
Abstract—Prior-image-based reconstruction (PBIR) algorithms 

provide great improvements in the trade-off between radiation 

exposure and image quality, especially in sequential imaging 

studies where high-fidelity prior images are available. Most PBIR 

methods incorporate the prior information through a penalty term 

in the objective function. In many sequential studies the primary 

goal is to estimate the difference between the prior image and the 

current anatomy. Here we introduce a method called 

reconstruction of difference (RoD) to reconstruct the difference 

image directly from the measurements. This method relies on 

prior image data, but unlike conventional PBIR, the prior 

information is integrated in the data consistency term. We 

investigated the performance of RoD under noisy and sparsely 

sampled projections in local and global acquisition scenarios using 

simulated data and test-bench experiments. RMS errors were 

compared to a standard penalized likelihood (PL) algorithm. The 

RoD outperformed standard PL in noisy and truncated data, and 

in simulation and in test-bench data reconstructions. The 

performance of the global and truncated RoD were comparable. 

This suggests computational speedups and dose reduction are 

possible through the use of the local acquisition and RoD. 

 
Index Terms—Prior image, model-based reconstruction, statistical 

reconstruction, computed tomography, cone-beam CT.  

I. INTRODUCTION 

Prior-image-based reconstruction (PIBR) methods have 

found increasing use in a number of computed tomography 

(CT) applications[1]–[4]. The ability to include patient-specific 

anatomical knowledge (typically via prior images) in the image 

formation process has yielded dramatic improvements in the 

trade-off between image quality and radiation exposure. Prior 

image approaches tend to be particularly helpful in overcoming 

scenarios with low data fidelity including sparse/subsampled 

data and noisy projections from low exposure acquisitions. 

There are many clinical scenarios where high-fidelity prior 

images are potentially available that may be used for 

reconstruction of subsequent data acquisitions. Examples of 

such sequential imaging studies include: 1) Longitudinal cases 

where anatomical change is monitored in disease progression 

or treatment (e.g. tumor growth/shrinkage in image-guided 

radiation therapy (IGRT)); 2) image-guided surgery (IGS) cases 

where preoperative diagnostic/planning are available but 

interoperative CT is used for up-to-date anatomical data for 

image-guidance; 3) imaging of periodic motion (e.g. the 

contraction of the heart or the motion of a joint); and 4) dynamic 

studies including perfusion. 

A number of PBIR methods have been developed in recent 

years including prior image constrained compressed sensing 

(PICCS) [1], statistical PICCS [2], and prior image registration 

penalized-likelihood estimation [4]. These techniques vary 

somewhat in their data consistency term, and in the presence 

and type of noise model that is presumed for the underlying 

data. However, the methods are similar in that they seek to 

reconstruct the current anatomy and integrate prior image data 

through a constraint or penalty term. Specifically, these 

methods tend to use transformed differences between the 

current reconstruction estimate and the prior data and a metric 

(typically an l1 norm) that encourages sparsity in the 

transformed domain. 

 In many sequential imaging studies, the primary objective is 

to find the difference between the prior image and subsequent 

scans. For example, in monitoring tumor growth, visualizing 

and quantifying changes in tumor size is critical to treatment. In 

perfusion imaging, it is often differences before and after the 

administration of contrast that are important. Such difference 

images often greatly enhance the visualization of important 

features (e.g. 3D digital subtraction angiography). 

Such a focus on differences between the current anatomy and 

a prior scan suggest an alternate reconstruction framework 

where it is the difference image that is modeled and 

reconstructed directly. Lee et al. [5] proposed a method that 

sought to reconstruct difference via penalized likelihood (PL) 

reconstruction based on the subtraction of prior and current 

projection data. In this work, we propose a modified data 

consistency term based on a likelihood function that models the 

relationship between the difference image and the observed 

data. Again, this approach relies on prior image data, but its 

integration is now in the data consistency term in contrast to 

conventional prior image methods. 

There are a number of potential advantages to this 

reconstruction of difference (RoD) approach. Not only does 

RoD change the primary output of the reconstruction to be the 

difference image, but regularization and control of image 

properties is instead related to the change (difference) image as 

opposed to the current anatomy. Additionally, in many clinical 

cases including cardiac function, image-guided surgery (IGS), 

and image-guided radiation therapy (IGRT), change is limited 

to a relatively small volume of interest (VOI). This permits a 

dramatic reduction in the support size for reconstruction, 

facilitating computational speedups, memory reductions, and 

(if desired) truncated, limited FOV data acquisitions. In 

contrast, traditional model-based approaches require a region of 

support covering the entire anatomy in the axial plane.   

In this paper we introduce the RoD framework and 

investigate its performance under noisy and sparsely sampled 

projections in local (VOI) and global reconstruction scenarios, 

and in simulated data and test-bench experiments. 
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II. METHODS 

A. Model-based Reconstruction of Difference 

An overview of the RoD imaging chain is illustrated in 

Figure 1. We seek to use noisy measurements, y, and prior 

image data 𝜇𝑝, to reconstruct a difference image, 𝜇∆. This 

difference image, itself, may be of interest, or one can use the 

prior image and the difference image to compute the current 

anatomy. In general applications, a registration step may be 

required for the prior image data. This could potentially be 

performed as in [6] in a staged approach based on a coarse 

reconstruction of the current measurements, or in a more 

sophisticated joint estimation scheme as in [4]. For simplicity 

in this paper, we focus on a well pre-registered prior image 

scenario. 

B. Forward Model and Objective Function 

A standard mean measurement model can be described as 

                              �̅�𝑖=𝐼𝑖0exp(−[𝐀𝜇]𝑖), (1) 

where 𝐼𝑖0 is the number of unattenuated photons, µ is vector of 

attenuation coefficients representing the current anatomy, A is 

the system matrix, and [Aµ]i is the line integral associated with 

the ith measurement. We presume that yi is independent and 

Poisson distributed. 

 Recognizing that the current image is the sum of prior image 

and difference image, we can rewrite (1) as  

                 �̅�𝑖 =𝐼𝑖0 . exp(−[𝐀(𝜇𝑝 + 𝜇∆)]𝑖), (2) 

                      =𝐼𝑖0exp(−[𝐀𝜇𝑝]𝑖) . exp(−[𝐀𝜇∆]𝑖). (3) 

Since µp is known, we may combine scaling terms into a single 

gain parameter: 

                             𝑔𝑖0=𝐼𝑖0 . exp(−[𝐀𝜇𝑝]𝑖), (4) 

such that 

                            �̅�𝑖 =𝑔𝑖0 . exp(−[𝐀𝜇∆]𝑖). (5) 

Equation (5) is convenient since it reduces the difference 

forward model to the same form as the traditional forward 

model in (1). This formulation will permit the use of standard 

reconstruction algorithms.  

We choose the following penalized-likelihood objective for 

the reconstruction of the difference image: 

�̂�∆ = arg min
𝜇 ∈ℝ

{−𝐿(𝑦; 𝜇∆) + 𝛽𝑅𝑅(𝜇∆) + 𝛽𝑀𝑀(𝜇∆)}, (6) 

where R(µ) is a traditional roughness penalty that mitigates 

artifacts and noise by encouraging smooth solutions with a 

strength controlled by parameter R. In this paper, we focus on 

R() = ||R ||1 with  R denoting a local difference for voxels 

over a 1st order neighborhood1. A second penalty term, 

M(µ) = ||µ||1, with strength given by M, ensures that the 

difference itself is sparse – i.e., local and relatively small.  

At first glance this 2nd penalty appears redundant with the 

traditional roughness penalty, but both are important for control 

of noise and the amount of prior information. While the first 

term is fairly intuitive, controlling a standard noise/resolution 

tradeoff, the 2nd term is more complex. Increasing 𝛽𝑀  

increasingly penalizes the magnitude of the difference image 

and therefore the contribution of the prior information in image 

formation. A large value of 𝛽𝑀  forces the difference image to 

zero, (no difference from the prior image, and the image is 

reconstructed solely from the prior data) and a small 𝛽𝑀 allows 

 
1 Strictly speaking, we approximate the l1 norm using a Huber penalty with 

a small  parameter which controls the location of the transition between the 

for large differences and therefore less prior information is 

incorporated in the reconstruction. 

Note that the difference image (𝜇∆) denotes the change in 

attenuation coefficients between scans; therefore it could be 

positive or negative. As a result, traditional nonnegativity 

constraints on the reconstruction are not applied. 

 

 
 
Figure 1- The flowchart of reconstruction of difference (RoD) method. 

Prior and final images are shown on the top right. The current 

measurements were created by placing a spherical object (“tumor”) in 

the nasal cavity of the phantom. The dashed square indicates the region 

of interest used in local reconstruction and RMSE calculation. 

 

1) Practical Implementation 

To solve (6) an ordered subset separable paraboloidal surrogate 

(OS-SPS) [7] approach was chosen to minimize the PL cost 

function. This algorithm is highly parallelizable and was 

implemented in Matlab (The Mathworks, Natick MA), and we 

used CUDA-based libraries to perform the optimized projection 

operations on GPUs. 

C. Experimental Design 

Four experiments were conducted: 1) A regularization 

investigation using simulated data where various penalty 

strengths were investigated and optimized; 2) An investigation 

of the “local” VOI capabilities of RoD; 3) A performance study 

of RoD as compared with PL over a range of fluence levels and 

sampling; and 4) Sample cone-beam CT (CBCT) 

reconstructions using FBP, PL, and RoD. For simulation 

studies, we used a relatively high-dose CBCT scan (100 kVp, 

453 mAs, and 720 projections over 360°) to produce a high 

fidelity prior image volume of an anthropomorphic head 

phantom. The ground truth current image (µ̅) was created by 

adding a small spherical “tumor” to the prior image as seen in 

Figure 1 (diameter: 21 voxels or 10.5 mm, and attenuation 

coefficient = 0.02 cm-1). Simulated projection data were 

computed for 720 angles over 360°. 

1) Regularization Investigation 

To study general trends in optimal penalty strength, an 

exhaustive 2D sweep was performed and RoD images were 

estimated. Root-mean-square error (RMSE) between the RoD 

image and the original noiseless fully sampled simulated image 

central quadratic neighborhood and the linear portions of the penalty. In this 

work  = 10-4 for all cases. 



(µ̅) was used as a performance metric. RSME was calculated in 

a 100×100 voxel VOI around the tumor, as shown in Figure 1.  

We chose a large enough ROI to include the bone structures in 

the background in addition to the air and soft tissue of the nasal 

cavity. 

2) Local vs Global Performance 

We compared regularization and reconstruction performance 

of the global vs local scenarios to investigate the potential for 

RoD to use small support VOIs. Presuming that the anatomical 

change is local, we may also acquire the current image data by 

collimating the x-ray source to the VOI. We simulated this by 

selecting a 100×100 voxel region and truncating the projections 

not intersecting the VOI (Figure 1). The prior image was 

acquired without truncation. For comparison, RMSE was 

calculated over the same anatomical VOI in both local and 

global reconstructions. 

3) Performance as a Function of Data Fidelity 

To investigate RoD performance at varying fluence, different 

levels of Poisson noise were simulated for noisy acquisitions 

with I0 ranging from 102 to 105 (with projection subsampled by 

4). Similarly, to investigate the dependence on data sparsity, the 

number of projections was subsampled by a factor of 1, 2, 4, 8, 

16, 30, and 45 at a typical fluence level (I0 = 104). For these 

studies, optimal regularization parameters were determined by 

exhaustive searches and the local strategy was used. 

 

 
Figure 2-The CBCT test-bench with stationary flat panel detector 

(left) and x-ray tube (right), and the anthropomorphic head phantom 

on a rotating stage. The inset shows the acrylic sphere placed in the 

nasal cavity of the phantom to mimic a tumor. 

4) Test-Bench CBCT Reconstructions 

RoD was applied to physical CBCT data from a test-bench 

consisting of an x-ray source (Varian Rad-94), a flat-panel 

detector (Varian PaxScan 4030CB,  40×30 cm, at 0.388 mm 

pixel pitch after 2×2 binning), and a motion control system 

(Parker Hannifin), as shown in Figure 2. The source-to-detector 

(SDD) and source-to-axis distance (SAD) were set to 118 and 

77.5 cm, respectively emulating a C-arm geometry. All images 

were reconstructed at 0.5 mm isotropic resolution.  

We scanned an anthropomorphic head phantom to acquire 

high-fidelity projections (100 kVp, 453 mAs, 720 projections 

over 360°). We obtained scans with and without an acrylic 

sphere (12.5 mm size) placed in the nasal cavity mimicking a 

tumor (Figure 2). The phantom was not moved between scans. 

A PL reconstruction of the “no tumor” acquisition was used as 

the prior image. 

Noisier follow-up scans (equivalent fluence=104 and 180 

views) were formed by adding noise to a subset of the “with 

tumor” projections to form the current data (y).  A PL 

reconstruction of the high-fidelity data (with tumor) acquisition 

was used as the reference for error calculation. RMSE was 

calculated over a 100×100 region around the acrylic sphere.   

III. RESULTS 

A. Investigation of Regularization 

RoD was used to reconstruct the simulated images (I0=104, 

180 views) using various penalty strength values swept linearly 

in the exponent with a 101/2 step size, from 100 to 105. The 

penalty settings that resulted in the lowest RMSE were chosen 

as the optimal setting (Figure 3). For this specific experiment, 

the optimal values were 𝛽𝑀 = 𝛽𝑅 = 101.5. Basic trends are 

apparent: Noise increases for low 𝛽𝑅 and becomes 

oversmoothed for high 𝛽𝑅 (making the change eventually 

disappear). Similarly, high 𝛽𝑀 eliminates all change in the 

reconstruction, while low 𝛽𝑀 is subject to increased noise. 

B. Global vs. Local Reconstruction of Difference 

For the simulated images mentioned above, we performed 

two separate exhaustive searches to find the optimal penalty 

coefficients in RoD: 1) local (collimated) acquisition and 

reconstruction, and 2) global acquisition and reconstruction. 

The optimal coefficients resulted in the following RMSE for 

global RoD (5.93×10-6 mm-1) and local RoD (3.45×10-6 mm-1).  

We performed a similar analysis using the test-bench data as 

explained next in section D. Figure 4 shows the RMSE vs 

penalty coefficient maps for the local and global test-bench 

acquisitions. The optimal coefficients resulted in the following 

RMSE values for global RoD (1.17×10-5 mm-1) and local RoD 

(1.24×10-5 mm-1). In both simulation and test-bench results, the 

 

 
Figure 3-Results of regularization investigation. Top: RMSE for 

results of the exhaustive search for penalty coefficients. The asterisk 

denotes the point with optimal 𝛽 values. Bottom: Zoomed VOI 

illustrating the difference reconstructions associated with each 

regularization strength pair. 
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penalty coefficient maps for the local and global RoD showed 

similar trends. The results indicate that the performance of the 

global and local reconstructions were comparable. For the next 

two sections the local reconstruction was used to speed up the 

search.  

C. RoD Performance with Varying Data Fidelity  

The performance of RoD with varying fluence and varying 

sparsity is summarized in Figure 5. RMSE for both RoD and 

PL is shown. In both cases, RoD outperforms PL 

reconstruction. As expected increased fluence and reduced 

sparsity decreases the RMSE in all cases; however, RoD RMSE 

appears to plateau in performance at lower levels of sparsity. 

D. Test bench data results 

CBCT test-bench data were reconstructed using the global and 

local RoD as well as PL. Using the coefficients determined in 

Figure 4, the images in Figure 6 show sample results of 3D 

reconstruction of the bench data. The RMSE was (1.2, 1.5, 1.8) 

×10-6 mm-1  for RoD, PL, and FBP reconstructions respectively. 

IV. DISCUSSION 

In this paper we have introduced a new reconstruction 

framework that focuses on integrating prior images into the data 

fidelity term of the reconstruction. The resulting reconstruction 

of difference approach estimates the change between the prior 

and subsequent scan – which may be of more interest than the 

current anatomy in some applications, though the context of 

surrounding anatomy may also be formed by adding the 

difference to the registered prior image data. The RoD 

reconstruction algorithm outperformed standard PL in noisy 

and truncated data, and in simulation and in test-bench data. 

 

 

In both real and simulated datasets, the performance of the 

local RoD was comparable to the global acquisition and 

reconstruction. Thus, there is the possibility for both 

computational speedups and dose reduction through the use of 

the local approach. The methodology proposed here may be 

directly applicable in some scenarios (e.g. cardiac imaging) 

where prior image data is already well registered to the current 

anatomy. However, more general application (e.g. in IGS and 

IGRT) will require proper rigid or deformable registration of 

the prior images which falls within the proposed framework in 

a manner analogous to previously reported methods for prior-

image-registered reconstruction[3], [6]. These topics are the 

subject of ongoing and future work. 
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Figure 4- Exhaustive search for the optimal regularization 

coefficients in global vs local acquisition of test-bench data. 

 
Figure 5- Effects of data fidelity. Left: RMSE (mm-1) measured as 

a function of incident photon fluence (for 180 projections). Right: 

RMSE as a function of the number of projections (fluence level 

I0=104). In each case, images were reconstructed with optimal 

penalty coefficients. 

Figure 6- Coronal slices of sample results of 3D reconstruction of test-

bench data for original (A: I0=2×104, FBP) and noisy (B-D: I0=5000) 

acquisitions. B: FBP, C: Penalized Likelihood, D: Reconstruction of 
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