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Abstract— This work investigates the prospective design of tube 

current modulation (TCM) and regularization for penalized-

likelihood (PL) reconstruction on an experimental cone-beam CT 

(CBCT) bench. The design follows a task-driven imaging 

framework where a three-dimensional (3D) scout was first 

acquired and used as the anatomical model. A task-driven 

optimization process was then performed over a low-dimensional 

parameter space using the task-based image quality metric, 

detectability index (d'), as the objective function. Detectability 

index was computed as a function of a pre-specified imaging task 

and the noise and resolution properties of the reconstructed image 

predicted by a system model. The optimal combination of TCM 

and regularization was then used for subsequent data acquisition 

and reconstruction. The design was performed for a cluster 

discrimination task consisting of three 1/16” acetal spheres placed 

within a 3D printed elliptical phantom. Images were acquired on 

an experimental cone-beam CT system where TCM was achieved 

through a custom-modified interface for pulse width modulation 

at fixed tube current and tube voltage. In addition to imaging 

strategies dictated by the task-driven imaging framework, scans 

with no TCM (unmodulated) and conventional TCM based on 

variance minimization in FBP reconstruction were also performed 

at the same total exposure for comparison. The task-driven 

imaging framework suggests that the optimal TCM for PL 

reconstruction has the opposite trend from that for FBP. 

Qualitative analysis of reconstructions for each strategy strongly 

support the trend of theoretical d' values. The TCM profile that is 

optimal for FBP performs poorly on low exposure data when used 

for PL.  Task-driven strategies outperform the other methods 

providing the greatest number of visible stimuli in at low 

exposures. Initial investigations in this work show in experimental 

data that current, clinically implemented TCM strategies designed 

for FBP reconstruction can be suboptimal for model-based 

iterative reconstruction methods. Imaging performance is coupled 

to both the data acquisition and reconstruction methods, 

suggesting that current clinical protocols should be re-evaluated 

for newer model-based reconstruction approaches. The task-

driven imaging framework offers a promising approach for 

prospectively prescribing acquisition and reconstruction in a 

manner that maximizes task-based imaging performance for a 

given exposure.  

 
Index Terms— Computed tomography, detectability index, 

image quality, imaging task, model-based iterative reconstruction, 

regularization design, task-driven imaging.  

I. INTRODUCTION 

Techniques for reducing radiation dose while maintaining 

image quality have been a major research focus in computed 

tomography (CT) and cone-beam CT (CBCT) [1]. Such 

research efforts encompass the entire imaging chain, from 
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knowledgeable system design [2], hardware solutions (e.g., 

fluence modulation devices) [3]–[5], acquisition protocols 

(tube current modulation or kV selection) [6], [7], to imaging 

processing and advanced model-based iterative reconstruction 

(MBIR) algorithms [8]–[10]. Recently, task-driven imaging 

frameworks have been proposed to prospectively design 

patient-specific acquisition and reconstruction protocols in 

order to maximize task-based imaging performance at a specific 

exposure level [11], [12]. Such frameworks rely on an 

anatomical model provided by a prior image (e.g., a low dose 

3D scout) and use detectability index, �′, for a specified 

imaging task (or tasks) as the objective function in an 

optimization loop to identify the optimal combination of 

imaging parameters.  

The utility of the task-driven approach has been demonstrated 

in a number of imaging scenarios, including trajectory design 

in robotic C-arms [11], MBIR regularization design [13], and 

joint optimization of tube current modulation (TCM) and MBIR 

regularization [14]. 

The latter work on TCM and MBIR found a significant 

disparity between traditional TCM approaches and what is 

optimal for MBIR [14]. Specifically, The TCM patterns 

routinely adopted in diagnostic CT scans have been generally 

designed for FBP reconstruction based on a noise objective – 

e.g., the minimum variance solution proposed by Gies et al. and 

Harpen [15], [16]. Such designs are also often close to optimal 

in terms of task-based imaging performance as well when FBP 

is used [12]. However, applying the task-driven imaging 

framework,  the studies in [14] suggest that the TCM pattern 

optimal for MBIR may in fact be the opposite to that for FBP. 

These previous studies of the task-driven framework have, thus 

far, been focused on simulation studies. In this work, we 

investigate the feasibility of task-driven imaging on an 

experimental cone-beam CT system. In particular, we seek to 

validate the results of tube current modulation and 

regularization optimization for MBIR in real data on an 

experimental CBCT imaging bench. The optimization will be 

applied to a discrimination task in an elliptical water phantom. 

Results from the task-driven strategy will be compared with 

conventional TCM patterns designed for FBP reconstructions.  

II. TASK-DRIVEN IMAGING FRAMEWORK 

A. Overview of the task-driven workflow 

Theoretical aspects of the task-driven imaging framework 

have be detailed in previous work [14], [17] and will be briefly 

summarized below. The presumed task-driven workflow for 
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experimental implementation of the framework is provided in 

Fig.1. First, a (low-dose) 3D scout image is acquired to provide 

a patient-specific anatomical model. The imaging task is 

presumed to be well-defined and may be identified based on the 

scout volume, or be constructed based on the suspected lesion 

or disease prevalence. For diagnostic imaging scenarios, the 

imaging task typically includes uncertainties in the shape, size 

and location of the stimulus. There are various ways to 

incorporate such uncertainties including the use of multi-task 

objectives, generalized task functions, etc. In this work, we will 

focus on a single, well-defined task. The task-based image 

quality metric is be calculated as a function of the spatial 

resolution (in terms of the modulation transfer function) and 

noise (in terms of the noise power spectrum) in the 

reconstructed image. These quantities are naturally dependent 

on the acquisition and reconstruction parameters we seek to 

optimize through a well-specified system model. The task-

based image quality metric serves as the objective function to 

an optimization algorithm which identifies the optimal 

combination of imaging parameters for subsequent imaging 

procedures.  

In this work, we focus on the joint optimization of TCM and 

regularization for a binary classification task at a known 

location in the object. In this case, detectability index can be 

directly used as the objective function in the optimization. A 

non-prewhitening observer model was adopted, permitting the 

following definition of �′:  

��
���Ω�, Ω
� =

� � ���
����,��������

� ����������
�

��� ����,�����
����,��������

� ���������
   (1) 

where the subscript ! denotes the location of the stimulus, 

"�#$% is the task function equal to the difference in the Fourier 

transforms of the two hypotheses.  

B. Quadratic penalized-likelihood (PL) reconstruction  

This work focused on a penalized-likelihood reconstruction 

algorithms whose objective may be written as: 

 

&̂ = argmax
-

.log 1�&; 3� − 56�&�7       (2) 

where vector &̂ is the reconstructed volume of attenuation 

estimates, & is the argument for optimization, 1�&; 3� denotes 

the likelihood term, and 5 is the penalty strength controlling the 

relative weight of the penalty function, 6�&�. The measurement 

vector, 3, is assumed to be composed of independent Poisson 

variables that follows the simplified forward model: 

38 = 9:�;�<=>-          (3) 

where > is the forward projector and 9: is the barebeam fluence 

which may vary as a function of the projection angle, ;. A 

quadratic roughness penalty was used in this work, and has the 

general form: 

56�&� = ∑ @

�
5� ∑ A�%B�% 	%∈E�	�

@

�
F&� − &%G

�
    (4) 

where ! and H denote voxel locations, E� is the neighborhood 

around voxel ! where the penalty function is applied, and B�% 

denotes a (inverse) distance weighting factor between voxels ! 
and H. This work considers an eight-neighborhood or four voxel 

pairs in-plane (I-3) and two neighbors out-of-plane (J), as 

illustrated in Fig. 2.  

In addition to the penalty strength parameter, 5�, Eq. (4) 

includes an addition weighting factor, A�%, for each voxel pair.  

While usually equal to 1 for all voxel pairs, A�% is allowed to 

vary in this investigation, enabling additional freedom in 

shaping the isotropy/anisotropy of the local noise and resolution 

properties. While this parameterization of the penalty includes 

redundancies, the form of Eq. (4) separates the effect of overall 

penalty strength (5�) and directionality of the noise and 

resolution (A�%). 

C. Expressions for local noise and resolution properties 

Since the optimization process involves many evaluations of 

the objective function, efficient calculations of the MTF and 

NPS are necessary for computationally feasible implementation 

of the framework. Towards this end, we adopted a combination 

of Fourier and analytical approximations of the MTF and NPS 

detailed in Refs [18]–[20]. Briefly, the local MTF and NPS at 

voxel ! can be written as: 

K� ≈
ℱN>�OPQ8�-�R>S�T

ℱN>�OPQ8�-�R>S�UVWS�T
         5(a) 

X� ≈
ℱN>�OPQ8�-�R>S�T

YℱN>�OPQ8�-�R>S�UVWS�TY
�       5(b) 

where ℱP∙R denotes the discrete Fourier transform, [P∙R is a 

diagonal matrix whose diagonal elements correspond to its 

vector input, >�[P38�&�R> and W are the Hessians of the data-

fit term and penalty term, respectively, and <� is a unit vector at 

voxel !. For experimental data where the mean measurement 

[38�&�] is not available, the noisy measurement, 3, can be used 

as a substitute. Though this estimate is inexact, because \� and 

\ are both smoothing operators, the predictors are fairly robust 

against the effects of noise in 3.   

D. Imaging parameters and optimization algorithm 

We investigate the joint optimization of TCM and 

regularization in this work. In order to reduce the 

dimensionality of the optimization, TCM was represented as a 

linear combination of shifted Gaussian basis functions, ℬ^�;�, 
shown in Fig. 3: 

9:�;� = ∑ Ω^ℬ^�;�_
^   for ; ∈ .0,2b7    (6) 

where Ω^ denotes the set of coefficients to be optimized. The 

centers of the basis functions are evenly spaced along ;, and the 

standard deviation was chosen such that 9:�;� can be as a close 

Fig.1. Workflow for the task-driven imaging framework.  

Fig.2. Illustration of the 

neighborhood around voxel 

! over which the penalty 

function is active. Distance 

weighting factors B�% are 

overlaid for each voxel pair. 

In conventional weighting 

schemes, A�% = 1 for all 

directions.  
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to flat as possible when all Ω^s are equal. In addition, under a 

parallel beam approximation, projections 180o are assumed to 

have the same fluence. As a dose constraint, the total fluence 

across all projections was constrained to a fixed value for all 

TCM profiles, i.e.,  

∑ 9:�;�d = 9:efe .        (7) 

In addition to TCM, both 5� and A�% from Eq.(4) were 

optimized. To separate the effect of overall penalty strength (5�) 
vs. directional penalty (A�%), we applied the following 

normalization on A�%:  

∑ log@: A�%% = 0        (8) 

where the base-10 logarithm of A�% for all four voxel directions 

must sum up to 0. Such normalization ensures that increased 

weight in one direction would result in decreased weights in 

other directions, thereby keeping the overall smoothness 

approximately constant for a given 5�. 
For the joint optimization of TCM and regularization, a 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

algorithm was adopted based on an open-source Python 

implementation [21]. A population size of 40 was used for each 

iteration and the convergence criterion is a change less than 10-5 

in the objective function (−���) value.  

III. IMPLEMENTATION ON AN EXPERIMENTAL CBCT BENCH 

A. Experimental CBCT bench  

The experimental CBCT bench used in these studies is 

illustrated in Fig. 4(a). The x-ray tube had a rotating tungsten 

anode and Sapphire housing (Rad94, Varian Medical Systems, 

CA), powered by a 80kW generator (Communications & Power 

Industries, Canada). The flat-panel detector (PaxScan 4343CB, 

Varian Medical Systems, CA) has a 600 µm CsI scintillator, 

native pixel pitch of 0.139 mm operating in 2x2 readout mode. 

A computer controlled motion system operates the linear stages 

(Velmex, NY) used for setting the system geometry, and a 

hexapod was used to rotate the object (ALIO industries, CO).  

The system geometry was set to a source-detector distance of 

104 cm and a source-axis distance of 85 cm. The acquisition 

involved 360 projections over 360o. Tube current modulation 

was achieved through pulse width modulation at a fixed tube 

current using a custom-modified automatic exposure control 

(AEC) interface.   

B. Imaging task and phantom 

The imaging phantom and task is shown in Fig.4(b). The 

elliptical shell (major axis = 25.5 cm, minor axis = 14.0 cm, 

height = 8.8 cm, thickness = 3.5 mm) was 3D-printed using a 

commercial grade 3D printer (Makerbot Replicator 2,  

Makerbot Industries, NY) and filled with water.  

The stimuli consisted of three 1/16” acetal spheres equally 

distributed along the circumference of a ~2.31 mm radius circle. 

Two of such stimuli was constructed – each resting on top of a 

cylindrical epoxy support (EasyCast, Environmental 

Technology Inc., CA). The locations of the two stimuli were 

approximately symmetric about the short axis of the ellipse. 

The imaging task was formulated as the discrimination between 

the three spheres (e.g., a cluster of calcification) against one 

larger lesion (e.g., a larger Gaussian). To compute the task 

function, the stimuli were first modeled digitally. Assuming all 

rotational orientations of the cluster are equally likely, the task 

function was then calculated as the difference between the 

Hankel transform of the three spheres and a Gaussian of width 

1.96 mm. The width of the Gaussian was chosen such that its 

50% peak value occurs at the radius of the cluster (2.31 mm). 

The task function is plotted in Fig.4(c). 

Fig.4. (a) Experimental CBCT imaging bench. (b) Elliptical phantom with a 3D printed shell and filled with water. Two stimuli simulating 

calcification clusters, each consisting of three 1/16” acetal spheres, are placed on top of epoxy supports and submerged in water. (c) The 

imaging task was formulated as the discrimination of the three separate spheres vs. a larger Gaussian. Assuming all rotational orientations 

of the cluster were equally likely, the resulting task function is shown in (c).  

Fig.3. Eight Gaussian basis functions were used to parameterize 

TCM in order to reduce the dimensionality of the parameters.    
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C. Imaging Strategies  

To compare the performance of the task-driven imaging 

framework with conventional methods, we performed 

acquisitions and reconstructions for four strategies below:  

1) Unmodulated: The fluence is constant for all projections.  

2) Minimum FBP Variance	�g = 0.5�: From Gies. et al. [15], 

the TCM pattern which results in minimum pixel variance in an 

FBP reconstruction is given by: 

9:�;� =
Sj.kl�,m

∑ Sj.kl�,mnn
9efe        (9) 

where o�,d is the line integrals passing voxel ! at projection angle 

; calculated from the scout image.  

To present a fair comparison of 1) and 2) with the task-driven 

strategies below, the overall penalty strength, 5�, were 

optimized for both strategies through an exhaustive search 

using ��
� as the objective.  

3) Task-driven 9:�;�: Data were acquired using task-driven 

TCM and reconstructed using the optimal 5� only. 

4) Task-driven 9:�;� + A�%: Data were acquired using task-

driven TCM and reconstructed using both optimal 5� and A�%. 

D. Tomographic data acquisitions 

The nominal imaging techniques were set to 90 kV and 10 

mA for all acquisitions. Pulse width for individual exposures 

(for each projection view) was used as a substitute for TCM. 

This permitted control of the exposure (mAs/frame) in each 

view corresponding to the fluence term (9:) in both Eq.(6) and 

Eq.(9) for TCM and in Eq.(7) for the total fluence/dose 

constraint. A 3D scout image was acquired at a constant pulse 

width and reconstructed using FBP. For initial investigations in 

this work, the scout was taken at a higher dose level (90kV, 

10mA, 40ms) and the locations of the two stimuli were 

identified. Using an ultra-low dose 3D scout for design 

purposes is the subject of an ongoing investigation. 

Acquisitions for the four imaging strategies were performed 

for different total dose / pulse width levels, and reconstructions 

from two total dose levels (total mAs = 18.8 and 21.5) are 

shown in Sec.IV. For each dose level and imaging strategy, 

three repeated acquisitions were performed in order to account 

for the effect of different noise realizations on lesion 

detectability.     

E. Gain correction for mAs modulated projection data 

Proper gain correction is important for avoiding bias in PL 

reconstruction, especially for acquisitions involving TCM. We 

developed the following gain correction method to account for 

two potential sources of mismatch between commanded and 

delivered pulse width: 1) a systematic bias due to our 

customization of the x-ray generator, and 2) potential 

differences between pulse width delivered at a steady state (i.e., 

multiple exposures using the same pulse width) and pulse width 

delivered in a dynamically modulated scan1. To address the 

first, a one-time calibration step was performed to determine the 

relationship between the commanded pulse width vs. the 

delivered pulse width. A range of pulse widths from 0.1 ms to 

30 ms was commanded for a single exposure acquisition, and a 

silicon diode (Accu-Pro, RadCal Corporation, CA, USA) was 

 
1 It is possible to correct for this effect through additional calibration and modified control strategy.  

used to measure the delivered pulse width. Using this 

relationship, we address the second issue by a multipoint gain 

correction method where 30 repeated flat field images were 

acquired at a range of pulse widths from 0.01ms to 27.5ms. The 

flat field images were dark-corrected and averaged at each pulse 

width to obtain: 1) the mean readout signal in an arbitrary 

region of interest (ROI) vs. the actual pulse width, 	9
qr88888�st�, 
and 2) the response for each pixel (assuming linear), 9:�u, v� =
w�u, v� ∗ st + y�u, v�. To perform gain correction, each 

projection was first dark-corrected. An air region was identified 

and its mean readout was fitted to 1) to find the actual st 

delivered for that projection. The gain image can then be 

calculated using 2). 

F. Image reconstruction 

Image reconstruction was performed using a custom GPU-

enabled software package. The separable footprint forward- and 

back-projectors were employed. A combination of Nesterov 

momentum updates and subsets [22] were used for further 

speedup. A total of 40 iterations were performed. An isotropic 

voxel size of 0.3x0.3x0.3 mm was used. 

IV. RESULTS 

The pulse width calibration from single exposure 

acquisitions suggested that there was a consistent 2.21 ms offset 

between the commanded and delivered pulse width (delivered 

= commanded + 2.21ms). This offset was accounted for during 

the design process. For all results below, “commanded” pulse 

width will refer to the value corrected by the systematic offset. 

The TCM profiles for the Unmodulated, Min. FBP Variance 

(g = 0.5), and Task-Driven cases for stimulus 1 at a nominal 

total mAs of 18.8 or pulse width of 5.21 per projection are 

plotted in Fig.5. Optimization for both Task-Driven strategies 

yield very similar TCM profiles, so the same acquisition was 

used for both. Due to the symmetry of the elliptical phantom, 

Fig.5. Tube current modulation profiles for the Unmodulated, 

Min. FBP Variance, and Task-Driven strategies. The dotted line 

represent commanded pulse width while the solid lines are 

delivered fluence calculated based on Poisson statistics. Opposite 

to the Min. FBP Variance strategy, the Task-Driven TCM assigns 

more fluence to the less attenuating views through the short axis 

of the ellipse (0o, 180o, and 360o)  
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the locations of the two stimuli, as well as a low magnification 

geometry, the TCM profiles for the two stimuli are very similar. 

Hence, only one set of acquisitions was performed for both 

stimuli.  

The dotted lines represent the commanded pulse width, and 

the solid line represent the delivered fluence per pixel 

calculated from an air region in the gain-corrected/normalized 

projection data of one of the three repeated scans. Assuming 

Poisson noise, the fluence per pixel is calculated as the ratio of 

mean over variance of an air ROI in each projection. The 

delivered fluence generally follows the trends of the 

commanded pulse width, but with slightly lower peaks. The 

total fluence over all projections are approximately constant at 

8.54x106, 8.46x106, and 8.53x106 for the Unmodulated, Min. 

FBP Variance, and Task-Driven cases, respectively.  

The Min. FBP Variance profile and the Task-Driven profiles 

exhibit the opposite trends. Note that projections angled around 

0o, 180o, and 360o correspond to the “AP view” of the ellipse 

(traversing the short axis), and projections around 90o and 270o 

correspond to the “lateral view” (traversing the long axis). For 

FBP reconstruction, the Min. FBP Variance strategy minimizes 

noise by assigning more fluence along the noisier lateral views. 

This TCM is also close to optimal for task-based performance 

in FBP [12]. For PL reconstruction, however, the optimal TCM 

is reversed with more fluence distributed along the less noisy 

views. This behavior can be explained by the lower statistical 

weighting associated with noisier data, which results in greater 

smoothing by the smoothness prior. Therefore, more fluence to 

noisier data would not result in a big noise advantage as the case 

for FBP, while increasing fluence in less noisy views brings 

greater benefit to detectability by boosting the spatial resolution 

in their radial directions and increasing signal power. The 

optimal directional penalty (Fig.6) reinforces the same trend, 

where noisier voxels in the y-direction (as a result of lateral 

views) while voxels in the x-direction are smoothed less. As 

shown in previous work [17], [23], the optimal 5� for each 

strategy mainly serves to match the spatial resolution in the 

reconstruction to approximately the frequency extent of the task 

function. For strategies 1~4, the optimal 5� are 105.36, 104.94, 

105.76, and 105.24 for 18.8 total mAs case, and 105.48, 104.88, 105.85, 

and 105.36 for the 21.5 total mAs case. 

Reconstructions of the stimuli 1 and 2 are shown in Fig.7 for 

two nominal dose levels (18.8 and 21.5 total mAs). The same 

ROIs in a high dose (40 ms per projection, unmodulated) PL 

reconstruction was also shown as a reference for the size and 

location of the stimuli. The relative �′ of each strategy to the 

Unmodulated case, �zS{
� , are overlaid for each dose level and 

stimulus. The Min. FBP Variance strategy has a �zS{
�  less than 

1, indicating worse performance than the Unmodulated 

strategy. The two Task-Driven Strategies outperforms the rest, 

and the Task-Driven 9:�;� + A�% 	 strategy being the best among 

the four. While a more sensitive and quantitative method (e.g., 

Fig.6. Optimal directional penalty shown 

as log10 exponent for the Task-Driven 

9:�;� + A�% strategy. The directional 

penalty reinforces the same trend as 

TCM, where noisier voxels along 3 due 

to the lateral views are smoothed more 

and less noisy data along I are smoothed 

less. 

Fig. 7. Reconstruction ROIs for the four strategies containing stimulus 1 and 2 at two different dose levels. References ROIs 

are shown from a high dose, unmodulated PL reconstruction at the same location. The �′ relative to the Unmodulated case, 

�zS{
� , is shown for each stimulus and dose level.  Visual inspection of the reconstructions support the trends of the �zS{

�  values. 

The stimuli are very challenging to see all of the Min. FBP Variance ROIs, are visible in a few of the Unmodulated ROIs, and 

are most easily identified in the Task-Driven reconstructions. 
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observer study) may be required to validate the �′ values, visual 

inspection of the multiple repeats in each strategy shows strong 

evidence to support the �zS{
�  trend. It is very challenging to 

visualize the stimuli in any of the reconstruction ROIs 

following the Min. FBP Variance strategy. The Unmodulated 

case is qualitatively better, where the stimuli is visible in 

perhaps ~4 out of the 12 ROIs. The two Task-Driven strategies 

outperform both, with the stimuli visible in at least 7 out of the 

12 ROIs. The difference between the two task-driven strategies 

is difficult to tell from visual inspection alone and the relatively 

small number of repeats.  

V. DISCUSSION AND CONCLUSIONS 

This work investigates TCM and regularization designs for 

PL reconstruction using a task-driven imaging framework. The 

TCM acquisitions were achieved on an experimental CBCT 

bench with custom modified AEC interface capable of pulse 

width modulation at fixed tube current and tube voltage as a 

function of projection angle. The task-driven design was 

performed for a cluster discrimination task in an elliptical water 

phantom. Two conventional acquisition strategies were also 

implemented for comparison. Visual inspection of the 

reconstructions suggests that Task-Driven strategies 

outperform the Unmodulated acquisition, and that the 

traditional TCM profile that is close to optimal for FBP 

reconstruction performs worse than an unmodulated acquisition 

when conducting PL reconstruction.    

Future work will focus on two areas. First, a low dose scout 

will be used as the anatomical model for the task-driven 

imaging framework. The extent to which line integrals can be 

calculated based on a low dose reconstruction will likely 

depend on the complexity of the phantom. Another implication 

for using a low dose scout is that the nature and the location of 

the imaging task may not be known beforehand. In that case, 

uncertainties in the imaging task and task location need to be 

included in the optimization. Since the optimal fluence 

modulation depends on the local attenuation characteristics of 

the phantom, TCM alone cannot sufficiently cater to multiple 

locations. In that case, task-driven dynamic fluence field 

modulation design may implemented on the same imaging 

bench. Second, the system model for noise and resolution 

prediction invokes simplifying assumptions such as no detector 

blur and zero electronic noise. Future implementations of the 

framework will incorporate a more realistic system model [24] 

taking these factors into account. While the overall TCM trends 

are not expected to change, including detector blur and additive 

noise will likely lead to a more accurate 5 design.  

In summary, initial investigations in this work show strong 

evidence in experimental data that the task-driven imaging 

framework outperforms conventional acquisition and 

reconstruction strategies. Moreover, conventional TCM 

strategies that are currently in clinical use can actually perform 

worse than an unmodulated acquisition for specific imaging 

tasks when MBIR is used. These observations suggest that 

current imaging strategies should be re-evaluated based on the 

reconstruction algorithm and processing chain, with likely 

impact on the required exposure settings for equivalent task 

performance between reconstruction methods. 
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