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Abstract– Prior-image-based reconstruction (PIBR) methods, 

which incorporate a high-quality patient-specific prior image into 

the reconstruction of subsequent low-dose CT acquisitions, have 

demonstrated great potential to dramatically reduce data fidelity 

requirements while maintaining or improving image quality. 

However, one challenge with the PIBR methods is in the selection 

of the prior image regularization parameter which controls the 

balance between information from current measurements and in-

formation from the prior image. Too little prior information yields 

few improvements for PIBR, and too much prior information can 

lead to PIBR results too similar to the prior image obscuring or 

misrepresenting features in the reconstruction. While exhaustive 

parameter searches can be used to establish prior image regulari-

zation strength, this process can be time consuming (involving a 

series of iterative reconstructions) and particular settings may not 

generalize for different acquisition protocols, anatomical sites, pa-

tient sizes, etc. Moreover, optimal regularization strategies can be 

dependent on the location within the object further complicating 

selection.  

In this work, we propose a novel approach for prospective anal-

ysis of PIBR. The methodology can be used to determine prior im-

age regularization strength to admit specific anatomical changes 

without the need to perform iterative reconstructions in advance. 

The same basic methodology can also be used to prescribe uniform 

(shift-invariant) admission of change throughout the entire imag-

ing field of view. The proposed predictive analytical approach was 

investigated in two phantom studies, and compared with the re-

sults from exhaustive search based on numerous iterative recon-

structions. The experimental results show that the proposed ana-

lytical approach has high accuracy in predicting the admission of 

specific anatomical features, allowing for prospective determina-

tion of the prior image regularization parameter.    

I. INTRODUCTION 

EQUENTIAL CT studies are common in many clinical appli-

cations such as disease monitoring, image-guided radiother-

apy, and image-guided surgeries. Prior-image-based recon-

struction (PIBR) has been used in sequential imaging to reduce 

radiation dose. Specifically, a high-quality CT scan may be first 

performed as reference, followed by a series of much lower ex-

posure scans. Several studies have suggested that PIBR, 

through incorporation of a high-quality patient-specific prior 

image with subsequent low-dose acquisitions, there is great po-

tential to improve image quality or further reduce data fidelity 

requirements in X-ray CT [1]–[13]. For instance, Nett et al. [2] 

integrated a fully-sampled prior image into the prior image con-

strained compressed sensing (PICCS) framework to improve 

subsequent image reconstruction from under-sampled acquisi-

tions. Stayman et al. [3], [8] proposed a prior image registration, 
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penalized likelihood estimation (PIRPLE) approach which em-

ploys a penalized-likelihood framework and incorporates pa-

tient-specific prior image through a regularization term. Ma et 

al. [4], Xu and Muller [6], Xu and Tsui [7], and Zhang et al. [9] 

explored prior image induced nonlocal means (NLM) methods 

to improve the subsequent low-dose CT image reconstruction. 

Zhang et al. [12] extracted image textures of muscle, fat, bone, 

lung, etc. from high-quality prior image as a priori knowledge 

for texture-preserving Bayesian reconstruction of follow-up 

low-dose CT images. Additionally, Pourmorteza et al. [13] de-

veloped a penalized-likelihood method that reconstructs the dif-

ference image (with respect to a prior image) directly from the 

measurements. 

While these prior-image-based reconstruction (PIBR) meth-

ods enjoy certain success, one common challenge with them is 

how to control the amount of information from the prior image 

in PIBR. Too little prior information yields little benefit, while 

too much prior information can lead the PIBR may obscure im-

portant anatomical changes. In the extreme, it is possible to 

force some approaches to produce a near-exact copy of the prior 

image despite true anatomical change. Typically, the balance 

between data fitting and integration of prior image information 

is controlled by regularization parameters. Examples include 

the parameter 𝛼 in PICCS, 𝛽𝑃  in PIRPLE, 𝛽  and ℎ  in NLM-

based methods, 𝛽 in texture-preserving reconstruction, etc.  

In practice, one can perform a series of image reconstructions 

with different regularization parameter values (i.e., parameter 

sweep) and choose the value whose corresponding reconstruc-

tion optimizing a certain image quality metric. However, there 

are problems with such an exhaustive search. First, such a pa-

rameter sweep can be extremely time-consuming due to a large 

number of iterative reconstructions. (Though recent strategies 

developed by Wu et al. [14] might be applied to reduce this bur-

den by obtaining a sweep of parameters with a single iterative 

reconstruction.) Secondly, such parameter optimizations do not 

necessarily generalize to other scans. It is well-known that the 

performance of model-based iterative reconstruction (MBIR) 

approaches can be dependent on the x-ray technique, anatomi-

cal site, patient size, etc. Thus, optimization in one scenario 

does not necessarily extend to all imaging situations. Addition-

ally, MBIR methods including PIBR approaches can exhibit 

significant variation in image quality within the field-of-view 

of a single study due to inherent shift-variances in the recon-

struction algorithm. Such nonuniformities within a single image 

volume complicates not only the optimization of regularization 
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parameters but also the interpretation of individual images. A 

better understanding of imaging properties and predictive ana-

lytic expressions for imaging performance for PIBR methods 

would have great potential to provide consistent behavior 

across imaging conditions. 

Prior work in the analysis of PIBR methods includes infor-

mation source mapping [15] where reconstructions are (retro-

spectively) decomposed into two categories: features derived 

from measurement data, and features found in the prior image. 

Other work has included approximate analytic forms [16] for 

computationally efficient parameter optimization.  

In this work, we define a bias metric associated with PIBR 

and use a new analysis of a specific PIBR approach – PIRPLE 

– to find closed-form analytic expressions for prior image reg-

ularization strength for specific levels of bias. The approach is 

applied in simulation studies and the ability to accurately and 

prospectively set regularization for specific goals including uni-

formity is demonstrated.  

II. METHODS AND MATERIALS 

A. PIRPLE framework 

The PIRPLE approach [8] is a PIBR method that combines 

both a statistical measurement model and integration of prior 

images. In this work, we consider the PIRPLE objective func-

tion without registration (e.g., presuming the prior image is al-

ready registered to the current data), which may be written as: 

   ˆ arg max ;
PR

R P

pp

PIRPLE R R P P Pp p
L y         Ψ Ψ    (1) 

where the first term, L, denotes the data fit term based on the 

log-likelihood, followed by two regularization terms. The first 

regularizer is a standard roughness penalty where 𝚿𝑅 denotes a 

pairwise voxel difference operator, and the second is a prior im-

age penalty term that encourages similarity with a prior image, 

𝜇𝑃 . Traditionally, one uses 𝑝𝑅 = 𝑝𝑃 = 1  because a 𝑙1  norm 

penalty function encourages edge preservation with the stand-

ard penalty and encourages similarity but allows for sparse dif-

ferences in the prior image penalty. In many cases 𝚿𝑃  is se-

lected to be the identity matrix since the anatomical changes 

between the prior image and the current anatomy are already 

sparse. To ensure a differentiable objective function, we ap-

proximate the 𝑙1 norm using a Huber function with a small 𝛿 

value (10-4 mm-1 in these investigations). The two regulariza-

tion parameters, 𝛽𝑅 and 𝛽𝑃 control the relative strengths of the 

image roughness and prior image penalties, respectively. With 

the above assumptions, the simplified objective function of 

PIRPLE is written as: 

 
1 1

ˆ arg max ;PIRPLE R R P PL y         Ψ      (2) 

This objective function can be solved iteratively with an opti-

mization algorithm, such as ordered subsets separable parabo-

loidal surrogates (OS-SPS) [17].  

B. Closed-form approximation of the PIRPLE objective 

The implicitly stated estimator in (2) is difficult to analyze 

directly. Previous analysis efforts have found approximate 

closed-form expressions that have helped to facilitate under-

standing of such implicitly defined estimators. For example, the 

data fidelity term in Eq. (2) can be approximated by a weighted 

least-squares term using a second-order Taylor expansion of the 

log-likelihood function [18]. Similarly, the modified  𝑙1 norm 

can also be approximated by a quadratic function as in [15], 

[16]. Specifically, 

         
1 2

1

T

i i i ii i
x f x x x x       D    (3) 

where f(xi) denotes the Huber function and ixi
2 is a 

weighted quadratic approximation to f  that is matched in value 

at xii. These functions are defined as: 
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The last term in (3) shows a vector form of this approximation, 

where the diagonal weighting is a function of the vector, , 

which denotes the points (i.e. the image volume) about which 

the approximation is made. 

Thus, the objective function in Eq. (2) can be approximated 

using a sum of weighted 2-norms: 
2 2 2

ˆ arg min
R P

PIRPLE R R P Pl          
W D D

A Ψ   (4) 

where 𝑙  denotes the vector of line integral measurements 

(formed from the data y). Each 2-norm is weighted differently 

with 𝐖 = 𝐃{𝑦}, a weighting matrix with the measurements 𝑦 

along the diagonal;  𝐃𝑅 = 𝐃{𝜅(𝚿𝑅�̃�)} a weighting associated 

with the standard regularizer and  𝐃𝑃 = 𝐃{𝜅(�̃� − 𝜇𝑃)}  a 

weighting associated with the prior image penalty. For the ap-

proximation in (4) to be accurate an image estimate �̃� must cho-

sen to be relatively close to the PIRPLE solution �̂�𝑃𝐼𝑅𝑃𝐿𝐸.  

Since the objective function in Eq. (4) is a quadratic form, it 

has the following closed-form solution: 

   
1

ˆ T T T

PIRPLE R R R R P P P P Pl    


   A WA Ψ D Ψ D A W D  (5) 

This approximation will be critical to the following analytic de-

velopment. 

C. Determination of 𝛽𝑃 in a PIRPLE reconstruction 

The parameter 𝛽𝑃 controls amount of information from the 

prior image to include in the reconstruction estimate. A smaller 

𝛽𝑃 restricts the amount of information from the prior image, and 

a larger 𝛽𝑃 allows the use of more information from the prior 

image. Finding an optimal 𝛽𝑃 is important because too little in-

formation yields no improvement and too much prior infor-

mation can obscure specific features. In previous work, we have 

noted that the transition between different regions of imaging 

performance can be abrupt. 

Consider an example problem where PIRPLE was applied to 

lung nodule surveillance. Given a prior image without a lung 

nodule, a low-dose sparse acquisition of patient anatomy with a 

nodule is acquired and reconstructed. Under the assumption of 

perfect registration, the only anatomical change between the 

two scans is the nodule, thus PIBR methods should work well. 

When 𝛽𝑃 is varied, one can see reliable reconstruction of the 

change for low 𝛽𝑃 , followed by a quick transition where the 

contrast of the change drops quickly, and then for high 𝛽𝑃 the 



 

nodule has completely disappeared. This abrupt and nonlinear 

behavior is illustrated in Figure 1. This behavior suggests a few 

things. First, the bias associated with a prior image penalty can 

be described as the fraction of the actual contrast that appears 

in the reconstruction. Second, analysis should likely be focused 

on the transition region since it will be difficult to relate accu-

rate reconstructions of change to specific 𝛽𝑃 values in plateau 

regions.  

Following this idea, we can consider the abrupt transition re-

gion where a reconstructed change (Δ�̂�) is estimated with half 

the actual contrast, e.g. �̂� = 𝜇𝑃 + Δ𝜇/2 to attempt to find the 

𝛽𝑃
∗  that would achieve that contrast. Or, more generally, we can 

consider where the reconstruction achieves a fractional contrast 

with �̂� = 𝜇𝑃 + 𝛾Δ𝜇 for 0 < 𝛾 < 1. Returning to (5), and con-

sidering the case where regularization is dominated by the prior 

image data (e.g., 𝛽𝑅 = 0) this implies: 

𝜇𝑃 +  𝛾Δ𝜇 = (𝐀T𝐖𝐀 + 𝛽𝑃𝐃𝑃)
−1(𝐀T𝐖𝑙 + 𝛽𝑃𝐃𝑃𝜇𝑝).  (6) 

Since the line integral estimates should be 𝑙 ≈ 𝐀(𝜇𝑃 +Δ𝜇), 

one can substitute for l and make the following manipulations 

        (𝐀T𝐖𝐀 + 𝛽𝑃𝐃𝑃)(𝜇𝑃 +  𝛾Δ𝜇) = 𝐀T𝐖𝑙 + 𝛽𝑃𝐃𝑃𝜇𝑃    

                 𝛾𝐀T𝐖𝐀Δ𝜇 + 𝛾𝛽𝑃𝐃𝑃Δ𝜇 = 𝐀T𝐖𝐀Δ𝜇        

𝛽𝑃𝐃𝑃Δ𝜇 =
(1−𝛾)

𝛾
𝐀T𝐖𝐀Δ𝜇           (7) 

Returning to (3) and presuming that 𝛿 ≈ 0 and that the approx-

imation point �̃� = 𝜇𝑃 + 𝛾Δ𝜇, the same as the reconstruction 

target, we find that 

                            𝐃𝑃 ≈ 𝐃{
1

|�̂�−𝜇𝑃|
} = 𝐃 {

1

|𝛾∆𝜇|
}. 

Thus, (7) becomes 

𝛽𝑃1⃗ = (1 − 𝛾)𝐃−1{𝑠𝑖𝑔𝑛(Δ𝜇)}𝐀T𝐖𝐀Δ𝜇            (8) 

If one considers a particular Δ𝜇 to guarantee in the reconstruc-

tion, (8) suggests that we can compute an ideal 𝛽𝑃
∗  that achieves 

the fractional contrast given by 𝛾. Since (8) is a vector equation, 

we expect that any design will only hold locally near the change 

Δ𝜇. Focusing only on nonnegative changes simplifies the above 

expression. If we consider a nonnegative change Δ𝜇(𝑗) to be 

centered at location j, we may use the following as a regulari-

zation design objective: 

𝛽𝑃
∗ = (1 − 𝛾)[𝐀T𝐖𝐀Δ𝜇(𝑗)]𝑗                      (9) 

where [∙]𝑗 returns the jth element of the vector argument. Note 

that this regularization design depends on the change (including 

its contrast and location), the geometry (A), and the measure-

ment statistics (W).  

D. Shift-variant prior image penalty design 

One might also use (9) to design a shift-variant 𝛽𝑃,𝑗
∗  map that 

enforces a specific change contrast for all locations: 

∀𝑗   𝛽𝑃,𝑗
∗ = (1 − 𝛾)[𝐀T𝐖𝐀Δ𝜇(𝑗)]𝑗                (10) 

This is potentially time consuming operation due to repeat pro-

jections and backprojections. However, as in [19], we can rec-

ognize that when applied to a compact change, 𝐀T𝐖𝐀 ≈

𝚲𝐀T𝐀𝚲 where 𝚲 = 𝐃{c} is a diagonal matrix of aggregate cer-

tainties based on the data with  

𝑐𝑗 = √
∑ 𝑎𝑖𝑗

2 𝑦𝑖𝑖

∑ 𝑎𝑖𝑗
2

𝑖
.                                (11) 

When 𝐀T𝐀 is shift-invariant (e.g., for an evenly sampled tomo-

graphic system), this permits additional simplifications to (10). 

Specifically:  

∀𝑗   𝛽𝑃,𝑗
∗ = (1 − 𝛾)[𝚲𝐀T𝐀𝚲Δ𝜇(𝑗)]𝑗 

For a (spatially) compact change, and since cj are smooth 

∀𝑗   𝛽𝑃,𝑗
∗ = (1 − 𝛾)[𝚲𝐀T𝐀𝑐𝑗Δ𝜇(𝑗)]

𝑗
 

Similarly, since we are only interested in the jth element of the 

right-handside. 

∀𝑗   𝛽𝑃,𝑗
∗ = (1 − 𝛾)𝑐𝑗

2[𝐀T𝐀Δ𝜇(𝑗)]𝑗                 (12) 

If, for different j, Δ𝜇(𝑗) are just shifted versions of the same 

function, then [𝐀T𝐀Δ𝜇(𝑗)]𝑗  is the same value for all j, and 

needs only to be computed once. Thus, an entire shift-variant 

𝛽𝑃,𝑗
∗  map may be computed very efficiently.  

E. Phantoms and simulation studies 

Two phantoms were used in our study. The ellipse phantom 

in Fig. 2(a) consists of three attenuation regions and forms the 

prior image. For a subsequent scan, anatomical changes (small 

discs with the same contrast to the background) are introduced 

in two locations as shown in Fig. 2(b). For simulation studies, a 

system geometry was chosen with a 150 cm source-to-detector 

Figure 1. The reconstructed change intensity (Δ�̂�) versus prior image penalty 
strength. In previous work, we have observed that the contrast is reliably repro-

duced up to a certain 𝛽𝑃 (first plateau, green region), then the change abruptly 

disappears (orange region), not to appear with higher 𝛽𝑃 (red region). 

(a) (b) (c) 

Figure 2. Ellipse phantom: (a) prior image; (b) subsequent scan with two anatomical changes (indicated by yellow circles); (c) FBP reconstruction of subsequent 

scan from the simulated low-dose projection data.  
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distance, 122 cm source-to-axis distance, and 

0.556 × 0.556 mm2 detector bin sizes. 90 projections equally 

distributed over 360o were acquired in the subsequent scan, and 

the 90 projections were simulated using 105 photons per (bare-

beam) detector bin with Poisson noise. Figure 2(c) shows a fil-

tered back projection (FBP) reconstruction of the simulated 

low-dose projection data. The display window for all the im-

ages in this paper is [0, 0.04] mm-1. 

The torso phantom in Fig. 3(a) was generated from an axial 

slice of a CT scan of a cadaver. We emulated a lung nodule 

surveillance scenario in which two uniform discs emulating 

lung nodules (not present in the prior image but present in the 

subsequent scan) were placed in the lung as shown in Fig. 3(b). 

The uniform disc has a radius of 6 mm and attenuation of 0.021 

mm-1 (i.e., 50 HU assuming 0.02 mm-1 water attenuation), 

which is typical value for a solid solitary pulmonary nodule 

[20]. The projections were generated using the same system ge-

ometry as for the ellipse phantom, but with only 30 projections 

equally distributed over 3600 and 104 photons per detector bin 

with Poisson noise. The FBP reconstructed image from the sim-

ulated low-dose projection data is illustrated in Fig. 3(c). 

For both phantoms we perform an exhaustive sweep of the 

regularization parameter 𝛽𝑃  to find the actual contrast of the 

nodule changes in each phantom. We compare this baseline 

truth with the prediction given in (9). Similarly, we investigate 

the design of a shift-variant penalty as described in (12) and 

evaluate its ability to provide uniform admission of change.  

III. EXPERIMENTAL RESULTS 

A. Ellipse phantom investigations 

We performed a series of PIRPLE reconstruction in Eq. (2) 

with the iterative OS-SPS algorithm, using 𝛽𝑅 = 102.5 and 𝛽𝑃 

varies from 101 to 105 with a 100.05 step size. A sampling of these 

reconstruction results are shown in Figure 4. It can be observed 

that: (1) when 𝛽𝑃 is too small, the PIRPLE reconstruction still 

has streak artifacts; when 𝛽𝑃 is too large, the PIRPLE recon-

struction closely resembles the prior image and anatomical 

changes do not appear; (2) there is an intermediate 𝛽𝑃  value 

where right disc appears while the left disc disappears – sug-

gesting significant location dependence.  

Computing average the intensity of voxels in each disc, two 

curves of disc intensity versus prior image regularization 

(a) (b) (c) 

Figure 3. Torso phantom: (a) prior image generated from an axial slice of a CT scan of a cadaver; (b) subsequent scan with two simulated lung nodules (indicated 

by yellow circles); (c) FBP reconstruction of subsequent scan from the simulated low-dose projection data.  

  

Figure 4. PIRPLE reconstruction for the ellipse phantom from simulated low-dose projection data, using 𝛽𝑅 = 102.5 and five different 𝛽𝑃 values.   

Increasing 𝛽
𝑃
  

P = 101 P = 102 P = 103 P = 104 P = 105 

Figure 5. Plot of disc average intensity versus prior image regularization strength for the ellipse phantom for two different change locations. Our proposed analytical 

prediction approach shows very high accuracy as compared with the exhaustive search method. The 𝛾 = 1/2 case is indicated with a dotted line. 

 



 

strength 𝛽𝑃 can be plotted for two discs, as shown in Figure 5. 

Analytic predictions of the change contrast are also shown in 

the same set of axes. Predictions are produced by varying 𝛾 

from 0 to 0.99 with a 0.03 step size and computing 𝛽𝑃
∗  for each 

disc, two curves of change acceptance ratio 𝑟 versus prior im-

age regularization strength can also be plotted for the two discs, 

as shown in Figure 5. The analytic predictions closely match 

the actual exhaustive search results. There is increasing devia-

tion for values farther away from 𝛾 = 1/2. This is not unex-

pected since the analysis has focused on the transition region 

and the plateau regions represent increasingly nonlinear behav-

ior of the PIRPLE algorithm. Note the relative shift between the 

two curves indicating location-dependence. Specifically, the 

transition region for the left disc is at 𝛽𝑃
∗ ≈ 103.4 versus 𝛽𝑃

∗ ≈
104.3 for the right disc.  

The same set of experiments was reproduced for the ellipse 

phantom using shift-variant certainty penalty. (A certainty pen-

alty was also used for the roughness penalty with 𝛽𝑅 = 10−0.5.) 

Note the range of penalty strengths was modified to account for 

the certainty weighting. PIRPLE reconstructions can show less 

location dependence effect, as illustrated in Figure 6. The two 

discs always appear and disappear simultaneously in PIRPLE 

reconstructions. Reconstructed attenuation versus penalty 

strength curves in Figure 7 again show good agreement between 

Figure 6. PIRPLE reconstruction with the shift-variant certainty-based penalty for the ellipse phantom from simulated low-dose projection data, using 𝛽𝑅 =
10−0.5 and five different 𝛽𝑃 values.  Note the uniform reconstruction of change between the two locations regardless of 𝛽𝑃 value. 

Increasing 𝛽
𝑃
  

P = 10-2 P = 10-1 P = 100 P = 101 P = 102 

Figure 7. Plot of disc average intensity versus prior image regularization strength for the ellipse phantom when the certainty-based shift-variant penalty is applied. 
Again, the predictor shows good agreement with the exhaustive search. The shift-variant penalty enforces a common transition region between the two locations 

(centered at 𝛽𝑃
∗ ≈ 101.3). Moreover the two curves have the same general form indicating uniform reconstruction of change for the two positions across 𝛽𝑃

∗. 

Figure 8. PIRPLE reconstruction for the torso phantom from simulated low-dose projection data, using 𝛽𝑅 = 102.5 and five different 𝛽𝑃 values.   

Increasing 𝛽
𝑃
  

P = 101 P = 102 P = 103 P = 104 P = 105 

Figure 9. Plot of nodule average intensity versus prior image regularization strength for the torso phantom for the shift-invariant penalty. 



 

prediction and rote evaluation. These curves also indicate the 

improved uniformity with curves for both the left and right 

discs exhibiting a transition region centered at  𝛽𝑃
∗ ≈ 101.3.  

B. Torso phantom investigations 

Both the shift-invariant and shift-variant regularization ap-

proaches were also applied in the torso phantom. The shift-in-

variant results are summarized in Figures 8 and 9, and the shift-

variant results are shown in Figures 10 and 11. One can see 

similar behavior across these studies as in the more simple 

ellipse phantom. The agreement between the predictor and the 

exhaustive search is in good agreement. The anthropomorphic 

phantom shows shift-variant performance for the shift-invariant 

penalty suggesting the shift-variant penalty design may play an 

important role in clinically pertinent data sets. Like the ellipse 

phantom, the shift-variant design increases uniformity in the 

reconstruction of change at different points in the image 

volume.   

IV. DISCUSSION AND CONCLUSION 

We have proposed an analytical approach that relates prior 

image regularization strength to levels of bias associated with 

specific anatomical changes in PIRPLE reconstruction. These 

methods are direct and do not require any iterative reconstruc-

tions, and take into account the location and contrast of the 

change to be admitted in the reconstruction; the system geome-

try; and the measurement statistics. We have also demonstrated 

a computationally efficient method for specifying a shift-vari-

ant penalty that increases the uniformity of bias associated with 

the prior image. While the particular levels of acceptable bias 

are likely tied to specific imaging tasks, we have provided a 

general framework for predicting this bias, and selecting a reg-

ularization parameter to achieve that level. This level of control 

is critically important for PIBR approaches that have the poten-

tial to obscure true features through over-regularization. This 

work provides the tools to prevent this in a prospective and 

quantitative fashion. 

The development of the predictors in this work follows a sim-

ilar path to the work performed in [15] which considered other 

PIBR methods (e.g., PICCS) using the same underlying ap-

proach. We expect that this work can be similarly generalized 

for other PIBR approaches.  
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