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Abstract—Dedicated application-specific CT systems are
popular solutions to high-resolution clinical needs. Some
applications, such as mammography and extremities imaging,
require spatial resolution beyond current capabilities. Thorough
understanding of system properties may help tailor system
design, acquisition protocols, and reconstruction algorithms to
improve image quality. As resolution requirements increase,
more accurate models of system properties are needed. Using
a high-fidelity measurement model, we analyze the effects of
shift-variant focal spot blur due to depth-dependence and anode
angulation on image quality throughout the three-dimensional
field of view of a simulated extremities scanner. A model of the
shift-variant blur associated with this device is then incorporated
into a Model-Based Iterative Reconstruction (MBIR) algorithm,
which is then compared to FDK and MBIR with simpler blur
models (i.e., no projection blur and shift-invariant projection
blur) at select locations throughout the field of view. We show
that shift-variant focal spot blur leads to location-dependent
imaging performance. Furthermore, changing the orientation
of the X-ray tube alters this spatial dependence. The analysis
suggests methods to improve imaging performance based on
specific image quality needs. For example, for small region of
interest imaging, a transaxial X-ray tube orientation provides
the best local image quality at a specific location, while for large
objects an axial X-ray tube orientation provides better image
quality uniformity. The results also demonstrate that image
quality can be improved by combining accurate blur modeling
with MBIR. Specifically, across the entire field of view, MBIR
with shift-variant blur modeling yielded the best image quality,
followed by MBIR with a shift-invariant blur model, MBIR with
an identity blur model, and FDK, respectively. These results
suggest a number of opportunities for the optimization of imaging
system performance in the hardware setup, the imaging protocol,
and the reconstruction approach. While the high-fidelity models
used here are applied using the specifications of a dedicated
extremities imaging system, the methods are general and may
be applied to optimize imaging performance in any CT system.

I. INTRODUCTION

There are a number of medical applications that
demand high spatial resolution for effective diagnosis
including quantitative imaging of bone health, detection of
calcifications in mammography, and temporal bone imaging
for otolaryngology. A number of dedicated imaging systems
have been designed with specific high-resolution applications
in mind. For example, dedicated Cone-Beam CT (CBCT)
systems have been designed for mammography [1], [2],
extremities imaging [3], [4], and head imaging [5]. Such
devices have highly variable system designs based on their
application, and often choose different tradeoffs based on the
high-resolution needs, necessities for compact designs, cost,
etc. In particular, many CBCT devices are based on flat-panel
detectors which are found in a wide range of pixel sizes,

coverage areas, and imaging performance. X-ray tubes in
such systems are also highly variable — with engineers often
choosing compact fixed anode designs over larger rotating
anode sources and using very wide cone angles to cover wide
area detectors. With all of these flexibilities, CBCT imaging
properties exhibit strong system-dependence.

Understanding and modeling imaging properties is
particularly important when optimizing a high resolution
design. Spatial resolution requirements can drive selection of
particular hardware elements, system geometries, acquisition
protocols, and reconstruction algorithms. Traditional analysis
that has been appropriate for conventional Multi-Detector CT
(MDCT) (e.g., focusing on single, central slice image quality
criteria at the center of the imaging Field of View (FOV)) may
not be appropriate or optimal for CBCT. Improved imaging
system models aid in understanding limitations and improving
performance. In this work we focus on the modeling and
analysis of shift-variant imaging properties of high-resolution
CT systems. In particular, we implement a general model
for an extended X-ray focal spot to investigate imaging
properties throughout a large FOV system. These models are
applied to a prototype extremities CBCT system design and
investigated with different variations in the imaging chain
(e.g., conventional versus advanced reconstruction methods).

The X-ray source can be a significant source of location-
dependent image quality in CBCT. X-ray tubes emit X-rays
from a small area (focal spot) on a tungsten anode. To enable
better heat dissipation (and permit higher current settings for
lowering noise or decreasing acquisition time), larger focal
spots are often employed. However, the anode is angled such
that the focal spot has a small cross-sectional area when
viewed from isocenter. Due to this angulation, the apparent
size and shape of the focal spot can vary dramatically
with location, contributing different amounts of blur to data
depending on location. The location-dependence is more
pronounced for larger cone- and fan-angles. Additionally, blur
induced by the focal spot is subject to variable magnification
for positions parallel to the source-detector axis. Thus, source
blur due to the X-ray focal spot is complex with significant
potential shift-variance throughout the FOV.

The reconstruction algorithm is an important part of the
CT imaging chain and can also have a dramatic effect on
the imaging properties of a device. So-called Model-Based
Iterative Reconstruction (MBIR) algorithms, which minimize
an objective function based on system and noise models,
have demonstrated improved imaging performance over
traditional direct reconstruction approaches. MBIR methods



also provide a natural means to incorporate advanced
measurement models (e.g., focal spot effects) directly in the
reconstruction algorithm, resulting in simultaneous deblurring
and image reconstruction. Thus, in addition to aiding system
and acquisition protocol design, more accurate CBCT forward
models may improve reconstruction algorithm performance.

Shift-variant blur models have been incorporated in
nuclear imaging MBIR [6], [7] and in fan-beam MDCT
model-based sinogram restoration [8]. In [9], [10], a general
MBIR framework that accounts for both source and detector
blur as well as spatial noise correlations in projection
measurements was introduced. In [9] a simple rectangular
shift-variant focal spot blur model was incorporated into this
algorithm, which was applied to simulated phantom data and
to physical CBCT test bench measurements. While that study
showed significant image quality improvements when MBIR
incorporates a space-variant blur model, that preliminary
study did not include a depth-dependent model of focal
spot blur and was limited to an investigation of a CBCT
system with a transaxially oriented X-ray tube (i.e., with the
anode-cathode axis placed parallel to the plane of rotation)
and reconstructions at only a few locations in the FOV.

In this work, we analyze reconstruction image quality
throughout the three-dimensional FOV of a system with shift-
variant focal spot blur and shift-invariant scintillator blur. A
small trabecular bone phantom was used to “probe” image
quality at locations throughout the FOV — data generated
using a high-fidelity forward model was reconstructed with
various reconstruction algorithms. The bone phantom was
reconstructed at many locations throughout the FOV to
compare relative imaging performance. “Sweet spots” within
the FOV where the finest spatial resolution details are
discernible are identified, as are problem spots where focal
spot effects contribute to lower resolution. FDK and both
traditional and advanced MBIR approaches are applied to
see how imaging performance can be improved (and by how
much) at different locations. Two X-ray tube orientations were
considered: the anode-cathode axis oriented parallel to the
axis of rotation (axial) and the anode-cathode axis oriented
perpendicular to the axis of rotation (transaxial). The results of
this study illustrate some of the spatial variations in imaging
performance as well as potential reconstruction methods
for improvement. The different forms of location-dependent
image quality may suggest different design strategies for
different applications depending on where the highest spatial
resolution is required within the FOV.

II. METHODS

We would like to characterize high-resolution CT system
performance with highly accurate forward models both in the
simulation of data and incorporated into advanced reconstruc-
tion methods. Performing this characterization over the entire
FOV is a computational challenge due to the small pixel
sizes, small voxel sizes, focal spot complexities (shift-variance,
depth-dependence), etc. Thus, a strategy for local investigation

TABLE I
DESCRIPTION OF VARIABLES AND SYMBOLS

Symbol Description Value
µ Vector of attenuation values —
y Vector of measurement data —

KY Measurement covariance matrix —
Bd Scintillator blur matrix —
Bs Focal-spot blur matrix —
Ak System matrix with focal spot centered at

sourcelet k
—

A Reconstruction system matrix without
sourcelets

—

wk Relative intensity of sourcelet k —
I0 Barebeam source intensity 104 photons
M Data binning operator (average over sub-

pixels)
—

H Scintillator blur model parameter 0.460 mm2

a Scintillator blur Gaussian blur fraction 0.104
q Radial frequency argument in blur model —
σ Gaussian blur width parameter 0.241 mm−1

σro Photon-equivalent readout noise 7.109 photons
α Anode angle 17.5°

SDD Source-detector distance 513.0 mm
SAD Source-axis distance 381.0 mm
R Regularization function —

D{·} Operator that places vector argument in a
diagonal matrix

—

5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm

A

B

5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm5 mm

Fig. 1. Axial (A) and Coronal (B) slice of trabecular bone phantom. The
phantom consists of bone (0.060 mm−1) surrounded by fat (0.019 mm−1).

within the larger FOV was devised. This strategy is discussed
in the following subsections.

A. Phantom and Data Generation

A µCT scan of a human iliac crest biopsy sample was
thresholded and used to create a realistic and clinically
pertinent digital phantom (Fig. 1). The volume was binned
to 0.038 mm cubic voxels prior to propagation through the
imaging chain model. The digital phantom is intentionally
small, serving as a high-resolution “probe” that can be
scanned in various positions throughout the entire FOV.
The small support of the digital phantom permits both
computationally efficient data generation and reconstruction
for a detailed analysis of regional performance.

For a realistic system characterization, a pinhole image of
an X-ray focal spot from an IMD RTM 37 source (IMD, Gras-
sobbio, Italy) was used to form a two-dimensional focal spot
model for simulation. This X-ray tube has a 17.5◦ anode angle
and a nominal focal spot of 0.6 mm. The source distribution on
the anode is shown in Fig. 2. This model was used to generate
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Fig. 2. Focal spot model for data generation. Each pixel represents a sourcelet,
and the relative intensity indicates the relative weight of that sourcelet’s
measurements. Due to the anode angle, less sampling was required along
the long axis of the focal spot, resulting in anisotropic sourcelets.

the shift-variant apparent focal spot distributions based on
position within the FOV. Sampling of the source distribution
into “sourcelets” for projection and scaling by regional focal
spot intensity was anisotropic (0.096 mm× 0.058 mm) with
finer sampling along the short axis of the source and coarser
sampling on the long axis since oblique views of the source
result in finer sampling of the apparent focal spot.

Measurement data were generated according the following
forward model:

y = Bd Poisson

(
I0 M

[∑
k

wk exp (−Akµ)

])
+N (0,σro) .

(1)
A description of all variables, symbols, and nominal values
can be found in Table I. In short, at the core of (1), a volume
of attenuation values, µ, is forward projected (on a fine grid
of sub-pixels) for each focal spot sourcelet, k. The results
are subsequently summed to form pre-detection projections.
These finely sampled projections are binned using the operator
M to account for non-linear partial-volume effects. In this
work, data were binned by a factor of two in each direction,
for a detector pixel pitch of 0.1 mm. Pre-detection, incoming
photons are presumed to be Poisson-distributed and undergo a
detector blur based on the operator Bd. This blur operation
presumes a scintillator blur whose MTF is modeled by a
Gaussian-Lorentzian mixture given by

H = a exp(−q2/σ2) + (1− a)(1 +Hq2)−1. (2)

Lastly, measurements are subject to an additive uniform
Gaussian readout noise.

B. Reconstruction

While various reconstruction methods are explored, in all
cases, data were reconstructed with 0.0767 mm voxels. The
phantom was placed 20 mm, 40 mm, 60 mm, and 80 mm
from the axis of rotation and offset from the positive x axis
0° to 355° in 5° increments (rotated about the y axis, see
Fig. 3a). At the center of the short scan, the focal spot was
at z = 381.0 mm and the detector was at z = −132.0 mm.
The source and detector rotated about the y axis during
scans. We conducted this experiment at three planes: the
central plane (y = 0 mm) and 60 mm above and below the

TABLE II

Bs Bd

GPL-I Identity (no blur) Identity
GPL-SI Blur kernel from isocenter impulse response Equation (2)
GPL-SV Different blur kernels for each projection,

calculated from impulse at phantom location
Equation (2)

central plane (y = ±60 mm). FDK reconstructions used a
ramp filter with no apodization and a cutoff at the Nyquist
frequency. Additionally, the X-ray tube’s anode-cathode axis
was modeled in two different orientations: Transaxial with the
anode-cathode axis parallel to the plane of rotation; and Axial
with the anode-cathode axis parallel to the axis of rotation.

We also reconstructed the phantom with three Gaussian
Penalized-Likelihood (GPL) MBIR methods: GPL with Iden-
tity blur (GPL-I), GPL with Shift-Invariant blur (GPL-SI),
and GPL with Shift-Variant blur (GPL-SV). Each method
minimized the following objective function

ψ = ‖y −BdBsI0 exp(−Aµ)‖K−1
Y

+ βR(µ) (3)

where the covariance of measurement data is given by

KY = Bd D{y}BT
d +D{σro} (4)

This reconstruction objective includes blur models for both
the source (Bs) and detector scintillator (Bd) as well as a
noise model with spatially correlated measurements (due to
scintillator blur). A standard reconstruction system matrix
(A, without sourcelets) is used. The general GPL algorithm
to solve this objective was presented previously in [9], [10].

Each reconstruction approach is a special case solution of
(3) using different approximations of system blur. The blur
models used for each GPL method are summarized in Table II.
GPL-I did not include blur and is similar to a traditional MBIR
approach presuming uncorrelated Gaussian noise. GPL-SI
and GPL-SV model scintillator blur (matched with that used
in the data generation step) and focal spot blur kernels based
on simulated impulse responses at particular locations. The
impulse responses were generated using sourcelets as in the
data generation step, but with sourcelet sampling reduced
by a factor of two in each dimension. GPL-SI’s focal spot
blur model used a single blur kernel calculated from an
impulse placed at isocenter (origin in Fig. 3A). GPL-SV used
a different blur kernel for each projection. Specifically, the
location of the impulse response corresponded to the center of
the phantom probe location. The blur kernel changes for every
projection due to 1) change in magnification at the impulse
location as a function of angle and 2) change in apparent focal
spot shape due to varying obliquity of the ray from the source
to the impulse. The focal spot blur model for each projection
is shift-invariant, but because a different blur model (impulse
response) was used for each projection, the overall effect of
this blur model is shift-variant when reconstruction is applied.

All of these assumptions are a mismatch with the source
model in data generation to varying degrees. However,
the GPL-SV model is an excellent approximation for a
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Fig. 3. A: Schematic of FOV. Each ring was sampled using the FDK algorithm. For a given sample point (for example the red dot), the phantom was placed
at that location and scanned using a short scan with the source centered at (0, 0, 381.0) and the detector centered at (0, 0, -132.0). The angular range covered
by the source is represented by the red arc. The data were then reconstructed using FDK. B: RMSE of FDK reconstructions for each sample point (red dots
indicate corresponding location in A).

small region-of-interest since location-dependent effects
are marginal and the variable magnification and angular-
dependence of the apparent focal spot are handled by the
view-dependent blur. Thus, the GPL-SV investigation is a
good indicator of regionally optimized performance, and
potentially a good approximation of performance should a
more sophisticated reconstruction with a global model for
shift-variant blur be adopted (e.g., a full sourcelets model).

Following [9], [10], K−1
Y was applied using an iterative

solution for GPL-SI and GPL-SV. Similarly, readout noise
was assumed negligible in certain computation steps to avoid
application of K−1

Y every iteration, as described in [10],
[11]. The term K−1

Y y was precomputed using 200 iterations
of the preconditioned conjugate gradient method. All GPL
methods used a Huber Penalty [12] with δ = 10−5 and
were optimized in terms of RMSE over a range of penalty
strengths (β’s). Each reconstruction ran for 500 iterations
using 10 subsets and Nesterov acceleration [13], [14]. The
phantom was reconstructed using the three GPL methods at
the locations indicated by circles in Fig. 3A (80 mm from
isocenter; 0°, 90°, 180°, and 360° about the y axis; y = 0 mm
and y = 60 mm; and using both tube orientations).

III. RESULTS

A. FDK Short Scan Maps

The results of the FDK sweep can be seen in Fig. 3.
Fig. 3A is a schematic of the locations sampled, with each
circular path corresponding to a constant radius in one of the
plots in Fig. 3B-G. The y = ± 60 mm planes (Fig. 3B-C,F-G)
have a substantially higher RMSE than the y = 0 mm plane
(Fig. 3D-E). Because this RMSE increase occurs with both
X-ray tube orientations and is similar in magnitude above
and below y = 0 mm, most of this image quality decrease is
likely due to the large cone angle (e.g., incomplete sampling
and cone-beam artifacts).

Within the y = 0 mm plane, the transaxial orientation
(Fig. 3D) exhibits more variance in image quality as compared
to the axial orientation (Fig. 3E). This is mainly a spatial reso-
lution effect since the focal spot blur shift-variance is predom-
inately along the anode-cathode axis, which is in-plane in D
(parallel to the x axis at middle of the scan) but perpendicular
to the plane in E (parallel to the y axis). For the transaxial
orientation, the RMSE varies more along the x axis than the z
axis, as expected, with the lowest RMSE on the left side of the
image, corresponding to the side with a smaller apparent focal
spot blur (i.e., the anode side). In other words, as the source
travels around isocenter, the apparent focal spot at the negative
x axis is generally smaller than at isocenter. The exception to
this being when the source is at the extremes of the scan,
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Fig. 4. Example β sweep results at the red dot in Fig. 3A with a transaxial
focal spot orientation.

specifically, in the negative z half plane. However, this is a
minority of the projection angles, and the net result is a smaller
blur at an object on the −x axis than at isocenter. The axial
orientation (Fig. 3E) shows little variation along the x axis.
Fig. 3D-E also show depth-dependence effects, with the min-
imum RMSE offset in the positive z direction. As the source
orbits isocenter, the apparent focal spot blur size will change as
magnification changes. However, even though increasing mag-
nification increases focal spot blur, it also decreases the effect
of detector blur (scintillator blur and pixel sampling). Thus
there is an optimum magnification where these two effects are
balanced. Placing the phantom at locations with an average
magnification close to this optimum should result in superior
image quality. In this system, this optimum magnification
appears to be more than the magnification at isocenter. Thus,
with a transaxial tube orientation, the best image quality is
achieved by placing the phantom as far to the anode side of the
FOV as possible, and potential offset in z, while the optimum
position with an axial orientation is along the z axis, with
the optimal location along the axis dependent on the tradeoff
between focal spot blur, scintillator blur, and pixel sampling.

With the transaxial orientation, the y = ± 60 mm planes
exhibit a similar pattern, favoring the −x direction to
reduce focal spot blur. The axial orientation shows a dramatic
difference between these two planes, due to the anode-cathode
axis being parallel to the y axis. The overall RMSE is lower
in Fig. 3G (0.006 05 mm−1) than Fig. 3C (0.006 22 mm−1),
consistent with the fact that the apparent focal spot is smaller
below the y = 0 mm plane. The RMSE values in Fig. 3G
also vary dramatically as compared to Fig. 3C, as apparent
focal spot size is more sensitive to magnification (z position)
on the anode side of the anode-cathode axis (i.e., y < 0) as
compared to the cathode side.

With both orientations, the optimum location is partially
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Fig. 5. Minimum RMSE from each β sweep along with the FDK RMSE
values. Data is wrapped around at 360° (i.e., the 360° data are the same as
the 0° data).

dependent on the optimum magnification, which is a function
of focal spot blur, scintillator blur, and pixel sampling. With a
transaxial tube orientation, position along the anode-cathode
axis is particularly important, resulting in large in-plane
variance in RMSE. Moving out of the central plane reduces
image quality due to cone-beam artifacts and incomplete
sampling. With an axial orientation, in-plane variance is
reduced. However, image quality at different locations above
and below the central plane is effected by shift-variant blur
along the anode-cathode axis as well as cone beam effects.
Thus, the optimum position may be slightly off the y = 0 mm
plane (in this case in the negative y direction) because of the
reduction in focal spot blur.

B. MBIR

Fig. 4 shows the results of the β sweep in the y = 0 mm
plane with a transaxial orientation. Comparing the minimum
RMSE for each reconstruction method, GPL-SV results in
the best image quality, followed by GPL-SI, GPL-I, and
finally FDK. The GPL-SI and GPL-SV methods show an
increased sensitivity to β, likely due to the (noise amplifying)
deblurring action of these methods.

We conducted β sweeps similar to Fig. 4 for both X-ray
tube orientations at 80 mm from the axis of rotation in the
y = 0 mm and 60 mm planes and at 0°, 90°, 180°, and 270°
rotations (i.e., the green/red circles in Fig. 3A). The minimum
RMSE across β’s was plotted as a function of angle (Fig. 5),
along with the FDK reconstruction RMSEs. In all cases, the
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Fig. 6. Axial slices of reconstructions. Each set of 16 reconstruction corresponds to a X-ray tube orientation (columns) and plane in the FOV (rows). Within
each set, columns correspond to the location of the phantom (in degrees rotated about the y axis) and rows to reconstruction method.

rank ordering of performance across reconstruction methods
is the same as in Fig. 4, with GPL-SV providing the best
image quality. The most dramatic improvement is between
GPL-I and GPL-SI, due to the introduction of the blur model.
Improving the accuracy of the blur model with GPL-SV
further improves image quality as compared to GPL-SI.

Unlike FDK, the GPL methods result in similar RMSE
values in the y = 0 mm plane (Fig. 5C,D) and the y = 60 mm
plane (Fig. 5A,B). This is likely due to the adavantages of the
Huber regularizer which better handles the incomplete data at
high cone angles.

With the axial orientation and in the y = 60 mm plane
(Fig. 5B), the blur at the axis of rotation is larger than at
isocenter. Therefore at 0° and 180° GPL-SI generally underes-
timates the blur, causing GPL-SI to have reduced image quality
as compared to GPL-SV. At 90°, the blur is reduced relative
to the blur at 0° and 180° due to a decrease in magnification,
decreasing RMSE in both GPL-SI and GPL-SV. Additionally,
the GPL-SI blur model is more accurate at this location,
resulting in the similar performance of GPL-SI and GPL-SV.
At 270° the reverse occurs, and the RMSE values of both

methods increase. While GPL-SI further underestimates the
blur, in this experiment there was not a substantial increase in
the RMSE difference between GPL-SI and GPL-SV at 270°
as compared to 0° and 180°. GPL-I and FDK both exhibited
less variance in RMSE with angle than GPL-SI and GPL-SV.

The RMSE results are supported by a qualitative analysis
of the reconstructions (Fig. 6 and Fig. 7). The reconstructions
show the dramatic improvement due to incorporation of the
blur model. In all cases (both tube orientations and both
planes), the FDK and GPL-I reconstructions (top two rows),
have substantially more blur than the GPL-SI and GPL-SV
reconstructions (bottom two rows). The FDK coronal slices in
the y = 60 mm plane (Fig. 7A-B) have substantial cone-beam
artifacts near the top of the phantom, as compared to the GPL
coronal slices. In the y = 0 mm plane with the transaxial orien-
tation (Fig. 6C and Fig. 7C), the FDK reconstruction at 180°
is sharper than the reconstruction at 0°, consistent with the
RMSE results. Differences between GPL-SI and GPL-SV are
subtle, but are apparent when comparing how the performance
of these two methods vary with angle. For example, with an
axial tube orientation and in the y = 60 mm plane (Fig. 6B
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Fig. 7. Coronal slices of reconstructions. Images are arranged as in Fig. 6.

and Fig. 7B), GPL-SI produces the sharpest reconstruction at
90° (consistent with the RMSE results). On the other hand,
the GPL-SV method produces visually similar reconstructions.
This is particularly evident in the coronal slices (Fig. 7B).

In general, axial tube orientations result in more uniform
image quality, while transaxial tube orientations result in
better image quality in a specific region of interest, at the cost
of reduced image quality elsewhere. MBIR and blur modeling
were able to improve image quality as compared to FDK
in all cases, with more accurate models resulting in more
accurate reconstructions. Even without blur modeling, GPL-I
was able to reduce cone-beam artifact and improve image

quality at high cone angles as compared to FDK, resulting in
more uniform image quality as a function of slice. However,
the best results were obtained with the accurate, shift-variant
model of focal spot blur.

IV. DISCUSSION

By modeling an extremities CBCT imaging system we have
shown that shift-variant focal spot blur can cause image quality
to vary with position throughout an FOV. Understanding these
properties can aid design of application and system specific
acquisition protocols. For example, when imaging a small
object on this system with a short scan and reconstructing



using FDK, the best image quality will be obtained with a
transaxial X-ray tube orientation and the object at the edge of
the FOV one the anode side of the anode–cathode axis (−x
in 3). Similarly, placing the object at the cathode side should
be avoided. On the other hand, when scanning a large object
which requires image-quality uniformity, an axial X-ray tube
orientation should be used. The results show that MBIR meth-
ods may alter these trade-offs depending on the incorporated
blur models. For example, with an axial X-ray tube orientation
and an object in the y = 60 mm plane, position of the object is
more important when using GPL-SI as compared to GPL-I or
FDK when minimizing RMSE. In all cases the more accurate
the blur model used in the reconstruction algorithm, the more
accurate the reconstruction. While we only analyzed a single
CBCT system, the methods used may be applied to a wide of
range geometries, focal spots, target resolutions, etc.

The GPL-SV method assumes blurs are shift-invariant for
each projection. Without this assumption, a full sourcelets
model is required (i.e., modeling each sourcelet in the MBIR
algorithm). The GPL method can incorporate such a model by
increasing the number of rows in A by a factor of the number
of sourcelets, and adding a weighted sum operation to the B
matrix. This increases computation time by (approximately) a
factor of the number of sourcelets. GPL-SV is substantially
faster and, for small phantoms, roughly equivalent to the
full sourcelets model. Thus, GPL-SV cheaply assesses how
well a full sourcelets MBIR algorithm will perform. In future
work we will compare GPL-SV to a full sourcelets model to
confirm these assumptions and to reconstruct large objects.
The GPL-SV method may also be used when high resolution
is only required in a small Region Of Interest (ROI), in which
case a shift-variant model may be used for the ROI and a sim-
pler model may be used for the remainder of the object [15].

The optimal acquisition protocol and reconstruction method
is dependent on the imaging task as well as system properties.
Therefore, task specific image quality metrics may provide
more application specific information. This work used RMSE
because it is general and well understood, but future work
will consider other metrics. Reconstructions in this work ex-
clusively used short scan data, allowing angle dependent image
quality to be analyzed (as compared to full scan reconstruc-
tions, in which all locations at constant y and radius are equiva-
lent). However, full scans with GPL-SV would allow data from
high and low resolution portions of the scan path to be com-
bined efficiently, as suggested in previous work [9]. We will
reassess full scans with shift-variant modeling in future work.

Through analysis of shift-variant blur properties of a CBCT
system, we have demonstrated how understanding location-
dependent blur can improve acquisition protocol design (e.g.,
favoring the anode side of the X-ray source) and system
design (e.g., axial tube orientation for uniformity, transaxial
for ROI imaging). It was also shown that proper modeling
of shift-variant blur properties with MBIR leads to improved
image quality over traditional methods. As CT systems target
increasingly high-resolution applications, understanding and
accounting for shift-variant system blurs will be essential to

providing better accuracy and improved clinical outcomes.
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