
High-Fidelity Modeling of Detector Lag and
Gantry Motion in CT Reconstruction
Steven Tilley II, Alejandro Sisniega, Jeffrey H. Siewerdsen, J. Webster Stayman

Abstract—Detector lag and gantry motion during x-ray
exposure and integration both result in azimuthal blurring in
CT reconstructions. These effects can degrade image quality
both for high-resolution features as well as low-contrast details.
In this work we consider a forward model for model-based
iterative reconstruction (MBIR) that is sufficiently general to
accommodate both of these physical effects. We integrate this
forward model in a penalized, weighted, nonlinear least-square
style objective function for joint reconstruction and correction
of these blur effects. We show that modeling detector lag can
reduce/remove the characteristic lag artifacts in head imaging
in both a simulation study and physical experiments. Similarly,
we show that azimuthal blur ordinarily introduced by gantry
motion can be mitigated with proper reconstruction models.
In particular, we find the largest image quality improvement
at the periphery of the field-of-view where gantry motion
artifacts are most pronounced. These experiments illustrate
the generality of the underlying forward model, suggesting
the potential application in modeling a number of physical
effects that are traditionally ignored or mitigated through pre-
corrections to measurement data.

I. INTRODUCTION

The need for high-resolution, quantitatively accurate CT
reconstructions has increased with the rise of application-
specific systems. For example, Cone-Beam CT (CBCT)
mammography [1] and extremities systems [2] require high
resolution to detect microcalcifications and visualize fine
trabecular structure, respectively. Point-of-care CBCT head
imaging [3] similarly requires highly accurate reconstruction
of relative attenuation values to detect low contrast bleeds.
Such dedicated imaging systems often use flat-panel detec-
tors, which are selected for their high-resolution capability
and ease of integration into compact systems. However, a
number of physical effects including scintillator blur and
detector lag can degrade measurement data, challenging the
above applications. Similar examples of hardware limitations
challenging particular applications can be found in tradi-
tional Multi-Detector CT (MDCT). For example, cardiac and
emergency room scanning place high demands on lowering
the scan time. The high rotation rates in such applications
can result in significant blurring effects due to gantry motion
during the integration time of the detector.

Previous work has suggested that such hardware limita-
tions can be compensated through explicit modeling and
incorporation into a Model-Based Iterative Reconstruction
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(MBIR) algorithm. In particular, we have found that scin-
tillator blur and focal-spot blur in flat-panel systems can be
modeled for potential resolution recovery [4]. The forward
model used in that work is very general and permits incor-
poration of a wide range of physical effects. In this work
we adopt the same mathematical form for the underlying
forward model and apply MBIR to detector lag and gantry
motion.

Detector lag results from the detector trapping and later
releasing charge, causing a fraction of the signal from
previously acquired projections to be added (temporally
blurred) into subsequent projections [5], [6]. Detector lag
effects are usually low contrast and extend across large
areas of the reconstruction, originating near high contrast
objects. A classic example of lag artifacts are the low
contrast trails arcing off the skull into the brain in flat-panel-
based head imaging. Traditionally, detector lag corrections
are applied through preprocessing the measurements prior to
reconstruction [7], [8]. To our knowledge, this work is the
first attempt to correct for lag within the forward model of
an MBIR approach.

Gantry motion blur shares some similarity with lag in
that there is an effective blurring over angle. However,
this blur occurs within a single measurement - effectively
integrating an arc of projection images based on how far
the source and detector have rotated during an integration
period. Such blur exhibits as an azimuthal smearing of the
CT volume and is most pronounced toward the edge of the
field of view. Gantry motion effects have been addressed in
hardware (e.g., collecting data with a step-and-shoot protocol
or more complicated methods [9]) and in software (e.g.,
incorporating a blur model into a linearized forward model
for MBIR [10]).

In this paper, we introduce specific models of detector
lag and gantry motion, and integrate those models into the
general form in [4]. Simulation studies are conducted for
both blur scenarios. Image reconstructions are performed
using both traditional (unmodeled blur) and the proposed
high-fidelity models, and the resulting images are compared.
Preliminary physical-experiment results using a head phan-
tom and a CBCT test bench are also shown to illustrate
application in a real system.



TABLE I
BLUR KERNEL PARAMETERS

0 1 2 3

a — 0.998 0.0991 0.0152
b 0.965 0.0165 0.000572 4.51e-05

II. METHODS

Both detector lag and gantry motion blur scenarios can
use the same general forward model presented in [4]:

ȳ = B exp (−Aµ) (1a)

y ∼ N (ȳ,K) (1b)

where B, A, and K are matrices, µ is a vector of
attenuation values, and y is a vector of measurements. The
corresponding penalized likelihood objective function is

‖(y −B exp (−Aµ))‖2K−1 + βR(µ) (2)

where R is a penalty function and β is the penalty strength.
The µ that minimizes (2) is the reconstruction. A tradi-
tional forward model has A as the system matrix, B as
a diagonal matrix which scales measurements by a gain
factor (e.g., photon flux, etc.), and K as a diagonal ma-
trix of measurement variances. However, the reconstruction
method in [4] which minimizes the objective function (2)
makes few assumptions about these matrices, allowing the
forward model (1) to incorporate many physical properties.
This reconstruction method may utilize ordered subsets and
Nesterov momentum acceleration [11], [12].

A. Detector lag

Detector lag may be modeled as a convolution blur where
the blur kernel is a sum of exponentials [8]:

h[k] =

{
b0δ[k] +

∑3
i=1 bi exp (−kai) if 0 ≤ k < K

0 otherwise
.

(3)
The K parameter in (3) determines the length of the blur
kernel (i.e., the number of nonzero terms). This convolution
is incorporated into B in (1a). Specifically, each row of B
weights and combines a series of unblurred measurement
data to form a measurment with lag. Physical blur kernel
parameters for our test bench system were estimated from
the falling edge of a bare-beam scan [8]. The estimated
parameters used throughout this work are shown in Table I.
Because B is no longer block diagonal with regards to
projection number (i.e., B blurs among projections), we
cannot trivially apply ordered subsets to speed convergence
[13].

A simulation study was conducted with an ellipsoidal
“head” phantom of fat surrounded by bone. Data were
generated from a phantom with 0.25 mm× 0.25 mm vox-
els on a system with 580.0 mm Source-Isocenter Distance
(SID) and 800 mm Source-Detector Distance (SDD). Data
were projected onto a detector with 0.278 mm pixels with

0.00

0.07

m
m

−
1

Fig. 1. A portion of the digital phantom for motion blur studies. The left
most circle in this figure is at the center of the phantom. The circles are
separated by 20mm.

0.5× 105 photons pixel−1 over 360◦ in 1◦ increments. Pois-
son noise was added and data were binned by a factor of
two, resulting in 0.556 mm pixels with 106 photons pixel−1.
We then blurred the data by the calculated blur kernel with
a length of K = 359 and added readout noise (σro =
7.12 photons). Blurring the data after adding Poisson noise
correlates the noise as in real systems [6].

Data were reconstructed with 0.5 mm× 0.5 mm voxels, a
quadratic regularizer, and the separable footprints projector
[14]. Two reconstruction methods were used: identity blur
modeling (i.e., no blur modeling) and detector lag blur
modeling (with a kernel length of K = 101). In this work
we assume uncorrelated noise for simplicity, specifically

K = D{y}+ σ2
ro, (4)

where D{·} is a diagonal matrix with its argument on the
diagonal). We used 5000 iterations and Nesterov accelera-
tion. Reconstructions were noise matched by varying β and
taking the standard deviation of the attenuation values in the
center of the image.

Additionally, we scanned a physical head phantom on a
CBCT test bench with parameters similar to those in the sim-
ulation study, except projection data were acquired in half
angle increments. In order to focus on only detector lag in
this preliminary study, we corrected the data for beam hard-
ening due to water, scatter, and glare, as described in [15].
Data were reconstructed with 0.5 mm× 0.5 mm× 0.5 mm
voxels using the same blur models as the simulation study
(the blur model used a lag kernel length of K = 201).
Nesterov acceleration was used with 4000 iterations. We
used a quadratic regularizer, and the same regularization
strength for both reconstructions.

B. Gantry motion

Gantry motion blur is the result of a continuous integration
over angle, and may be modeled as

ȳi = B2

∫ θi+∆θ/2

ψ=θi−∆θ/2

exp(−Aψµ)dψ (5)

where ȳi is the mean measurement vector at projection i
and gantry angle θi, ∆θ is the angular distance over which
data is collected for projection i, and Aψ is the projection
matrix at angle ψ. A discrete approximation is achieved by
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Fig. 2. Simulation phantom reconstructions with the identity model (left)
and the detector lag model (right). The second row of images shows a
smaller portion of the phantom for better visualization.
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Fig. 3. Head phantom bench reconstructions with the identity model (left)
and the detector lag model (right). The second row shows a smaller portion
of the phantom to better visualize the detector lag effect.

oversampling in projection angle and summing the results
to obtain the measurement sampling:

ȳi = B2J
−1

J∑
j=0

exp (−Aψµ) (6)

ψ(j) = θi + ∆θ (j/J − 1/2) (7)

where J is the angular oversampling factor. B from (1)
contains B2 and the summation term in (6), and A contains
all the Aψ used in (6). For example, if the measurement
data contains 360 projections and J is 3, then A results in
1080 projections, and every three consecutive projections are
summed together as part of B.

A circular simulation phantom with a diameter of 25 cm
and multiple round ROIs at different distances from the cen-
ter of rotation was used to evaluate the proposed algorithm.
A subset of this phantom is shown in Fig. 1. A continuous
motion system was simulated with 500 mm SID, 1000 mm
SDD, and 1000 projections per rotation. This geometry was
chosen to approximate high-resolution MDCT systems. Data
were generated from a phantom with 0.1 mm× 0.1 mm vox-
els and a detector with 0.125 mm pixel pitch. We projected at
51 000 equally spaced angles over a 360◦ rotation. Poisson

noise was added prior to binning to 1000 projections and
spatially binning to 0.25 mm pixels. The photon flux after
binning was 105 photons pixel−1. Finally, readout noise was
added to the data (σro = 7.12 photons).

Data were reconstructed with 0.2 mm× 0.2 mm voxels.
We used two blur models: an identity blur model (no blur,
A produces 1000 projections), and a gantry motion blur
model with an angular oversampling factor of J = 5 (A
produces 5000 projections). We used an uncorrelated noise
model (4), the Huber penalty (δ = 10−3) [16], and the
separable footprints projector [14]. Nesterov acceleration
was used with 1000 iterations and 10 subsets. Bias/noise
measurements were calculated for each ROI. Bias was the
Root Mean Squared Error (RMSE) between a noiseless
reconstruction and truth at the ROI, and noise was the RMSE
between a noisy reconstruction and a noiseless reconstruc-
tion in a nearby region. Bias and noise were calculated for
multiple penalty strengths to obtain a bias/noise curve for
each method. Data were also reconstructed with a quadratic
penalty and J = 5 to compare this penalty to the Huber
penalty.

III. RESULTS

A. Detector lag

The detector lag digital phantom reconstructions are
shown in Fig. 2. The reconstructions are approxi-
mately noise matched — 7.96× 10−5 mm−1 (identity) and
7.91× 10−5 mm−1 (blur). When no blur model is used,
detector lag causes a bright trail atrifact arcing off the skull
and into the interior of the head. When blur modeling is used,
this effect is eliminated. When lag modeling was applied to
bench data, the bright trail off the skull was dramatically
reduced (Fig. 3). The fact that the trail was not completely
removed may be due to an insufficient number of iterations
(non-converged estimate) or an inaccurate estimate of the
lag blur kernel.

B. Gantry motion

Gantry motion results are summarized in Fig. 4. The
bias/noise tradeoff is shown for each ROI at varying dis-
tances from the center of rotation. The identity model suffers
from increased bias at large distances from the center of
rotation, while the blur model bias is relatively unchanged
(suggesting a recovery of spatial resolution). The identity
model appears to outperform the blur model at 20 mm to
60 mm from the center of rotation, although the difference
is small. These results are confirmed in the reconstructions
in Fig. 4. These reconstructions were approximately noise
matched at the ROI furthest from the center of rotation by
altering penalty strength (noise is 3.790× 10−4 mm for the
identity model and 3.407× 10−4 mm for the blur model).
The circles in the identity model reconstruction get blurrier
along the direction of rotation as distance from the center
increases. However, with the blur model the circles are
accurately reconstructed. Additionally, the blur model’s bias
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Fig. 4. Bias/noise curves (top) and reconstructions (bottom) for each ROI in Fig. 1. Each column corresponds to a distance from the center of rotation.
The top row reconstructions use the identity model and the bottom row reconstructions use the gantry motion blur model.
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Fig. 5. Quadratic penalty reconstructions of the 100mm ROI with blur
modeling.

improvement in the 20 mm to 60 mm range is difficult to
visualize.

Fig. 5 shows the 100 mm ROI reconstructed with the blur
model and the quadratic penalty at three different penalty
strengths. With this penalty the blur model is unable to
deblur the circle without a substantial increase in noise.

IV. DISCUSSION

We have shown that the general reconstruction method
presented previously [4] is capable of reducing effects due to
detector lag and gantry motion blur. The methods presented
here could trivially be extended to model detector lag with
other forms (i.e., not sum of exponentials) or more compli-
cated forms of gantry motion (e.g., when data acquisition
only occurs during a fraction of the rotation). Additionally,
these models may be combined with each other or other
forms of blur, such as focal spot blur and scintillator blur,
to further improve image quality.

A major limitation of modeling detector lag is the inability
to use ordered subsets to speed convergence. In practice, one
may initialize with a reconstruction without a lag model and
with ordered subsets to get a relatively accurate estimate,
and then reconstruct with the lag model for a handful of
iterations. Additionally, a more accurate initialization may
be obtained by lag correcting the projection data prior to

simple MBIR (i.e., without lag modeling), and then the final
reconstruction obtained with a few iterations with the full lag
model and the original, uncorrected measurement data.

While this work is still preliminary, we note that the
edge preserving Huber penalty plays an important role in
the gantry motion reconstructions. We believe the quadratic
penalty’s tendency to enforce smooth edges prevents the
fidelity term from deblurring the gantry motion effects. In
contrast, the Huber penalty doesn’t penalize sharp edges to
the same degree, and allows the fidelity term to deblur the
image. Ongoing work will further explore these issues by
analyzing different penalties (e.g., sweeping the δ parameter)
and using more complicated image quality targets.

High-fidelity system modeling with MBIR can improve
image quality by overcoming hardware limitations such
as detector lag and gantry motion. However, application
specific systems may have different limitations and con-
straints. The forward model and MBIR algorithm used in
this work are sufficiently general to accommodate many
physical effects, and may therefore be used to improve image
quality and quantitative accuracy in a wide range of clinical
scenarios.
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