 

random realizations 
of motion. Gradient 

based metrics 

showed a lower 
number of local 

minima and 

monotonic increase 
with motion. 

An ideal sharpness metric for motion estimation should 

monotonically decrease towards a global minimum 

corresponding to a static image. At a fixed motion amplitude, 

narrower dispersion of the metric is preferred, as it indicates 

weaker local minima (the metric is consistent across motions 

with the same average displacement but different trajectories). 

Image variance is not monotonic, showing a strong local 

minimum at ~10 mm amplitude. Entropy is monotonically 

increasing for motion amplitudes of up to 10 mm, but decreases 

with increasing motion at larger amplitudes. This reflects the fact 

that images with significant motion blur are relatively uniform 

and thus exhibit small entropy. While successful motion 

compensation has been shown with entropy-based metrics [4], 

this particular objective may thus not be well suited for large 

motions. Both gradient-based metrics are monotonically 

increasing throughout the investigated range of motions. 

Gradient variance exhibits lower dispersion and was chosen for 

the studies presented here. 

 
Figure 4. SSIM as a function of number of knots in the b-spline motion model 

(N) and regularization strength (β) for small (A), moderate (B) and large (C) 

motions. 
Fig. 4 shows the performance of motion compensation as a 

function of regularization strength β and number of knots in the 

motion model N. Only CMA-ES runs with no restart were 

included in this investigation. Strong regularization is preferred 

for small motion amplitudes, achieving almost perfect 

correspondence with the reference image (SSIM > 0.9). As 

motion amplitude increases, the value of β yielding maximum 

SSIM decreases. Optimal β for 6 mm motion is 102-103x smaller 

than that for sub-mm motion. This is likely because 

large β encourages solutions that smooth out the large motions. 

The trend in the number of knots is weaker, with a combination 

of a low number of knots and small β yielding sub-optimal 

performance, which may involve solutions with oscillatory b-

spline motion patterns. For the 6 mm motion, combination of a 

large number of knots with moderate β (~103) resulted in slow 
convergence (not reached within the 4000 CMA-ES iterations), 

indicating the need for a restart. Fig. 5 shows a selection of image 

results from the simulation study in Fig 4. Motion-compensated 

images corresponding to parameters of the objective function 

yielding maximum SSIM are compared to uncompensated 

reconstructions and the reference static volume for 0.5 mm and 

10 mm motion. Significant reduction in motion-induced artifacts 

and recovery of trabecular detail are achieved for both small and 

large motions. The plot of maximum SSIM (obtained at 

“optimal” values of β and N) as a function of motion amplitude 

shows almost perfect structure recovery (SSIM > 0.95) for 

motions <= 1 mm and significant improvement compared to no 

compensation for larger motions (~2x increase in SSIM). For 

motions > 5 mm, CMA-ES restart is essential for optimal results. 

Fig. 6 shows the results of benchtop experiments. Even for the 

relatively small 1 mm motion, significant deterioration in the 

visualization of the trabeculae is found (arrows). Motion 

compensation successfully recovers the trabecular structure. A 

30% improvement in SSIM was achieved, confirming the results 

of the simulations in real data. 



Fig. 7 shows the application of the compensation algorithm to 

patient data from FPD-based extremities CBCT with artifacts 

due to insufficient immobilization. The scan was processed using 

the proposed method using a 9x9x1.2 cm RoI centered at the 

femoral head. Significant reduction of motion artifacts is 

apparent. This indicates that the motion found in an RoI can in 

some cases be applied outside of the RoI to yield partial 

correction of the artifacts throughout the volume. 

VI. CONCLUSION 

A purely image-based motion compensation framework for 

high resolution CBCT extremities imaging was presented and 

evaluated. The performance of the method as a function of the 

autofocus metric, regularization strength and motion model was 

investigated. The algorithm recovered trabecular structure and 

suppressed motion artifacts across a broad range of motion 

amplitudes. In particular, almost perfect correction was achieved 

for sub-mm motions representative of small, involuntary patient 

drift that cannot be controlled with immobilization. 

Compensation of such motion is essential for emerging 

applications in quantitative imaging of bone microarchitecture. 

The robust motion correction framework will be essential for 

realizing the gains in spatial resolution expected with new 

imaging hardware for extremities CBCT.  
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Figure 5. Motion compensation in simulated data for small (0.5 mm) and large (10 mm) motion amplitudes using optimization parameters yielding best SSIM for 

a given motion amplitude. The performance of the method improves for smaller motion amplitudes, but recovery of the trabecular structure and significant reduction 

of artifacts is apparent in both cases. This is quantified by the plot of SSIM (computed against the reference static volume) as a function of motion amplitude. 
Compensation using CMA-ES without restart (circles) is compared to that with restart (triangles), showing the benefits of restart for cases with large motion 

amplitudes (>5 mm). The square in the static image marks the RoI used for motion estimation. 

 
Figure 6. Motion compensation in experimental testbench data with step motion generated by a linear translation of the volume during the acquisition. Motion-
induced artifacts (double contours) are reduced and details of the trabecular architecture are recovered after compensation (arrows).  

 
Figure 7.Motion compensation in patient data. 

 


