
 

Abstract—In this paper a methodology for task-based 

optimization of source-detector orbits is presented. The design 

process is aligned well with an interventional workflow where 

preoperative imaging is available to provide patient-specific 

anatomical information, where the imaging task is well-defined, and 

there exist interventional imaging devices (e.g., robotic C-arms) that 

are capable of sophisticated source-detector trajectories. The 

proposed orbital optimization is based on an objective function that 

uses task-based detectability as the performance metric. Nonconvex 

optimization (CMA-ES) is used to estimate design solutions. This 

framework is tested in some simple imaging scenarios to illustrate 

the importance of task location as well as the particular imaging 

task function. More complex experiments are conducted on an 

emulated postoperative assessment of a coil embolization of an 

intracranial aneurysm. The improved performance for designed 

orbits over traditional circular orbits is illustrated and discussed. 

Index Terms—Task-based assessment, human observer models, 

adaptive imaging, robotic C-arms, image quality. 

I. INTRODUCTION 

Interventional cone-beam CT systems are finding increased 

application in many minimally invasive procedures. For example, 

3D-capable C-arm systems can provide up-to-date anatomical 

information throughout an intervention and can be used at the 

conclusion of a procedure for post-operative assessment. The 

workflow and diagnostic aims in interventional imaging provide 

an excellent opportunity to customize acquisitions to the specific 

patient and task for a number of reasons: Interventional imaging: 

1) is nearly always preceded by diagnostic imaging providing a 

rich source of patient-specific anatomical knowledge that can be 

leveraged for acquisition optimization; 2) is often focused on 

well-defined and localized imaging tasks (e.g., bleed detection at 

the site of the intervention) that can modeled and used for 

performance prediction; and 3) often suffers from reduced data 

fidelity relative to traditional diagnostic imaging, and could 

benefit from image quality improvements. 

Consider the workflow in Figure 1 for an endovascular 

embolization of an intracranial aneurysm. Preoperative images 

are used to determine the amount of embolization coil required, 

the need for a stent, etc. Locations of interest and particular 

imaging tasks can often be defined. For example, the detection of 

bleeds or perforations of the aneurysm are well-defined in 

location (i.e., near the aneurysm) with known characteristics (i.e., 

contrast, general shape of a bleed, etc.). Conventional 

intraoperative 3D imaging disregards this prior information – 

typically restricting acquisitions to a circular orbit and often 

suffering from poor image quality in the vicinity of the 

embolization coil which is precisely where bleed detection needs 

to be performed. We choose to leverage prior information about 

the patient anatomy and coil embolization plan to design source-
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detector trajectories customized to the patient and imaging task. 

Such customization requires accurate prediction of task 

performance which has been successfully applied using 

mathematical human observer models in imaging system design 

and optimization. [1] Recent work has applied the same 

methodology to customize current modulation and reconstruction 

parameters for specific patients and tasks [2] and there are other 

examples of acquisition optimization in nuclear imaging [3] In 

this work, we consider acquisition design for robotic C-arm 

systems that are capable of arbitrary source and detector 

positions around the patient. We use a task performance 

prediction framework based on a nonprewhitening observer 

model to design a source-detector trajectory for specific 

detection tasks. Previous work attempted to solve this 

optimization task using a greedy algorithm based on the 

maximization of marginal detectability with the addition of 

successive single projection views. [4] While that approach is 

computationally tractable, it is susceptible to local minimum and 

poorly suited to optimization objectives with multiple tasks or 

multiple task locations. In this paper, we illustrate an 

optimization strategy that uses a low-dimensional 

parameterization of the orbit and nonconvex optimization of a 

task-based objective function that includes one or more task 

functions or task locations. 

II. METHODS 

A. Workflow for Task- and Patient-Specific Acquisitions 

The workflow in interventional imaging provides a rich source 

of information that may be used for acquisition design. Consider 

a typical interventional imaging workflow as illustrated in 

Figure 1. Initial diagnostic imaging is conducted to localize and 

plan a treatment procedure. Intraoperative CT is often conducted 

post-procedure for assessment and complication detection. We 

propose to use the preoperative study (as well as planning 
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Figure 1: Illustration of the workflow in interventional imaging. 

Preoperative imaging is used for diagnosis and surgical planning, 

whereas intraoperative imaging is used to assess the procedure and 

detect complications. Robotic C-arms have the potential to customize 

their acquisition through modification of the orbit to improve image 

quality and/or reduce radiation exposure. We propose to inform the 

orbit optimization process using preoperative anatomical data possibly 

augmented by planning data (e.g., the size and location of an implant or 

tool or in the above example, an embolization coil). 



 

 

 

 

 

information) to optimize the intraoperative acquisition. In the 

case of a robotically controlled C-arm, we can break free from 

standard circular or spiral orbits to achieve more arbitrary 

source-detector positions. The goal is to use this flexibility in the 

acquisition to improve imaging performance for specific tasks. 

We hypothesize that there are many scenarios where such a task- 

and patient specific acquisition will improve performance. 

B. Imaging System Model and Reconstruction 

To begin, we require a system model parameterized by the 

acquisition values that may be varied. This model is important 

both for the optimization as well as the reconstruction. We 

choose the following mean measurement model for a CT device 

capable of arbitrary projection views: 

   expi i i
y g    A  (1) 

where subscript denotes the ith measurement, g is a gain term that 

includes detector fluence and detector sensitivities,  is a vector 

representing a volume of attenuation values, and the system 

matrix, A, defines the projection operation for all views. We note 

that A is a function of the vector  which parameterizes a 

specific orbit and the corresponding projection views.  

 While (1) is completely general, in this paper, we focus on a 

parameterization of source and detector positions in the 

following fashion. First, we presume that the spatial relationship 

between the source and detector is preserved for all views (e.g., 

they are rigidly fixed to each other). Second, we presume that the 

center point between the source and detector is fixed spatially. 

This means the remaining degrees of freedom are completely 

specified by two angles – the usual rotation angle () and a tilt 

angle (). We choose a low-dimensional parameterization of this 

space presuming  covers a specific angular range (e.g. a short 

scan, 360°, etc.) and  is a function of , and using a sines and 

cosines basis set as shown in Figure 2. The coefficient (n) of 

each basis function (bn) is an element of , and the orbital 

trajectory is defined as the sum of all weighted bases. 

Additionally, we clip the tilt angle to a limited range to enforce 

physical constraints (e.g. collision of the gantry with the patient 

or imaging table.) 

 The projection data arising from the possible generalized 

orbits that span the basis set in Figure 2, need to be 

reconstructed. Toward this end, we integrate the forward model 

of (1) into a penalized-likelihood approach: 

    ˆ arg max ;L y R      (2) 

where L denotes the log-likelihood data consistency term arising 

from an independent Poisson noise assumption, and R()=TR 

is a quadratic penalty. This widely used estimator is convenient 

since there are various optimizers available including the OS-

SPS algorithm used here; and because (2) will provide 

reconstructions for arbitrary geometries as long as the routines 

for projection and backprojection are available. 

C. Task-based Orbital Design Objective 

 Our orbital design seeks to maximize task performance using a 

human observer model. While various models exist, we choose to 

use detectability index based on a nonprewhitening observer 

model. This model may be written: 
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where MTFj denotes the (spatially) local modulation transfer 

function, NPSj is the local noise power spectrum, and WTask is the 

so-called task function that specifies the spatial frequencies of 

interest for the specific imaging task. (This function can be 

formed by taking the Fourier transform of the signal present and 

signal absent hypotheses.) While MTFj and NPSj are necessarily 

dependent on the location j, predictors for these functions have 

been derived and applied to obtain accurate estimates [5,6]. 

Using Fourier methods, one may estimate these functions as 

 

   
   

   

   
2

T

j

j T

j j

T

j

j
T

j j

y e
MTF

y e e

y e
NPS

y e e



 



 








A D A

A D A R

A D A

A D A R

F

F

F

F

 (4) 

where the preoperative image volume may be used as . While 

not discussed here in detail, one may recognize that the important 

quantity ATD{x}A is linear in x, and thus a linear operator may 

be used (as in [7]) for fast repeated calculations. 

 With the relationship between task, patient anatomy, and 

acquisition parameters complete, we may now write our design 

objective: 
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Figure 2. Illustration of a short scan orbit (top: showing source position; bottom: showing tilt angle of the gantry as a function of rotation angle) 

parameterized by a constant, sine, and cosine basis functions. The linear combination of these orbital bases permits a wide range of orbits. In our 

studies we add an additional constraint so that the maximum angular tilt is clipped at ±50°. 



 

 

 

 

 

This objective seeks to maximize the minimum detectability over 

L locations and/or task functions. In effect, guaranteeing a 

specific detectability for those positions and/or imaging tasks. 

For a single location/task the inner minimum disappears and the 

problem reduces to a “simple” maximization. Because (5) is 

nonconvex, we use the CMA-ES [8] algorithm to estimate a 

global optima. 

D. Experimental Methods 

We apply the design method represented by (5) a few 

illustrative examples. First, we consider the important of location 

dependence in a simple cylinder object with a high-frequency 

imaging task (detection of a small high-contrast point). Two 

orbital designs are computed for different stimulus positions and 

the relative detectability for the two designs and positions are 

compared. A second study investigates the dependence on the 

task function using the same cylindrical object. However, in this 

case, orbital designs are performed for two different task 

functions: 1) the symmetric high-frequency “point” task; and 2) 

an asymmetric task based on oriented line pairs. The resulting 

symmetric design (orbit S) is compared with the asymmetric 

design (orbit A). For both of these studies a highly attenuating 

cylinder (=0.05 mm-1, 10 cm radius) was used to exaggerate 

spatial dependence. 

 The design methodology was tested on data emulating an 

intracranial aneurysm embolization in both physical CBCT 

phantom data as well as in simulation studies. While both 

methods explore the multi-location aspect of the objective in (5), 

the physical experiments are focused on a relatively compact set 

of locations whereas the simulation experiments consider a more 

extended task area. In both cases, the task function was matched 

to a bleed detection task (i.e., a sphere of known contrast).  

III. RESULTS/DISCUSSION 

The location-dependence experiment is summarized in 

Figure 3. Orbits designed for point detection at the central slice 

and a slice toward the lower extreme were estimated. In each 

case, the optimal design was an intuitive orbit where detected 

fluence was maximized for the stimulus location. The location 

for which the orbit was not optimized suffers from decreased 

detectability due largely to the lower fluence observed by rays 

passing through that location (see bottom row of fluence plots). 

In Figure 4, we modify the phantom slightly to have a set of 

line pairs at the central slice and orbits are designed for a 

symmetric point task (Orbit S) and an asymmetric line-pair 

detection task (Orbit A). The symmetric orbit duplicates the 

previous central slice design maximizing detector fluence. 

However, the asymmetric task function lead to a different design 

where detected fluence maximization is not optimal. In this case, 

detectability is maximized when Orbit A is obtaining projections 

that provide parallel (“through the slits”) views of the line pair 

location. The differing performance of these two orbits is 

apparent in sagittal views showing increased blur between line 

pairs in Orbit S over the more optimal Orbit A. 

The imaging results for the CBCT testbench investigation of 

an emulated intracranial embolization procedure are illustrated in 

Figure 5. Two orbits are used: 1) a standard circular trajectory, 

and 2) a task-driven design based on preoperative image data, 

Figure 4: Task-based orbits for a symmetric point task (Orbit S), and an 

asymmetric task based on a line pair detection target (Orbit A) differ 

substantial. While Orbit S again seeks to maximize fluence through the 

object, Orbit A is aligned to shoot views parallel to the line pairs. The 

consequent improvement in detectability is apparent in the sagittal view 

with better separation of the lines. 

Figure 3: Separate orbital designs are performed at two locations for a 

point detection task (orbits indicated in magenta). In each position, the 

solution is the orbit that maximizes detected fluence (bottom row). 

While the optimal orbit for one location improves detectability for that 

location, the detectability for the other location is reduced. 



 

 

 

 

 

three task locations inferior to the aneurysm, and a task function 

matched to the spherical bleed and contrast present in the 

phantom. The optimized design has a significant gantry tilt and 

also “wobbles” around some high attenuation structures in the 

head. As compared with the circular orbit visualization of the 

bleed is more apparent, as are the legs of a stent used to keep the 

coil in place and residual contrast in the synthetic vasculature. 

In the last investigation, the multiple location aspect of (5) is 

used and summarized in Figure 6. A spherical bleed task function 

and a ring of locations around the embolization coil is selected in 

one axial slice. The resulting orbital design is unusual, cycling 

back-and-forth between tilt extremes (in an attempt to minimize 

coil overlap with the stimuli locations in the projections). Again 

the designed orbit outperforms a circular orbit with poor 

visualization only extremely close to the coil. 

In summary, the orbital design process is capable of significant 

image quality improvements. The framework is general and can 

be extended to other acquisition parameters including other 

degrees of freedom and exposure modulations, permitting more 

widespread application of the approach on interventional system 

less advanced than a robotic C-arm as well as other (non-

interventional) sequential imaging applications. 
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Figure 6: Illustration of a distributed multi-location optimization for six 

different potential bleed locations. The multi-location orbit permits 

visualization of bleeds near the embolization coil while the poor image 

quality for the circular orbit reconstruction makes visualization of 

bleeds difficult near the coil. (Note there is only one bleed, near the 

crosshairs in the circular orbit image.) 

Figure 5: An emulated intracranial aneurysm imaging experiment using a custom phantom and CBCT testbench with manual tilt settings. The 

phantom is imaged preoperatively (top row) and postoperatively after coil embolization using a standard circular orbit (bottom row) and a task-

driven orbit (middle row). Improved detectability of a simulated bleed (also present preoperatively) are improved, as is the appearance of the legs of 

a stent and residual iodine contrast in the synthetic vasculature (see coronal zooms). 


