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Schedule CT Meeting 2022 

 

Sunday 
June 12 

Monday 
June 13 

Tuesday 
 

Wednesday 
  

Thursday 
  

7:00  

Breakfast Breakfast Breakfast Breakfast 
7:20  

7:40  

8:00  

8:20  

Welcome + Novel 
CT Technologies  

(3 Talks) 

Invited Talks on 
Photon Counting 

CT 

Modeling and 
Assessment  

(4 Talks) 

Invited Talk on 
Interventional CT 8:40  

9:00  Interventional Imaging 
(2 Talks) 9:20  

9:40  Coffee Coffee Coffee Coffee 

10:00  

Reconstruction and 
Deep Learning  

(5 Talks) 

Spectral CT  
(5 Talks) 

Invited Talk on Deep 
Learning Cardiac CT and Motion 

Compensation  
(4 Talks)  

+ Conclusion 

10:20  

10:40  
Deep Learning 

Assessment  
(3 Talks) 

11:00  

11:20  

11:40  

Lunch Lunch Lunch Lunch 

12:00  

12:20  

12:40  

1:00  

1:20  

Monday Poster 
Session  

(~25 Posters) 

Tuesday Poster 
Session  

(~25 Posters) 

Wednesday Poster 
Session 

 (~25 Posters) 

Optional Tours JHU 
Laboratories and 

Hospital 

1:40  

2:00  

2:20  

2:40  

3:00  Coffee Coffee Coffee 

3:20 

Registration 
CT Acquisition  

(5 Talks) 

Artifacts and 
Sparse CT  
(5 Talks) 

Spectral and 
Polyenergetic CT 
Reconstruction  

(5 Talks) 

3:40 

4:00 

4:20 

4:40 

      

7:00 

Welcome 
Reception 

(Great Hall) 

Dinner  
(Charles Commons 

Banquet Room) 

Dinner Out  
(R. House) 

Dinner Out  
(Ministry of Brewing) 

 

7:20  

7:40  

8:00  

8:20  

8:40  

9:00  
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Monday, June 13 
 

Welcome Address 08:20 – 08:40 Web Stayman 
 
 

Oral Session : Novel CT Technologies 
Time : 08:40 – 09:40 
Moderators : Bruno De Man, Ke Li 

 
Time Title Authors Page 

08:40 – 09:00 Dark-Field Imaging on a Clinical CT System: 
Realization of Talbot-Lau Interferometry in a 
Gantry 

Manuel Viermetz, Nikolai Gustschin, 
Clemens Schmid, Jakob Haeusele, Roland 
Proksa, Thomas Koehler, and Franz Pfeiffer 

17 

09:00 – 09:20 Dark-Field Imaging on a Clinical CT System: 
Performance and Potential based on first Results 

Nikolai Gustschin, Manuel Viermetz, 
Clemens Schmid, Jakob Haeusele, Frank 
Bergner, Tobias Lasser, Thomas Koehler, 
and Franz Pfeiffer 

21 

09:20 – 09:40 Non-invasive real-time thermometry via spectral 
CT physical density quantifications 

Nadav Shapira, Leening P. Liu, Johoon 
Kim, David P. Cormode, Gregory J. 
Nadolski, Matthew Hung, Michael C. 
Soulen, Peter B. Noël 

25 

 
 

Coffee Break 09:40 – 10:00 
 
 

Oral Session  
Time    
Moderators     
 
This session is made possible by a generous gift from United Imaging Healthcare 

 
Time Title Authors Page 
10:00 – 10:20 Cone-beam reconstruction for a circular trajectory 

with transversely-truncated projections based on 
the virtual fan-beam method  

Mathurin Charles, Rolf Clackdoyle, and 
Simon Rit 

29 

10:20 – 10:40 Iterative image reconstruction for CT with 
unmatched projection matrices using the 
generalized minimal residual algorithm  

Emil Y. Sidky, Per Christian Hansen, Jakob 
S. Jørgensen, and Xiaochuan Pan 

33 

10:40 – 11:00 Deep Learning-Based Detector Row Upsampling 
for Clinical Spiral CT  

Jan Magonov, Julien Erath, Joscha Maier, 
Eric Fournié, Karl Stierstorfer, and Marc 
Kachelrieß 

37 

11:00 – 11:20 DL-Recon: Combining 3D Deep Learning Image 
Synthesis and Model Uncertainty with Physics-
Based Image Reconstruction 

Xiaoxuan Zhang, Pengwei Wu, Wojciech B. 
Zbijewski, Alejandro Sisniega, Runze Han, 
Craig K. Jones, Prasad Vagdargi, Ali Uneri, 
Patrick A. Helm, William S. Anderson, 
Jeffrey H. Siewerdsen 

41 

11:20 – 11:40 Learned Cone-Beam CT Reconstruction Using 
Neural Ordinary Differential Equations 

Mareike Thies, Fabian Wagner, Mingxuan 
Gu, Lukas Folle, Lina Felsner, and Andreas 
Maier 

45 
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: Reconstruction and Deep Learning 
: 10:00 – 11:40
: Marc Kachelrieß, Koen Michielsen



 

 

Lunch 11:40 – 13:20 
  

 
Poster Session 13:20 – 15:00 
The poster session will begin with 30-second teaser presentation given by presented in the Glass 
Pavilion. General presentation and discussion of posters will follow in the Great Hall. 

 
 Title Authors Page 
M1 First results on Compton camera system used for X-ray 

fluorescence computed tomography 
Chuanpeng Wu and Liang Li 70 

M2 Iterative grating interferometry-based phase-contrast CT 
reconstruction with a data-driven denoising prior 

Stefano van Gogh, Subhadip Mukherjee, 
Michał Rawlik, Zhentian Wang, Jinqiu Xu, 
Zsuzsanna Varga, Carola-Bibiane 
Schönlieb, Marco Stampanoni 

74 

M3 A scatter correction method of CBCT via CycleGAN and 
forward projection algorithm 

Tianxu Tang, Wei Zhang, and Weiqi Xiong 78 

M4 Design and Optimization of 3D VSHARP® Scatter 
Correction for Industrial CBCT using the Linear 
Boltzmann Transport Equation 

Kevin Holt, Devang Savaliya, Amy 
Shiroma, Martin Hu, David Nisius, Steve 
Hoelzer, Mingshan Sun, Don Vernekohl, 
Josh Star-Lack 

82 

M5 Motion Correction Image Reconstruction using NeuralCT 
Improves with Spatially Aware Object Segmentation 

Zhennong Chen, Kunal Gupta, Francisco 
Contijoch 

86 

M6 Photon-Counting X-ray CT Perfusion Imaging in Animal 
Models of Cancer 

Darin P. Clark, Alex J. Allphin, Yvonne M. 
Mowery, and Cristian T. Badea 

90 

M7 Undersampled Dynamic Tomography with Separated 
Spatial and Temporal Regularization 

Xiufa Cao, Yinghui Zhang, Ran An, 
Hongwei Li 

94 

M8 Full-Spectrum-Knowledge-Aware Unsupervised Network 
for Photon-counting CT Imaging 

Danyang Li, Zheng Duan, Dong Zeng, 
Zhaoying Bian, and Jianhua Ma 

98 

M9 Soil matrix study using a hybrid a-Se/CMOS pixel 
detector for CT scanning 

Akyl Swaby, Adam S. Wang, Michael G. 
Farrier, Weixin Cheng, and Shiva 
Abbaszadeh 

102 

M10 The Reason of Why Dynamic Dual-Energy CT is Better 
than Multi-Energy CT in Reducing Statistical Noise 

Yidi Yao, Liang Li, and Zhiqiang Chen 106 

M11 Cone-Beam X-ray Luminescence Computed Tomography 
Reconstruction Based on Huber Markov Random Field 
Regularization 

Tianshuai Liu, Junyan Rong, Wenqin Hao, 
Hongbing Lu 

110 

M12 Dual-domain network with transfer learning for reducing 
bowtie-filter induced artifacts in half-fan cone-beam CT 

Sungho Yun, Uijin Jeong, Donghyeon Lee, 
Hyeongseok Kim, and Seungryong Cho 

114 

M13 Organ-Specific vs. Patient Risk-Specific Tube Current 
Modulation in Thorax CT Scans Covering the Female 
Breast 

Lucia Enzmann, Laura Klein, Chang Liu, 
Stefan Sawall, Andreas Maier, Joscha 
Maier, Michael Lell, and Marc Kachelrieß. 

118 

M14 An Analytical Prj2CH Covariance Estimation Method for 
Iterative Reconstruction Methods 

Xiaoyue Guo, Li Zhang, Yuxiang Xing 122 

M15 Material Decomposition from Photon-Counting CT using 
a Convolutional Neural Network and Energy-Integrating 
CT Training Labels 

Rohan Nadkarni, Alex Allphin, Darin P. 
Clark, and Cristian T. Badea 

126 

M16 Using Tissue-Energy Response to Generate Virtual 
Monoenergetic Images from Conventional CT for 
Computer-aided Diagnosis of Lesions 

Shaojie Chang, Yongfeng Gao, Marc J. 
Pomeroy, Ti Bai, Hao Zhang, and 
Zhengrong Liang 

130 

M17 Detruncation of Clinical CT Scans Using a Discrete 
Algebraic Reconstruction Technique Prior 

Achim Byl, Michael Knaup, Magdalena 
Rafecas, Christoph Hoeschen, and Marc 
Kachelrieß 

134 

M18 Deep Learning based Respiratory Surrogate Signal 
Extraction 

Jean Radig, Pascal Paysan, Stefan Scheib 138 
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M19 Deep learning enabled wide-coverage high-resolution 
cardiac CT 

Tzu-Cheng Lee, Jian Zhou, John Schuzer, 
Masakazu Matsuura, Takuya Nemoto, 
Hiroki Taguchi, Zhou Yu, Liang Cai 

142 

M20 Preliminary study on image reconstruction for limited-
angular-range dual-energy CT using two-orthogonal, 
overlapping arcs 

Buxin Chen, Zheng Zhang, Dan Xia, Emil 
Y. Sidky, and Xiaochuan Pan 

145 

M21 Correcting spurious signal using an automated Deep 
Learning based reconstruction workflow 

Matthew Andrew, Andriy Andreyev, Faguo 
Yang and Lars Omlor 

149 

M22 Dual-Energy Head Cone-Beam CT Using a Dual-Layer 
Flat-Panel Detector: Physics-Based Material 
Decomposition 

Zhilei Wang, Hao Zhou, Shan Gu, Hewei 
Gao 

157 

M23 Combining Deep Learning and Adaptive Sparse Modeling 
for Low-dose CT Reconstruction 

Ling Chen, Zhishen Huang, Yong Long, 
Saiprasad Ravishankar 

153 

M24 X-ray Dissectography Enables Stereotography Chuang Niu and Ge Wang 161 
M25 Mixed coronary plaque characterization with the first 

clinical dual-source photon-counting CT scanner a 
phantom study 

Thomas Wesley Holmes, Leening P. Liu, 
Nadav Shapira, Elliot McVeigh, Amir 
Pourmorteza, Peter B. Noël 

165 

 
 

Coffee Break 15:00 – 15:20 
 
 

Oral Session : CT Acquisition 
Time : 15:20 – 17:00 
Moderators : Adam Wang, Rolf Clackdoyle 

 
 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
Time Title Authors Page 
15:20 – 15:40 LaBr3:Ce and Silicon Photomultipliers: Towards 

the Optimal Scintillating Photon-Counting 
Detector  

Stefan J. van der Sar, David Leibold, Stefan 
E. Brunner, and Dennis R. Schaart  

49 

15:40 – 16:00 Preliminary Investigations of a Novel Dynamic 
CT Collimator  

Web Stayman, Nir Eden, Yiqun Q. Ma, 
Grace J. Gang, Allon Guez  

53 

16:00 – 16:20 X-ray CT Data Completeness Condition for Sets 
of Arbitrary Projections 

Gabriel Herl, Andreas Maier, and Simon 
Zabler 

66 

16:20 – 16:40 CT imaging with truncation data over limited-
angular ranges 

Dan Xia, Zheng Zhang, Buxin Chen, Emil 
Y. Sidky, and Xiaochuan Pan  

57 

16:40 – 17:00 Cone Beam Field of View Extension through 
Complementary Short Scan Trajectories with 
Displaced Center of Rotation 

Gabriele Belotti, Simon Rit, Guido Baroni 62 

    
 

Dinner 19:00 – 21:20 
(Charles Commons Banquet Room)
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Tuesday, June 14 
 
 

Oral Session : Invited Talks on Photon Counting CT 
Time : 08:20 – 09:40 
Moderator : Web Stayman 

 
Time Title Presenter 

08:20 – 09:00 Photon counting detector computed tomography: technical 
background  

Peter Noel 

09:00 – 09:40 Photon counting detector computed tomography: clinical 
applications  

Shuai Leng 

 
 

Coffee Break 09:40 – 10:00 
 
 

Oral Session : Spectral CT 
Time : 10:00 – 11:40 
Moderators : Kevin Brown, Cristian Badea 
 
This session is made possible by a generous gift from Philips Healthcare 

 
Time Title Authors Page 
10:00 – 10:20 Consistency-based auto-calibration of the spectral 

model in dual-energy CT 
Jérome Lesaint, Simon Rit 170 

10:20 – 10:40 Direct binning for photon counting detectors Katsuyuki Taguchi and Scott S. Hsieh 174 
10:40 – 11:00 Co-clinical photon counting CT research for 

multi-contrast imaging 
Cristian T. Badea, Darin P. Clark, Alex 
Allphin, Juan Carlos Ramirez-Giraldo, 
Prajwal Bhandari, Yvonne M. Mowery, 
Ketan B. Ghaghada 

178 

11:00 – 11:20 Reproducibility in dual energy CT: the impact of a 
projection domain material decomposition method 

Viktor Haase, Frederic Noo, Karl 
Stierstorfer, Andreas Maier, and Michael 
McNitt-Gray 

182 

11:20 – 11:40 Dual-source photon-counting CT: consistency in 
spectral results at different acquisition modes and 
heart rates 

Leening P. Liu, Nadav Shapira, Pooyan 
Sahbaee, Harold I. Litt, Marcus Y. Chen, 
Peter B. Noël 

186 

 
 

Lunch 11:40 – 13:20 
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Poster Session 13:20 – 15:00 
The poster session will begin with 30-second teaser presentation given by presented in the Glass 
Pavilion. General presentation and discussion of posters will follow in the Great Hall. 

 
 Title Authors Page 
T1 Photon Starvation Artifact Reduction by Shift-Variant 

Processing 
Gengsheng L. Zeng 210 

T2 Data-driven Metal Artifact Correction in Computed 
Tomography using conditional Generative Adversarial 
Networks 

     
      

 

214 

T3 CT-Value Conservation based Spatial Transformer 
Network for Cardiac Motion Correction 

       
 

218 

T4 Exploiting voxel-sparsity for bone imaging with sparse-
view cone-beam computed tomography 

     
     
     

  

222 

T5       
      

     
     

      
  

226 

T6       
    

   
     

   
     

230 

T7        
   

      
  

 

T8       
       

       
  

 

T9        
       

     

T10         
    

  
    

   
    

 

T11      
   

     
   

 

T12        
    

      
      

  

 

T13      
     

     

     

T14       
   

        
 

 

T15         
   

    
     
   

  

 

T16       
      

  

      
      

  

 

T17       
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 Nele Blum, University of Lubeck,
 Germany, Thorsten M. Buzug and Maik
 Stille
 Xuan Xu, Peng Wang, Liyi Zhao, Guotao
 Quan
 Emil Y. Sidky, Holly L. Stewart,
 Christopher E. Kawcak, C. Wayne
 MacIlwraith, Martine C. Duff, and
 Xiaochuan Pan
Estimation of Contrast Agent Concentration from Pulsed- Isabelle M. Heukensfeldt Jansen, Eri
Mode Projections to Time Contrast-Enhanced CT Scans Haneda, Bernhard Claus, Jed Pack,
 Albert Hsiao, Elliot McVeigh, and Bruno
 De Man
Time Separation Technique Using Prior Knowledge for Hana Haseljić, Vojtěch Kulvait, Robert 
Dynamic Liver Perfusion Imaging Frysch, Fatima Saad, Bennet Hensen,
 Frank Wacker, Inga Brüsch,
 Thomas Werncke, and Georg Rose
A hybrid neural network combining explicit priors for Xiangli Jin, Yinghui Zhang, Ran An, 234 
low-dose CT reconstruction Hongwei Li
High Resolution Cerebral Perfusion Deconvolution via Sui Li, Zhaoying Bian, Dong Zeng, and 238 
Mixture of Gaussian Model based on Noise Properties Jianhua Ma
Simulating Arbitrary Dose Levels and Independent Noise Sen Wang, Adam Wang 242 
Image Pairs from a Single CT Scan
Dark-Field Imaging on a Clinical CT System: Sample Jakob Haeusele, Clemens Schmid, Manuel 246 
Data Processing and Reconstruction Viermetz, Nikolai Gustschin, Tobias
 Lasser, Frank Bergner,
 Thomas Koehler, Franz Pfeiffer
S2MC: Self-Supervised Learning Driven Multi-Spectral Chaoyang Zhang, Shaojie Chang, Ti Bai, 250 
CT Image Enhancement and Xi Chen
Virtual Non-Metal Network for Metal Artifact Reduction Da-in Choi, Taejin Kwon, Jaehong Hwang, 254 
in the Sinogram Domain Joon Il Hwang, Yeonkyoung Choi and
 Seungryong Cho
Attenuation Image Guided Effective Atom Number Wei Fang, Liang Li 258 
Image Calculation Using Image domain Neural Network
for MeV Dual-energy Cargo CT Imaging
Residual W-shape Network (ResWnet) for Dual-energy Xiao Jiang, Hehe Cui, Zihao Liu, Lei Zhu 262 
Cone-beam CT Imaging and Yidong Yang
Dark-Field Imaging on a Clinical CT System: Modelling Clemens Schmid, Manuel Viermetz, 266 
of Interferometer Vibrations Nikolai Gustschin, Jakob Haeusele, Tobias
 Lasser, Thomas Koehler,
 Franz Pfeiffer
Fully Utilizing Contrast Enhancement on Lung Tissue as Shaojie Chang, Yongfeng Gao, Marc J. 270 
a Novel Basis Material for Lung Nodule Characterization Pomeroy, Ti Bai, Hao Zhang, and
by Multi-energy CT Zhengrong Liang
Image Reconstruction in Phase-Contrast CT with Zheng Zhang, Buxin Chen, Dan Xia, Emil 274 
Shortened Scans Y. Sidky, Mark Anastasio, and Xiaochuan
 Pan



 

 

T18 Self-trained Deep Convolutional Neural Network for 
Noise Reduction in CT 

Zhongxing Zhou, Akitoshi Inoue, Cynthia 
McCollough, and Lifeng Yu 

279 

T19 2D-3D motion registration of rigid objects within a soft 
tissue structure 

Nargiza Djurabekova, Andrew Goldberg, 
David Hawkes, Guy Long, Felix Lucka and 
Marta M. Betcke 

283 

T20 Gas Bubble Motion Artifact Reduction through 
Simultaneous Motion Estimation and Image 
Reconstruction 

Kai Wang, Hua-Chieh Shao, You Zhang, 
Chunjoo Park, Steve Jiang, Jing Wang 

288 

T21 Comparing One-step and Two-step Scatter Correction 
and Density Reconstruction in X-ray CT 

Alexander N. Sietsema, Michael T. 
McCann, Marc L. Klasky, and Saiprasad 
Ravishankar 

292 

T22 Material decomposition from unregistered dual kV data 
using the cOSSCIR algorithm 

Benjamin M. Rizzo, Emil Y. Sidky, and 
Taly Gilat Schmidt 

296 

T23 PixelPrint: Three-dimensional printing of patient-specific 
soft tissue and bone phantoms for CT 

Kai Mei, Michael Geagan, Nadav Shapira, 
Leening P. Liu, Pouyan Pasyar, 
Grace J. Gang, Web Stayman, and Peter B. 
Noël 

300 

T24 Practical Workflow for Arbitrary Non-circular Orbits for 
CT with Clinical Robotic C-arms 

Yiqun Ma, Grace J. Gang, Tess Reynolds, 
Tina Ehtiati, Junyuan Li, Owen Dillon, 
Tom Russ, Wenying Wang, Clifford Weiss, 
Nicholas Theodore, Kelvin Hong, Ricky 
O’Brien, Jeffrey Siewerdsen, Web Stayman 

304 

T25 Rigid motion correction based on locally linear 
embedding for helical CT scans with photon-counting 
detectors 

Mengzhou Li, Chiara Lowe, Anthony 
Butler, Phil Butler, and Ge Wang 

308 

 
 

Coffee Break 15:00 – 15:20 
 
 

Oral Session : Artifacts and Sparse CT 
Time : 15:20 – 17:00 
Moderators : Xiaochuan Pan, Jerome Z. Liang 

 

 
Time Title Authors Page 
15:20 – 15:40 Deep Scatter Estimation for Coarse Anti-Scatter 

Grids as used in Photon-Counting CT 
Julien Erath, Jan Magonov, Joscha Maier, 
Eric Fournié, Martin Petersilka, Karl 
Stierstorfer, and Marc Kachelrieß  

190 

15:40 – 16:00 Cross-Domain Metal Segmentation for CBCT 
Metal Artifact Reduction 

Maximilian Rohleder, Tristan M. 
Gottschalk, Andreas Maier and, Bjoern W. 
Kreher 

194 

16:00 – 16:20 Sparsier2Sparse: Weakly-supervised learning for 
streak artifacts reduction with unpaired sparse 
view CT data 

Seongjun Kim, Byeongjoon Kim, and 
Jongduk Baek  

198 

16:20 – 16:40 Dual Domain Closed-loop Learning for Sparse-
view CT Reconstruction 

Yi Guo, Yongbo Wang, Manman Zhu, 
Dong Zeng, Zhaoying Bian, Xi Tao and 
Jianhua Ma  

202 

16:40 – 17:00 Hybrid Reconstruction Using Shearlets and Deep 
Learning for Sparse X-Ray Computed 
Tomography 

Andi Braimllari, Theodor Cheslerean-
Boghiu, Tobias Lasser  

206 

 
Dinner 19:00 – 21:20 

(R. House)  
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Wednesday, June 15 
Oral Session : Modeling and Assessment 
Time : 08:20 – 09:40 
Moderators : Grace J. Gang, Kirsten L. Boedeker 

 
Time Title Authors Page 

08:20 – 08:40 Trade-offs between redundancy and increased 
rank for tomographic system matrices 

Feriel Khellaf and Rolf Clackdoyle 414 

08:40 – 09:00 Stationary X-ray Tomography for Hemorrhagic 
Stroke Imaging - Sampling and Resolution 
Properties 

A. Lopez-Montes, T. McSkimming, W. 
Zbijewski, J. H. Siewerdsen, A. Skeats, B. 
Gonzales, A. Sisniega 

418 

09:00 – 09:20 Angular normalized glandular dose coefficient in 
breast CT: clinical data study 

Hsin Wu Tseng, Andrew Karellas, and 
Srinivasan Vedantham 

422 

09:20 – 09:40 Estimating the accuracy and precision of 
quantitative imaging biomarkers as endpoints for 
clinical trials using standard-of-care CT 

Paul Kinahan, Darrin Byrd, Hao Yang, 
Hugo Aerts, Binzhang Zhao, Andrey 
Fedorov, Lawrence Schwartz, Tavis 
Allison, Chaya Moskowitz 

426 

 
 

Coffee Break 09:40 – 10:00 
 
 

Oral Session : Invited Talk on Deep Learning 
Time : 10:00– 10:40 
Moderator : Web Stayman 

 
Time Title Presenter 
10:00 – 10:40 Hallucinations and objective assessments of deep learning 

technologies for image formation  
Mark Anastasio  

 
 

Oral Session : Deep Learning Assessment 
Time : 10:40 – 11:40 
Moderators : Saiprasad Ravishankar, Rongping Zeng 

 
Time Title Authors Page 
10:40 – 11:00 Reconstructing Invariances of CT Image 

Denoising Networks using Invertible Neural 
Networks 

Elias Eulig, Björn Ommer, and Marc 
Kachelrieß 

430 

11:00 – 11:20 Local Linearity Analysis of Deep Learning CT 
Denoising Algorithms 

Junyuan Li, Wenying Wang, Matt Tivnan, 
Jeremias Sulam, Jerry L Prince, Michael 
McNitt-Gray, Web Stayman and Grace J. 
Gang 

434 

11:20 – 11:40 Evaluation of deep learning-based CT 
reconstruction with a signal-Laplacian model 
observer 

Gregory Ongie, Emil Y. Sidky, Ingrid S. 
Reiser, & Xiaochuan Pan 

438 

 
 

Lunch 11:40 – 13:20 
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Poster Session 13:20 – 15:00 
The poster session will begin with 30-second teaser presentation given by presented in the Glass 
Pavilion. General presentation and discussion of posters will follow in the Great Hall. 

 
 Title Authors Page 
W1 An Attempt of Directly Filtering the Sparse-View CT 

Images by BM3D 
Larry Zeng 313 

W2 Assessment of perceptual quality measures for multi-
exposure radiography and tomography 

Joaquim G. Sanctorum, Sam Van der 
Jeught, Sam Van Wassenbergh, Joris J. J. 
Dirckx 

317 

W3 Geometric calibration of seven degree of freedom Robotic 
Sample Holder for X-ray CT 

Erdal Pekel, Florian Schaff, Martin Dierolf, 
Franz Pfeiffer, and Tobias Lasser 

321 

W4 A generalized total-variation-based image reconstruction 
method for limited-angle computed tomography 

Xin Lu, Yunsong Zhao, and Peng Zhang 325 

W5 Comparison of Energy Bin Compression Strategies for 
Photon Counting Detectors 

Yirong Yang, Sen Wang, Debashish Pal, 
Norbert J. Pelc, Adam S. Wang 

329 

W6 A visible edge aware directional total variation model for 
limited-angle reconstruction 

Yinghui Zhang, Ke Chen, Xing Zhao, 
Hongwei Li. 

333 

W7 Dual-task Learning For Low-Dose CT Simulation and 
Denoising 

Mingqiang Meng, Yongbo Wang, Manman 
Zhu, Xi Tao, Zhaoying Bian, Dong Zeng, 
and Jianhua Ma 

337 

W8 Statistical Iteration Reconstruction based on Gaussian 
Mixture Model for Photon-counting CT 

Danyang Li, Zheng Duan, Dong Zeng, 
Zhaoying Bian, and Jianhua Ma 

341 

W9 Deep Learning Ring Artifact Correction in Photon-
Counting Spectral CT with Perceptual Loss 

Dennis Hein, Konstantinos Liappis, Alma 
Eguizabal, and Mats Persson 

345 

W10 Photon Counting Detector-based Multi-energy Cone 
Beam CT Platform for Preclinical Small Animal 
Radiation Research 

Xiaoyu Hu, Yuncheng Zhong, Kai Yang, 
and Xun Jia 

349 

W11 Design of Novel Loss Functions for Deep Learning in X-
ray CT 

Obaidullah Rahman, Ken D. Sauer, Madhuri 
Nagare, Charles A. Bouman, Roman 
Melnyk, Jie Tang, Brian Nett 

353 

W12 Effect of Attenuation Model on Iodine Quantification in 
Contrast-Enhanced Breast CT 

Mikhail Mikerov, Koen Michielsen, James 
G. Nagy, and Ioannis Sechopoulos 

357 

W13 Motion Compensated Weighted Filtered Backprojection 
Considering Rebinning Process 

Nora Steinich, Johan Sunnegårdh, and 
Harald Schöndube 

362 

W14 On the use of voxel-driven backprojection and iterative 
reconstruction for small ROI CT imaging 

Leonardo Di Schiavi Trotta, Dmitri 
Matenine, Margherita Martini, Yannick 
Lemaréchal, Pierre Francus, and Philippe 
Després 

366 

W15 A Decomposition Method for Directional Total Variation 
With Application to Needle Reconstruction in 
Interventional Imaging 

Marion Savanier, Cyril Riddell, Yves 
Trousset, Emilie Chouzenoux and Jean-
Christophe Pesquet 

370 

W16 New Reconstruction Methodology for Chest 
Tomosynthesis based on Deep Learning 

F Del Cerro. C, Galán. A, García-Blas. J, 
Desco. M, Abella M. 

374 

W17 Iterative Intraoperative Digital Tomosynthesis Image 
Reconstruction using a Prior as Initial Image 

Fatima Saad, Robert Frysch, Tim Pfeiffer, 
Sylvia Saalfeld, Jessica Schulz, Jens- 
Christoph Georgi, Andreas Nürnberger, 
Guenter Lauritsch, and Georg Rose 

378 

W18 Learning CT Scatter Estimation Without Labeled Data - A 
Feasibility Study 

Joscha Maier, Luca Jordan, Elias Eulig, 
Fabian Jäger, Stefan Sawall, Michael 
Knaup, and Marc Kachelrieß 

382 

W19 Implementations of Statistical Reconstruction Algorithm 
for CT Scanners with Flying Focal Spot 

Robert Cierniak and Jarosław Bilski and 
Piotr Pluta 

386 

W20 Multiple Linear Detector Off-Line Calibration Sasha Gasquet, Laurent Desbat, and Pierre-
Yves Solane 

390 
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W21 Iodine-enhanced Liver Vessel Segmentation in Photon 
Counting Detector-based Computed Tomography using 
Deep Learning 

Sumin Baek, Okkyun Lee, and Dong Hye 
Ye 

394 

W22 Optimization of Empirical Beamhardening Correction 
Algorithm 

Andriy Andreyev, Faguo Yang, Lars Omlor, 
and Matthew Andrew 

402 

W23 Deep Learning-based Prior toward Normalized Metal 
Artifact Reduction in Computed Tomography 

Jeonghyeon Nam, Dong Hye Ye, and 
Okkyun Lee 

398 

W24 On use of augmentation for the DNN-based CT Prabhat Kc, Kyle J. Myers, M. Mehdi 
Farhangi, Rongping Zeng 

406 

W25 Joint Multi-channel Total Generalized Variation 
Minimization and Tensor Decomposition for Spectral CT 
Reconstruction 

Huihua Kong, Xiangyuan Lian, Jinxiao Pan, 
and Hengyong Yu 

410 

 
 

Coffee Break 15:00 – 15:20 
 
 

Oral Session : Spectral and Polyenergetic CT Reconstruction 
Time : 15:20 – 17:00 
Moderators : Emil Sidky, Johan Sunnegaardh 

 

 
Time Title Authors Page 
15:20 – 15:40 Tunable Neural Networks for Multi-Material 

Image Formation from Spectral CT Measurements 
Matthew Tivnan, Grace Gang, Peter Noël, 
Jeremias Sulam, and J. Webster Stayman 

442 

15:40 – 16:00 Self-supervised nonlocal spectral similarity 
induced material decomposition network 

Lei Wang, Yongbo Wang, Zhaoying Bian, 
Dong Zeng, and Jianhua Ma  

446 

16:00 – 16:20 Likelihood-based bilateral filtration in material 
decomposition for photon counting CT 

Okkyun Lee  450 

16:20 – 16:40 Experimental Evaluation of Polychromatic 
Reconstruction for Quantitative CBCT 

Michał Walczak, Pascal Paysan, Mathieu 
Plamondon, Stefan Scheib 

454 

16:40 – 17:00 Dual-energy cone-beam CT with three-material 
decomposition for bone marrow edema imaging 

Stephen Z. Liu, Magdalena Herbst, Thomas 
Weber, Sebastian Vogt, Ludwig Ritchl, 
Steffen Kappler, Jeffrey H. Siewerdsen, and 
Wojciech Zbijewski  

458 

 
Dinner 19:00 – 21:20 

(Ministry of Brewing) 
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Thursday, June 16 
Oral Session : Invited Talk on Interventional CT 
Time : 08:20 – 09:00 
Moderator : Web Stayman 

 
Time Title Presenter 

08:20 – 09:00 Engineering the Future of Spine Surgery  Nick Theodore 
 
 

Oral Session : Interventional Imaging 
Time : 09:00 – 09:40 
Moderator : Cyrill Riddell 

 
Time Title Authors Page 

09:00 – 09:20 Real-time Liver Tumor Localization via a Single 
X-ray Projection Using Deep Graph Network-
assisted Biomechanical Modeling 

Hua-Chieh Shao, Jing Wang, and You 
Zhang  

464 

09:20 – 09:40 3D Reconstruction of Stents and Guidewires in an 
Anthropomorphic Phantom From Three X-Ray 
Projections 

Tim Vöth, Thomas König, Elias Eulig, 
Michael Knaup, Veit Wiesmann, Klaus 
Hörndler, and Marc Kachelrieß 

468 

 
 

Coffee Break 09:40 – 10:00 
 
 

Oral Session : Cardiac CT and Motion Compensation  
Time : 10:00 – 11:20 
Moderators : Ken Taguchi, Simon Rit 

 
Time Title Authors Page 
10:00 – 10:20 Context-Aware, Reference-Free Local Motion 

Metric for CBCT Deformable Motion 
Compensation 

H. Huang, J.H. Siewerdsen, W. Zbijewski, 
C.R. Weiss, M. Unberath, and A. Sisniega 

472 

10:20 – 10:40 Simulation of Random Deformable Motion in 
Soft-Tissue Cone-Beam CT with Learned Models 

Y. Hu, H. Huang, J. H. Siewerdsen, W. 
Zbijewski, M. Unberath, C. R. Weiss, and 
A. Sisniega 

476 

10:40 – 11:00 A five-dimensional cardiac CT model for 
generating virtual CT projections for user-defined 
bolus dynamics and ECG profiles 

Eri Haneda, Bernhard Claus, Jed Pack, 
Darin Okerlund, Albert Hsiao, Elliot 
McVeigh, and Bruno De Man 

480 

11:00 – 11:20 A Virtual Imaging Trial Framework to Study 
Cardiac CT Blooming Artifacts 

Ying Fan, Jed Pack, and Bruno De Man 484 

 
Conclusion 11:20 – 11:40 Web Stayman 

 
Lunch 11:40 – 13:20 

 
Optional 
Tours 

13:20 – 15:00 (JHU Laboratories and Hospital) 
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Monday, June 13 

Novel CT Technologies 

Reconstruction and Deep Learning 

Monday Poster Session 

CT Acquisition 
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Dark-Field Imaging on a Clinical CT System:
Realization of Talbot-Lau Interferometry in a Gantry

Manuel Viermetz, Nikolai Gustschin, Clemens Schmid, Jakob Haeusele,
Roland Proksa, Thomas Koehler, and Franz Pfeiffer

Abstract—Computed tomography (CT) is a foundation of

modern clinical diagnostics but it presently only retrieves in-

formation from X-rays attenuation. However, it is known that

micro structural texture or porosity – which is well below

the spatial resolution of CT – can be revealed by grating-

based dark-field imaging. Diagnostic value of this sub-resolution

tissue information has been demonstrated in pre-clinical studies

on small-animal disease models and recently also in a first

clinical radiography system [1]. These studies show that dark-

field imaging is particularly useful for early detection and staging

of lung diseases.

While dark-field CT is regularly realized in laboratory envi-

ronment, the transfer to human scale and bringing it to clinical

application poses several technical challenges. Switching from

a step-and-shoot acquisition to a mode where the gantry and

acquisition operate continuously as well as reducing scan times

to below seconds and ensuring stability against vibrations are

key concerns when it comes to the translation of the established

laboratory dark-field technology to full-body medical CT. In [2],

we recently demonstrated the first dark-field CT implementation,

which collectively solves these roadblocks and therefore is a mile-

stone in the development of clinical CT imaging. The prototype

we present allows to reconstruct the attenuation and dark-field

channels of a human thorax phantom from a one second long

acquisition and covers a 45 cm diameter field of view.

In this work, we present how the first dark-field CT prototype

works and focus particularly on the technical design, optimized

design of the gratings for CT application and the first character-

ization of the interferometer in the rotating gantry. We discuss

which steps where particularly important for the realization and

where we see potential for further improvements. These results

provide key insights for future dark-field CT implementations.

Index Terms—X-ray Imaging, Dark-field contrast, Computed

Tomography, Talbot-Lau interferometer

I. INTRODUCTION

X
-RAY Computed Tomography (CT) is a well-established
technique, which is – in its conventional form – lim-

ited to attenuation contrast. There it allows high resolution
imaging, fast acquisition times, and decent contrast for many
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purposes such as material research, inspection, and medical
diagnostics. Throughout the last decade Talbot-Lau interfer-
ometry, which started as a synchrotron-only technology, gained
attention as it unlocks additional contrast channels [3], [4].
A Talbot-Lau interferometer, as illustrated in Fig. 1, allows
simultaneous imaging of attenuation, refraction, and small-
angle scattering of the transmitted object [5], [6].

Particularly the access to sub-resolution tissue properties by
analyzing the small-angle scattering power – also referred to
as dark-field signal – of the material is a promising application
in biomedical imaging. Previous work at laboratory setups
demonstrated that the dark-field modality is useful for lung
diagnostics as it enables the detection of micro-structural
changes in lung parenchyma [7]–[10].

Recently the first clinical study on dark-field chest ra-
diography of COPD and COVID-19 patients validated these
pre-clinical results and clearly showed the potential of this
additional image contrast [1], [11]. This first in-vivo human

X-ray source

Detector

G0

G1

G2

Fig. 1. Talbot-Lau interferometer in a CT gantry. It consists of three
cylindrically bent gratings illustrated as line patterns, referred to as G0, G1,
and G2, which structure the X-ray beam as they absorb or phase-shift the
radiation. By the Talbot effect a self-image of G1 appears at the location of G2.
The object induces attenuation, refraction, and small-angle scattering, which
subsequently change this self-image characteristically. Using the Moiré effect
and the G2 grating which has a period matching to the G1 self-image these
distortions can be retrieved with a common X-ray detector. Since this approach
relies on coherent radiation, a G0 source-grating is required to convert the
incoherent source spot into a set of sufficiently coherent slit sources.

The 7th International Conference on Image Formation in X-Ray Computed Tomography

17



dark-field imaging system can now retrieve otherwise unde-
tectable changes in the porous lung tissue which are correlated
with diseases progressions. However, this chest radiography
provides no 3D information and anatomical structures overlap
in image domain. To overcome these restrictions our approach
is to install the interferometer into a clinical CT gantry.
However, this step involves a variety of problems since the
space on a clinical CT gantry is limited, an extremely large
field of view must be covered by the gratings (compared
to current state of the art dark-field implementations), and
vibrations of the system can quickly degrade the measured
signal. In this work we discuss our design of a Talbot-Lau
interferometer which has been integrated into a Brilliance iCT
(Royal Philips, The Netherlands) and produces the first dark-
field CT reconstructions of human sized phantoms [2].

II. TALBOT-LAU INTERFEROMETER LAYOUT

In our presented design the most important design rules have
been (1) to maintain the bore diameter of the conventional
CT, which is 70 cm (blue dashed line in Fig. 1), (2) to
not modify the conventional gantry and its primary imaging
components, i.e., source and detector, and (3) to have at least
45 cm coverage which is 90% of a conventional CT which has
an diameter of 50 cm (highlighted area and green dashed line
in Fig. 1, respectively).

The presented Talbot-Lau interferometer consists of three
gratings and must be optimized for the 80 kVp spectrum,
which is the lowest available energy on the iCT platform.
As this method only works for coherent radiation a source
grating G0 is required [12]. It splits the radiation from the
incoherent X-ray source into several slit sources which fulfill
the coherence requirement for the length of the interferometer
setup. Because of the weak interaction between hard X-rays
and grating the aspect ratio of the structures must be high –
which is difficult to fabricate – and gold as a good absorber
is used as the grating material. The grating G1 introduces
a fine intensity modulation on the incident radiation, which

22
0

57
0

47
0

ø700

Source

Asymmetric design Inverse design

G0 G0

G1

G1

G2 G2

ba

Fig. 2. Asymmetric and inverse interferometer geometry. a, in an asymmetric
design the gratings G1 and G2 are both behind the patient and must cover a
large area due to the large field of view. Furthermore, the periods of these
two gratings are rather fine, compared to the G0 grating. b, in the inverse
geometry, G0 and G1 are in front of the patient, their size is relatively small
due to the strong divergence of the setup, and the period of the largest grating
G2 is coarse, which makes fabrication easier. Another advantage of this design
is its dose efficiency because G1 is positioned in front of the patient.

is basically a fine line pattern with a periodicity of a few
micrometers. Attenuation of the radiation by the object causes
a decrease of intensity, whereas refraction and small-angle
scattering induce small distortions of the pattern. To resolve
these small changes an analyzer grating G2 is positioned in
front of the detector and makes use of the Moiré effect to
translate the changes to an intensity pattern which can be
measured by the detector.

The grating periods and distances define the sensitivity of
the system to small-angle scattering. Basically, smaller periods
and longer distances lead to a more sensitive setup. Note that
a too small sensitivity results in a poor signal to noise ratio
and a too high sensitivity can lead to artefacts due visibility
starvation. From previous work in [13], [14] a sensitivity
range that is meaningful for lung imaging can be derived.
To achieve a sufficient sensitivity the position and the period
of the grating structures must be selected carefully. Certainly
higher sensitivity is preferred, however, there are limitations
in the grating fabrication and the available space on the CT
gantry which limit the maximum sensitivity of our prototype.

In Fig. 2 two sketches of different geometries illustrate
possible implementations of the three gratings into a CT
gantry. Increasing inter-grating distances as well as decreasing
the grating periods improve sensitivity. Evidently, it is there-
fore a good design choice to maximize the distances within
the constraints given by the CT platform [15]. Consequently
G0 and G2 are positioned as close to the X-ray source and
the detector, respectively, and G1 as close to the bore as
possible. The inverse geometry is advantageous for our CT
implementation as it requires only one large coverage G2 with
relatively coarse period and the gratings G0 and G1 are small
enough to be manufactured as single parts.

III. INTEGRATION INTO THE CT GANTRY

In our implementation we position a combined mount which
holds G0 and G1 into the collimator box which is positioned
downstream the X-ray source before the patient. This assembly

Fig. 3. G0 and G1 bending frame for CT implementation. The two gratings
are rigidly mounted on a machined structure which ensures a precise inter-
grating distance and bends the gratings cylindrically. This focuses the trenches
between the grating lamellae towards the X-ray source spot to compensate for
the strongly divergent radiation and reduce shadowing artefacts.
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Fig. 4. Modular G2 implementation covering 80 cm width. The specialized
mount allows adjustment of each G2 tiles individually to minimize the gap
between the tiles and to ensure parallel alignment of the G2 lamellae to the
line pattern produced by the G1. Again, each grating tile is bent cylindrically
and also the combined assembly follows this curvature to focus into the source
spot, which reduces shadowing artefacts.

is shown in Fig. 3 where the two gratings are cylindrically
bent to focus towards the X-ray source spot of the CT. This
is an important design characteristic since grating G0 exceeds
an aspect ratio of 100 (relation between height and width of
the lamellae). In an un-bent state, a significant fraction of the
radiation would traverse the grating not with a perpendicular
incident angle because of the strong divergence. This would
lead to a degradation of the slit-sources by shadowing, which
should be generated by the G0, and consequently the perfor-
mance of the interferometer vanishes.

The large G2 grating must cover about 80 cm of arc length
which is realized by combining several smaller tiles to one
large grating. We developed a specialized mount which allows
us to adjust the tiles inside the gantry individually and which
additionally bends each tile to focus towards the source spot.
It is shown in Fig. 4 covering 90% of the CT detector columns
and 32 pixel rows which leads to a total coverage of 20 mm
in the iso-center and a reconstructible volume diameter of
450 mm.

IV. OPTIMIZATION OF THE GRATING PARAMETERS

Based on the state of the art fabrication technology for
X-ray absorption gratings, which are compatible with the
80 kVp spectrum used in our dark-field CT prototype and
a ballpark sensitivity estimation that shows that we will not
reach the upper sensitivity limit for human lung imaging where
signal saturation occurs, the period of G0 is fixed to 4.8 µm.
From this parameter and the introduced inverse interferometer
geometry we derive the optimal grating parameters using a
wave propagation simulation. It is similar to previous work
by [16] and includes the geometrical effects of the diverging
beam, the selected X-ray source spot, the clinical 80 kVp
spectrum, its filtration, and the imperfections in the extended
gratings, i.e. bridges in the layout.

Apart from the sensitivity (which is defined by distances and
periods), another key parameter of the interferometer is the

Fig. 5. Wave optical simulation results of the interferometer for different G1
parameters (using gold as a grating material). a, shows the performance for
a conventional Talbot-Lau interferometer with rectangular or binary grating
profile. Here we find no significant performance in the height range typical
for phase-shifting G1 (below 25 µm) merely a design with an absorption
G1 (height exceeding 200 µm) would give good performance. b, only for
a triangular G1 grating profile with a height of 18 µm a good performance
exceeding 26% visibility is found.

so-called fringe visibility, which directly translates into signal
to noise ratio of the dark-field image [17]. This visibility is
strongly influenced by the height, shape, and duty cycle of the
grating G1. In Fig. 5 simulation results of these free parameters
reveal significant performance differences, particularly for two
different G1 grating profiles. We find that the best system
performance can be achieved with a triangular shaped G1
grating profile [18]. The elegance of a triangular G1 profile
is that it requires only about 18 µm high structures and thus,
X-ray flux through this grating remains high whereas the
alternative – an absorption G1 – would reduce the flux at least
by 50%. Furthermore, an absorption G1 would require a high
aspect ratio which makes its fabrication difficult.

The dark-field CT prototype is equipped with a triangular
G1 on a flexible polyimide substrate. The flexibility of the
substrate enables us to bend the structure as discussed earlier
and ensures that the performance is not degraded, e.g. by
scattering of radiation in the substrate material. G0 and G2
use graphite substrates which are also flexible for bending to
the required radii.

V. PERFORMANCE OF THE TALBOT-LAU INTERFEROMETER

The design utilizes the standard iCT detector and can be
rotated with rotation times between 0.27 and 1.5 s which are
the standard settings for this clinical CT model. From the cen-
trifugal acceleration and the vibrations induced by the X-ray
tube as well as other sources of instabilities the interferometer
is periodically leading to a corresponding distortion of the
fringe pattern.. Fortunately, the frame rate of the detector is
high enough to resolve the distortions with high accuracy, thus,
with a sophisticated processing framework the attenuation and
dark-field signal can be extracted from the measurements.

The visibility of the presented interferometer, which is the
most important measure for the performance of a Talbot-Lau
interferometer, is around 22% for the central 50% of the
field of view. Fig. 6 shows the flat-field performance of the
interferometer where a characteristic reduction towards the left
and right is induced by remaining partial shadowing in G0 due
to the large source spot. For larger fan angles, the width of
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Fig. 6. Performance evaluation of the Talbot-Lau interferometer during
rotation. a, the intensity has a characteristic maximum in the center and
decreases to the left and right due to partial shadowing in the G0. b, the
system visibility is highest in the center exceeding 26%, but due to partial
shadowing there is a drop to the left and right. c, the interferometer phase
is optimized for about 10 pixels per fringe for ideal phase sampling during
processing and reconstruction.

the X-ray source spot appears to be bigger, because the actual
source area is an inclined plane on the anode target surface.
Only under the projection through the iso-centre the source
spot is smallest.

VI. CONCLUSION

We conclude that the presented design is most suitable for
clinical dark-field CT implementation within the limitations
of current grating fabrication and the geometrical boundary
conditions imposed by the desire to use a conventional clinical
CT as a platform for the prototype. We analyzed the impact
of the most important design parameters to identify potential
problems and could verify that a triangular grating profile for
G1 has the best performance, besides an absorption G1.

In our implementation shadowing is avoided by cylindrically
bending all gratings to focus into the source spot. Nevertheless,
partial shadowing in the G0 due to the extended source causes
a visibility decrease towards larger fan-angles.

With this proposed design, we demonstrate that implemen-
tation of a Talbot-Lau interferometer into a clinical CT is
feasible with state of the art gratings. This development now
brings dark-field CT an important step closer to the clinics as
it demonstrates that up-scaling to human sized field of views
works and sub-second scan times are now easily possible.
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Dark-Field Imaging on a Clinical CT System:
Performance and Potential based on first Results

Nikolai Gustschin, Manuel Viermetz, Clemens Schmid, Jakob Haeusele, Frank Bergner, Tobias Lasser,
Thomas Koehler, and Franz Pfeiffer

Abstract—X-ray computed tomography (CT) has been es-
tablished as a daily tool in clinical diagnostics and has been
continuously refined by more recent innovations in the last
years. These systems are, however, limited by fundamental
constraints since they are only capable of mapping X-ray
attenuation differences in the tissue. Phase-contrast and dark-field
imaging provide complementary contrast, which originates from
physically different interaction processes of X-rays with matter.
Particularly the dark-field signal is considered to have significant
diagnostic potential since it is capable to retrieve micro-structural
information below the actual resolution limit of the imaging
system. This was demonstrated in various laboratory setups and
recently also in the fist study with human patients in a clinical
radiography system based on a grating interferometer.

In a recent work, we presented the first implementation of such
an X-ray interferometer into a clinical CT gantry. Upscaling and
adapting this technology for a rotating CT gantry involves several
challenges and tradeoffs ranging from limitations in interferometer
design over fast, continuous signal acquisition requirements to
tolerances in applied patient dose. In this work we discuss the
performance of the first clinical dark-field CT prototype. For this
purpose, we present results of our phantom studies which were
designed to evaluate whether and how the dark-field contrast
generated by the system is capable to provide additional structural
sample information. The key aspects include the possibility of
quantitative imaging and a gradual approach to simulate results
that come as close as possible to a real application in a human
patient.

Index Terms—X-ray imaging, dark-field contrast, computed
tomography

I. INTRODUCTION

X -RAY computed tomography has evolved to one of the
most commonly used and indispensable diagnostic 3D

imaging modalities. Moreover, the technique is continuously
optimized by recent innovations like dual energy or photon-
counting technologies as well as advanced data acquisition,
reconstruction, and evaluation procedures. Those are, however,
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still based on a contrast which is measured by retrieving the
X-ray attenuation properties of different tissues and hence
fundamentally limited. Considering the wave nature of X-rays,
additional and complementary contrast can be achieved by
measuring the small-angle scattering (dark-field) properties
of an object [1]. Contrary to attenuation contrast, the dark-
field signal hence retrieves information on micro-structures
without the need to actually resolve them on the detector [2].
The potential of the dark-field channel in clinical diagnostics
has been discussed in various studies, which were mainly
focused on lung diseases like chronic obstructive pulmonary
disease (COPD) [3], [4], fibrosis [5] or lung cancer [6]. This is
because, particularly in lung parenchyma, the dark field signal
is significantly more sensitive to small changes in the alveolar
structure compared to the attenuation.

One of the most promising approaches for dark-field imaging
with respect to clinical applications is Talbot-Lau interferometry
[7]. While first clinical prototypes of this kind are limited to
2D radiographic imaging, all bench top or small-animal CT
systems feature a step and shoot data acquisition which leads to
total scan times of at least several minutes, which is unfeasible
for realistic clinical applications [8], [9]. Recently, we reported
on the first successful integration of a Talbot-Lau interferometer
into a rotating clinical CT gantry [10]. Restrictions in total
interferometer length and grating positioning on a compact
CT gantry along with limitations in state of the art grating
fabrication technology constrain the theoretically achievable
system sensitivity.

Here, we present first results from our prototype system
starting from a basic proof-of-concept towards more realistic
phantoms for an actual clinical application. This allows to
practically evaluate the system performance and discuss its
potential and limitations for clinical application. In this context,
we also consider a possibility of quantitative dark-field imaging
and discuss the patient dose resulting from the applied scanning
protocols.

II. DARK-FIELD SIGNAL CALIBRATION

A physical interpretation of the dark-field signal is a
scattering distribution, which is continuously broadened along
the beam path [11]. Similar to the exponential decay of the
attenuation signal, the measured dark-field signal therefore
depends on the penetrated sample thickness. Compared to 2D
radiographic imaging, computed tomography provides a more
suitable basis for quantitative imaging. However, the dark-field
signal strength further depends on several additional parameters
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Fig. 1. Reconstruction results from a multi-material cylinder phantom. a, Conventional attenuation and b, dark-field tomograms calibrated to the attenuation
Hounsfield (HUa) and dark-field Hounsfield scales (HUd). The dark-field channel maps the scattering power of different materials and hence provides
complementary sub-resolution information. The arrows in b indicate a locally stronger dark-field signal from the same neoprene material, where it is slightly
compressed by the tube housing. c, Summary of the measured HUa and HUd units from the reconstruction shown in a and b including standard deviation. The
coloured arrows indicate a rough classification of the signal within the overall measured signal range of the respective contrast modality. They demonstrate that
different HUa and HUd signal combinations contain uncorrelated information which can facilitate material differentiation.

like the feature size of the small-angle scattering structures and
also system specific characteristics like the X-ray spectrum
or the interferometer sensitivity [2]. Similar to the attenuation
Hounsfield scale, a quantitative consistency between different
system parameters can be achieved by a calibration using
predefined reference materials [8]. For this purpose we use
a neoprene foam and air as reference materials in order to
transform the measured linear diffusion coefficient "(x) to a
dark-field Hounsfield unit (HUd) according to:

HUd (x) = 1000 · "(x)� "air

"neoprene � "air
. (1)

In this HUd scale, the signal from the strongly scattering and
weakly attenuating neoprene is defined by a value of 1000
while the non-scattering air yields a value of zero. Darker
regions thereby indicate a lower density of scattering interfaces.
For a better differentiation to the attenuation Hounsfield scale
(HUa), the HUd scale reference values are chosen such that
the signal from lung tissue is expected to give positive values.

III. MULTI-MATERIAL PHANTOM

For a proof-of-principle that the dark-field CT prototype
is capable to differentiate a varying density of scattering
structures below its resolution limit, we use a multi-material
phantom. It is composed of different materials in plastic tubes
which are arranged around a larger polyoxymethylene (POM)
cylinder. The reconstructed attenuation and dark-field images
are shown in Fig. 1a and b and demonstrate that our system
is able to retrieve the complementary nature of the dark-field
signal. Dry wool for example, has a relatively weak attenuation
but strong dark-field signal. A decreasing density is hardly
noticeable in the attenuation while it is clearly visible in the
dark-field. On the other hand, the dark-field signal also fades
with an increasing water content, which gradually neutralizes
the amount of scattering interfaces and is more apparent in the
attenuation modality.

Similarly, pathological changes in lung parenchyma can
either be a loss of pulmonary structures (e.g. emphysema), or
a replacement with conjunctive tissue (e.g. pulmonary fibrosis).
The example demonstrates that the system can successfully

provide perfectly registered multi-modal images which enable
a better differentiation of material compositions relevant for
diagnostic purposes. Moreover, the results demonstrate that
also material inhomogeneities which are hardly noticeable in
the attenuation contrast can be more distinctly revealed in
the dark-field modality. This is for example apparent in the
cylinders stuffed with wool or also in the periphery of the top
neoprene cylinder, where the material is locally compressed
by a tube housing.

IV. ANTHROPOMORPHIC THORAX PHANTOM

To evaluate the dark-field CT prototype regarding clinical
application, we employed an anthropomorphic human chest
phantom. First, it allows us to assess the performance of
the system on a large field of view (FOV). Secondly, it also
simulates a more realistic attenuation of the incoming photon
flux by artificial bones and soft tissue, which is important
when it comes to dose and noise considerations. To simulate
lung tissue, we modified the commercially available phantom
(Lungman, Kyoto Kagaku, Tokyo, Japan) [12] with a neoprene
insert. It features a relatively weak attenuation as well as a
porous micro-structure in the size range of lung alveoli [13].
A POM cylinder in the centre simulates additional attenuation
by the heart and several plastic tube inserts allow to evaluate
additional embedded materials.

The respective attenuation and dark-field images are depicted
in Fig. 2a and b. The FOV of the prototype system (45 cm) is
capable to map the entire human thorax along with the patient
table. As expected, the conventional reconstruction yields a
good contrast for highly attenuating materials like bones, POM
and the artificial soft tissue. In contrast, the scattering properties
of the neoprene insert and apparently also of the synthetic bones
stand out in the dark-field domain. It is, however, evident
that the latter modality features a distinctly lower resolution
compared to the conventional attenuation image. This is caused
by low-frequency artefacts originating from the sliding window
phase retrieval approach [10] and is acceptable, since the
dark-field signal inherently already contains sub-resolution
information.
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Fig. 2. Reconstruction results of an anthropomorphic human chest phantom
where a neoprene foam is used to simulate the attenuating and scattering
characteristics of lung parenchyma. The field of view (FOV) comprises the
whole thorax cross-section along with the patient table. a, The conventional
reconstruction shows the expected good contrast for bones and a very low
signal from the lung area. b, In the dark-field reconstruction, homogeneous
materials like POM or soft tissue generate no signal, while the scattering
properties of the foam material and powdered sugar are clearly retrieved.

V. PORCINE LUNG SAMPLE

Although the used neoprene material features micro-
structures in size comparable to pulmonary alveoli, it cannot
fully model the anatomical structure of actual lung parenchyma.
The phantom material is highly uniform while lung tissue
additionally comprises a capillary system and bronchioles
of different sizes. We therefore extended the measurements
examining a porcine lung. The additional attenuation of human
tissue was again modeled by inserting the lung into the thorax
phantom along with a water and neoprene reference sample.
A dissected porcine lung was ordered from a butcher and the
measurements were conducted more than 24 h post-mortem.
The lung was inflated externally with 30mbar in order to
partially revert an incipient collapse of lung alveoli. The
resulting attenuation and dark-field images are shown in Fig. 3a
and b. From the conventional reconstruction it is evident that
the attenuation of lung tissue is similar to the neoprene foam,
but also reveals additional bronchi. The scattering properties
of the lung tissue are clearly captured in the dark-field domain,
however, the signal is significantly lower compared to the
neoprene reference material. Previous work with dark-field
radiography already showed a significant dependence of the
dark-field signal on the applied ventilation pressure [14]. It
hence can be justifiably assumed that a higher density of
scattering interfaces in the case of a decreased ventilation
pressure will favour dark-field signal intensity. Moreover, a
further increased signal can also be expected in living subjects
since a decomposition processes of lung parenchyma starts
immediately after death when the tissue is no longer perfused.

VI. NON-CLINICAL APPLICATIONS

Beyond clinical application, dark-field imaging finds general
use when examining microscopic defects and fibrous or porous
materials in the field of non-destructive testing or for quality
control purposes. The key features of the presented dark-field
CT prototype system enable new possibilities for applications

Fig. 3. Reconstruction results of a dissected porcine lung placed inside the
human chest phantom. a, Conventional reconstruction shows the additional
bronchial system while the alveolar structure has comparable attenuation
characteristics to the neoprene material. b, The scattering properties of the
porcine lung tissue are clearly retrieved in the dark-field, however, the signal
is significantly lower compared to the neoprene reference.

where the FOV or acquisition time has been a significant
limiting factor. Here, we demonstrate a potential for security
screening applications with large samples. For this purpose
a cloth bag was imaged after filling it with several items
along with a sample of fine baby powder. In the attenuation
image in Fig. 4a the powder appears to be a microscopically
homogeneous object. On the dark-field Housfield scale in
Fig. 4b it reaches values of up to 13 ⇥ 103 HUd which is
close to a total extinction of the maximum visibility of the
system (see [10]). Soft homogeneous materials could be thus
efficiently separated from similarly absorbing explosives or
drugs that incorporate micro-granular scatterers. Depending on
the respective scattering power and the thickness or volume
of the material, however, a higher maximum visibility might
be required. Moreover, metallic structures which are not
uncommon in such applications will be a major challenge
for a reasonable performance of a grating interferometer.

Fig. 4. Reconstruction results of a bag filled with different objects (water
bottle, wool, powdered sugar, packaging material, rolled towels and cardboard).
a, In the conventional reconstruction, micro-granular powder appears to be
homogeneous and cannot be distinguished from bulk material or fluids with
similar attenuation. b, In the dark-field image, the powder can be clearly
differentiated even from other strongly scattering materials like powdered
sugar.
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VII. DOSE CONSIDERATIONS

The presented phantom scans were acquired in axial data
acquisition mode using an 80 kVp spectrum and a tube current
of 550mA. The integrated grating interferometer consists out
of three optical X-ray gratings which absorb a significant
part of the generated X-ray flux. With an unmodified CT
system, our settings would result in a volume CT dose
index (CTDIvol) of about 13mGy. The measured CTDIvol of
7.39mGy with these settings according to the constancy test
protocol [15] with a standard body phantom (32 cm diameter)
and a calibrated dosimeter (NOMEX, PTW, Germany) indicates
that the combination of the first two gratings can be considered
to absorb around 50% of the generated X-ray photons in front of
the patient. This value lies well within the clinically applicable
range for chest CT of adults at state of the art CT systems
[16]. Since one of the absorbing gratings is positioned after
the patient directly in front of the detector, a substantial part
of the applied patient dose does not actually reach the detector.
This is, however, compensated by retrieving sub-resolution
information in the additional dark-field modality, which can
not be accessed by attenuation contrast only.

VIII. CONCLUSION

In this work we presented results of recent phantom mea-
surements with the first clinical dark-field CT prototype system.
Despite the restrictions posed by the compact interferometer
geometry and limitations in current grating fabrication technol-
ogy, the system performs reasonably well on a sufficient FOV
and within a clinically conceivable dose range. We propose a
HUd scale for quantitative dark-field imaging and discuss the
expected signal strength of lung tissue by means of different
phantom materials. Although the presented phantom studies
are mainly dedicated to lung imaging, further clinical as well
as non-clinical applications are now accessible due to a large
FOV in combination with a fast data acquisition procedure.
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Abstract— Efficient removal of solid focal tumors is a major 

challenge in modern medicine. Percutaneous thermal ablation is a 
first-line treatment for patients not fit for surgical resection or 
when the disease burden is low, mainly due to expedited patient 
recovery times, lower rates of post-operative morbidity, and 
reduced healthcare costs. While continuously gaining popularity, 
~100,000 yearly thermal hepatic ablation procedures are currently 
performed without actively monitoring temperature distributions, 
leading to high rates of incomplete ablations, local recurrences, 
and damage to surrounding structures. Recent advancements in 
computed tomography (CT), especially spectral CT, provide 
promising opportunities for lowering these rates. The additional 
information available with spectral CT can provide the necessary 
capabilities to achieve accurate, reliable, on-demand, and non-
invasive thermometry during ablation procedures. By taking 
advantage of our newly developed spectral physical density maps 
and their direct relation with temperature changes, we performed 
experiments on phantoms and ex vivo tissue to develop, evaluate, 
optimize, and refine a method for generating thermometry maps 
from spectral CT scans. Our results validate the accuracy of the 
spectral physical density model, allowing “whole-organ” mass 
quantifications that are accurate within one percent, as well as 
demonstrate an ability to extract temperature changes (linear 
correlation coefficient of 0.9781) non-invasively and in real-time. 
 
Index Terms—Dual-Energy CT, Spectral-CT, Quantitative 
imaging, Image-guided therapy, Interventional oncology, 
Tumor ablation, Thermometry. 

I. INTRODUCTION 
ITH more than 900,000 yearly new cases worldwide, 
liver cancer is the fifth most common cancer in men and 

the ninth most common cancer in women1. Percutaneous 
thermal ablation techniques provide minimally invasive and 
inexpensive focal treatment strategies for hepatic tumors2,3. 
They are considered a first-line treatment for patients with small 
hepatocellular carcinomas (HCC)4, the most common primary 
malignancy in the liver and the second leading cause of cancer-
related mortality in the world5, and are used to bridge patients 
to liver transplantation6. Safe and effective ablation treatments 
rely on complete coverage of the target lesion with lethal 
temperatures7 (≥60 °C), while sparing as much surrounding 
tissue as possible and keeping safety margins to adjacent critical 
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structures6. However, despite technological advancements over 
the past years, local recurrence rates are high (Figure 1), 
burdening patients and healthcare systems. 

Published clinical requirements include temperature 
accuracy of ≤2 °C, spatial resolution of ≤2 mm, short 
acquisition, and image generation times for volumetric 
coverage (≤1 minute), metal artifact suppression, and radiation 
dose levels that meet safety standards8. CT-thermometry 
provides the most promising solution for monitoring thermal 
ablation treatments. This is mainly because most ablation 
treatments are already performed under CT guidance, the 
compatibility of CT with all commercially available ablation 
systems9, and the ability to detect immediate complications, 
e.g., bleeding. However, despite decades of CT-based 
thermometry investigations10, there is a growing demand for 
solutions to monitor temperatures during ablation procedures. 

Temperature dependence of CT Hounsfield units (HU) has 
been observed since the late 1970s10. Since then, several 
research groups partially addressed some of the clinical 
requirements for image-based thermometry listed above with ex 
vivo and in vivo experiments. However, several crucial 
obstacles remain for the anticipated clinical translation of CT-
based thermometry.  

Temperature assessments from conventional CT rely on 
attributing shifts in HU to changes in tissue density, which in 
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Figure 1: Our analysis of post-ablation liver cancer recurrence rates from 
twenty-five past studies shows high recurrence rates of up to 17% for 
microwave ablation and even higher rates, up to 37%, for radiofrequency 
ablation. Disc sizes represent the number of patients included in each study. 
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turn are affected by temperature changes according to thermal 
volumetric expansion 𝜌(𝑇) 𝜌𝑜(𝑇0) = (1 + 𝛼Δ𝑇)−1⁄ , where 
𝜌(𝑇) is the tissue density at temperature 𝑇, 𝜌𝑜 is the tissue 
density at a baseline temperature 𝑇0, Δ𝑇 is the change from 
baseline temperature (in °C), and 𝛼 is the thermal expansion 
coefficient associated with the tissue10. All previous CT-based 
thermometry studies employed linear or quadratic 
approximations of the relation above (assuming small Δ𝑇) to 
correlate temperature and HU changes, which are assumed to 
be proportional to 𝜌. While conventional HU depend linearly 
on tissue density, they are also affected (non-linearly) by 
changes in tissue composition, which previous studies report as 
a limiting factor that corrupts temperature accuracy10. In 
addition, conventional HU are greatly affected by the scanner 
model, e.g., tube filtration, and acquisition parameters, e.g., 
kVp, as well as the patient habitus. This leads to large 
inconsistencies in thermal sensitivity values seen in previous 
studies (Figure 2). We propose to employ the exact 
mathematical relationship between tissue density and 
temperature changes10, Δ𝑇 ∝ 𝜌𝑜(𝑇0) 𝜌(𝑇)⁄ , by utilizing our 
recently developed spectral physical density quantifications11. 

To systematically evaluate our method, we require dedicated 
phantoms designed to support the development of CT-based 
solutions for thermometry applications. Tissue-mimicking 
phantoms that emulate various physical properties of biological 
tissue are central for the development and evaluation of novel 
clinical technologies and applications. Compared to ex vivo and 
in vivo experiments, phantoms simplify safety, logistical, and 
cost considerations. For CT-based thermometry applications, 
phantoms are required to exhibit similar thermal and x-ray to 
those of human tissue, i.e., thermal conductivity and diffusivity, 
linear attenuation coefficients within the entire photon energy 
range relevant to clinical CT imaging. Such phantoms will 
enable repeatable and controlled experiments that allow 
rigorous comparisons of temperature sensitivity and reliability 
on different CT platforms at different imaging protocols. 

In this work we report on recent developments aimed for 
making non-invasive real-time thermometry a reality. We have 
previously demonstrated accurate physical density 
quantifications from clinical virtual mono-energetic images 
(VMI) and effective atomic number (Zeff) spectral results in 

phantom experiments11. Here we further validate the accuracy 
of these new spectral maps by utilizing them for non-invasive 
whole-organ mass estimations on ex vivo tissue. While our 
excellent results attest to the high accuracy of our spectral 
physical density quantifications, they also present opportunities 
for novel stand-alone clinical applications. In addition, we 
demonstrate high correlations between temperature changes 
and physical density quantifications on ex vivo tissue and on 
thermo-spectral tissue-mimicking phantoms that we developed 
specifically for this purpose. 

II. METHODS 

A. Thermo-spectral tissue-mimicking phantom development 
Our phantoms were developed by iteratively modifying the 

synthesis method detailed by Negussie and Mikhail et al.12,13 in 
order to match the x-ray attenuation curve to that of human liver 
tissue calculated from well-accepted elemental composition 
and physical density values14. These phantoms are particularly 
useful for thermal therapy experiments since they present 
comparable thermal properties to those of human tissue. 
Briefly, 287.5 ml of deionized water in a 1000 ml flask were 
degassed by purging N2 for 15 minutes. After degassing, 202.5 
ml of 40% (w/v) acrylamide/bis-acrylamide solution was added 
to the degassed water to achieve 490 ml solution of 16.5% (w/v) 
acrylamide/bis-acrylamide. While stirring, 6 grams of calcium 
chloride dissolved in 10 ml of deionized water was added to the 
acrylamide solution. A single gram of ammonium persulfate in 
2 ml of deionized water and a single milliliter of N,N,N’,N’-
tetramethylethylenediamine were subsequently added to the 
solution. After stirring for additional 15 seconds, the final 
solution was immediately transferred to a 475 ml plastic jar. 

B. Physical density spectral map generation 
A complete description of the development of our spectral 

physical density model, its optimization, and its verification on 
a tissue characterization phantom (Gammex Model 467, Sun 
Nuclear) was provided before11. Briefly, 70 keV VMI and Zeff 
voxel values, which are clinically available on any spectral CT 
platform, are converted into physical density values through a 
parametrized Alvarez-Macovski model15. 

C. Non-invasive mass measurements 
Ex vivo bovine muscle physical density quantifications were 

evaluated to determine the effect of acquisition parameters on 
the resulting accuracy. The specimen was weighed with a 
precision balance (Fisher Scientific Education Precision 
Balance, Fisher Scientific) to provide ground-truth mass values. 
Next, the sample was placed on a rectangular block of polyfoam 
within the 20 cm bore a multi-energy CT phantom (MECT, Sun 
Nuclear) and scanned with a spectral detector dual-energy CT 
(IQon spectral scanner, Philips Healthcare) (Figure 3A). 

Scans were repeated three times at a tube voltage of 120 kVp 
for each set of collimations {16x0.625, 64x0.625 mm}, dose 
levels {15.2, 30.3, 45.5 mGy}, and acquisition mode {axial, 
helical} combinations. No helical scan was acquired with 
16x0.625 mm at 45.5 mGy due to tube output limitations. 
Images were reconstructed with a clinical standard body kernel, 

 
Figure 2: Dispersity of reported thermal sensitivity values. A large range of 
HU changes, from 0.5 HU to 4 HU, are associated with an increase of 2 °C. 
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a field of view of 350 mm, and at a slice thickness of 2.5 mm 
with 2.5 mm slice intervals. 70 keV VMIs and Zeff maps were 
reconstructed from every acquisition and corresponding 
physical density maps were generated using our spectral 
physical density model. Regions of interest (ROI) with a 
diameter of 13.6 mm were positioned in the center of the sample 
on four consecutive image slices to assess physical density 
quantification and their dependence on scan parameters. 
Finally, the sample was weighed after scanning to account for 
any losses in blood or minor changes in temperature.  

To calculate the total mass of the specimen, physical density 
values were summed from non-air voxels, i.e., 70 keV VMI 
values larger than -950 HU, and multiplied by the voxel volume 
(0.68 x 0.68 x 2.5 mm3). Calculated mass was compared to the 
average of the two weights, pre- and post-scanning, to evaluate 
its accuracy with different scanning parameters. 

D. Non-invasive temperature monitoring 
To assess the correlation between changes in temperature and 

changes in physical density, relative to the physical density 
values at baseline temperature, optical fiber temperature probes 
were inserted into the same sample used in the non-invasive 
mass measurement experiment, as well as three of our dedicated 
thermo-spectral tissue-mimicking phantoms, using 13-gauge 
medical trocars to continuously record local internal 
temperatures (Figure 3B). The sample or the phantom was 
placed in a plastic container, and pre-heated water was poured 
in to completely submerge it, consequently subjecting it to a 
wide range of temperatures. After the sample, or phantom, 
reached an equilibrium temperature, ice was added to cool the 
water. During heating and cooling, scans were performed 
approximately every minute with a spectral detector dual-
energy CT at a tube voltage 120 kVp, a 16x0.625 mm 
collimation, a revolution time of 0.75 seconds, and three 
different radiation dose levels {15.2, 30.3, 45.5 mGy}. For each 
scan, physical density maps were generated from 70 keV VMI 
and Zeff spectral results using the same reconstruction 
parameters detailed in the section above. 

The locations of optical fiber temperature probes were 
determined by thresholding 70 keV VMIs at 90 HU. 4.1 mm 
diameter ROIs were placed adjacent to the tip of the optical 
fiber to measure physical density. To elucidate thermal 
volumetric expansion, physical density values were normalized 
by dividing the last temporal physical density value with the 

physical density at a given timepoint. Similarly, the change in 
temperature was determined relative to the last temporal scan. 
Linear regressions were fit to the data, where the slopes were 
associated with the thermal volumetric expansion coefficient. 
R-values were determined to characterize the correlation 
between normalized physical density and temperature change. 

III. RESULTS 

A. Thermo-spectral tissue-mimicking phantom development 
Attenuation curves that were measured on multiple VMIs, at 

energies between 40 and 200 keV, with increments of 10 keV, 
are presented in Figure 4. The curves present the iterative 
developmental process. It enabled us to achieve a maximum 
error of 4 HU compared to human liver tissue across the entire 
energy range (Iteration #0 is the scale-down formulation from 
Negussie and Mikhail et al.). Since human livers differ in their 
elemental compositions, e.g., different fat contents, we deduce 
that these attenuation errors were sufficiently small for the 
intended purposes of these phantoms, i.e., the development and 
testing of spectral CT thermometry approaches. 

B. Non-invasive mass measurements 
Spectral physical density quantifications from scans at 

different doses, collimations, and axial/helical scans revealed 
that with dose matched scans and different collimations, 
physical density decreased approximately by 0.003 g/ml with 
increased collimation. In addition, we observed no effect of 
dose and axial/helical scans on physical density quantifications. 

Non-invasive “whole-organ” mass estimations of the ex vivo 
bovine muscle from scans of varying collimation and dose 
levels illustrated extremely high accuracies (Figure 5). Similar 
to the physical density quantification, dose levels did not impact 
the mass value. Between the five different combinations of 
collimation and dose, estimated mass values were within ±1.1 
grams of ground-truth mass measurements with a scale. For 
16x0.625 and 64x0.625 mm collimations, the errors in mass 
were -0.34% and -0.04%, respectively. The accuracy of 
estimated mass further validates our physical density results 
and demonstrates a clinical application of non-invasive mass 
measurements for determining the presence of pathology, 
which is currently utilized only in post-mortem autopsies. 

 
Figure 3: Experimental setup for two potential applications of physical 
density quantifications with spectral CT. An ex vivo muscle was (A) scanned 
within a multi-energy CT phantom on a spectral detector dual-energy CT to 
investigate non-invasive mass measurements, and (B) subjected to a range of 
temperatures to evaluate the corresponding effect on physical density. 

 
Figure 4: Iterative development process of a thermo-spectral tissue-
mimicking phantom, achieving errors below 4 HU across all x-ray energies. 

The 7th International Conference on Image Formation in X-Ray Computed Tomography

27



 

C. Non-invasive temperature monitoring 
In addition to non-invasive mass measurements, physical 

density quantifications also enabled non-invasive temperature 
monitoring as temperature changes are reflected in physical  
density changes (Figure 6). Specifically, a linear fit between 
normalized physical density and change in temperature 
demonstrated a slope of 0.00042 ± 0.00001 °C-1 and an intercept 
of 1.000 ± 0.0003 for temperatures between 22.0 and 45.5 °C. 
These fit parameters correspond to a 0.42% decrease in physical 
density with an increase of 10 °C.  High linear correlation (R = 
0.9781) between normalized physical density and change in 
temperature recapitulated the theoretical relation. 

IV. CONCLUSION 
We have demonstrated the quantitative accuracy of our 

physical density model on ex vivo tissue and on dedicated 
thermo-spectral phantoms that we have developed specifically 
for CT-based thermometry applications. In addition, our results 
demonstrate our ability to employ a well-established and direct 
relation, i.e., approximation-free, between changes in physical 
density estimations obtained from spectral CT and changes in 
temperature. This ability can serve as the backbone of future 
non-invasive real-time thermometry that is based on non- 

retrieved spectral information. With the increase in spectral CT 
utilization and the foreseen replacement of conventional CT 
scanners by this newer generation systems, we recognize a great 
opportunity to improve the monitoring and guidance of thermal 
therapy procedures, which will help reduce the currently high 
rates of local recurrence. 
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Figure 6: Normalized physical density changes with heating and cooling of 
ex vivo bovine muscle. The linear relationship between normalized physical 
density and changes in temperature reflected thermal volumetric expansion. 

 
Figure 5: Mass estimation from spectral physical density maps, in excellent 
agreement with measured mass. The dashed lines represent two independent 
weight measurements, and the dotted line represents their average. 
 

The 7th International Conference on Image Formation in X-Ray Computed Tomography

28



Cone-beam reconstruction for a circular trajectory
with transversely-truncated projections based on the

virtual fan-beam method
Mathurin Charles, Rolf Clackdoyle, and Simon Rit

Abstract—We describe a new procedure for three-dimensional
(3D) region-of-interest (ROI) reconstruction from transversely-
truncated cone-beam projections acquired with a circular source
trajectory. This method is an extension to 3D of the virtual fan-
beam (VFB) method. It is based on a VFB formula that performs
the backprojection in the acquisition geometry. Our simulation
results show that the ROI reconstruction of the 3D Shepp-Logan
phantom is very similar to the one obtained by the Feldkamp,
Davis, Kress (FDK) algorithm without truncation. However the
reconstruction of the Forbild head phantom shows artefacts
which are absent from the FDK truncation-free reconstruction.

I. INTRODUCTION

IN three-dimensional (3D) cone-beam computed tomogra-
phy (CBCT), a common source trajectory is a circular

scanning around the object. The plane containing the circular
source trajectory is usually called the central plane, midplane
or source plane. From Tuy’s data sufficiency condition [1], we
know that mathematically exact reconstruction of the object
density is possible only in the midplane. In case of non-
truncated cone-beam projections, the well-known and widely
used Feldkamp-Davis-Kress (FDK) algorithm [2] provides
exact reconstruction in the central plane and approximate
reconstruction elsewhere. This algorithm, which can be seen
as a heuristic extension of the fan-beam filtered backprojec-
tion (FBP) formula for two-dimensional (2D) reconstruction,
applies a ramp filter to each projection row. Consequently, the
FDK formula is not suitable for treating transversely-truncated
cone-beam projections.

We distinguish two kinds of situations with transverse
truncation. In the first one, the detector is placed off-center
so that, even if the detector does not cover the object laterally,
each ray-line in the midplane is measured at least once during
a 360° scan. It is thus possible, in the midplane, to obtain
the missing information of a truncated projection from other
projections. Elsewhere, the same procedure is applied to all the
other rows of the projections even though the missing rays and
measured rays have a different angle with the central plane.
Using this idea, several methods have been proposed such as a
pre-convolution weighting of the projections before applying
the FDK algorithm [3] and a 3D version of a Katsevich-type
FBP [4].
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doyle are with Université Grenoble Alpes, CNRS, TIMC UMR 5525, Greno-
ble, France.

S. Rit is with Université de Lyon, INSA-Lyon, Université Claude Bernard
Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, U1294,
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The second kind of situation with truncated cone-beam
projections is when the detector, which still does not cover the
whole object, is centered (when a ray-line passing through the
center of rotation of the source hits the center of the detector).
In that case, we define the field-of-view (FOV) as the region
imaged by every source position, and it corresponds to the
volume inside a cylinder which does not contain the whole
object. In this situation, it is not possible to obtain missing line-
integrals in the midplane from other source positions so the
previous methods cannot be applied. However, there are two
analytical methods which can perform region-of-interest (ROI)
reconstruction from truncated projections in the midplane:
the differentiated back-projection (DBP) [5], [6] method, also
called back-projection filtration (BPF) [7]; and the virtual fan-
beam (VFB) method [8]. The BPF has been extended to three
dimensions [9] but, to our knowledge, not the VFB method. In
this work, we propose to extend the VFB method to 3D ROI
reconstruction in the case of transversely-truncated cone-beam
projections acquired with a circular source trajectory.

In the usual 2D context, the principle of the VFB method is
to identify a virtual source trajectory for which we have non-
truncated projections and to rebin the truncated projections
into this geometry. Then, super-short-scan formulas [10] can
be used to perform the reconstruction. To choose the virtual
trajectory, we use the fact that acquired data can be rebinned
into non-truncated projections for any point inside the FOV
and outside the convex hull, as we have access to the integral
of any half-line extending from this point. In a previous
contribution, we proposed a VFB formula [11] for a circular
fan-beam acquisition geometry, for which the backprojection
was performed in the acquisition geometry. In this work, we
extend this approach to 3D.

II. THEORY

A. Notation

Let ~✓� = (cos�, sin�, 0), ~⌘� = (� sin�, cos�, 0) and ~ez =
(0, 0, 1) (in 2D , the last component of ~✓� and ~⌘� is discarded).
Let f denote the 3D object density to be reconstructed. The
cone-beam projections of f for a circular source trajectory of
radius RA acquired on a flat detector placed at the origin O

are defined by

ḡ
RA(�, u, v) =

Z +1

0
f

 
RA

~✓� + l
�RA

~✓� � u~⌘� + v~ezp
R2

A
+ u2 + v2

!
dl

(1)
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where � 2 ⇤ = [0, 2⇡) and S(⇤) = RA
~✓⇤ is the set of vertices

(cone-beam source locations) of the trajectory (see figure 1).

Fig. 1. The circular acquisition geometry of center O and radius RA. The
point S(�) is a vertex of the trajectory. A ray passing through the point P on
the detector placed at the origin O is identified by the parameters (�, u, v).

In 2D, the fan-beam projections of f for a circular source
trajectory of radius RA with angular parametrization are
defined by

g
RA(�, �) =

Z 1

0
f(RA

~✓� � t~✓�+�) dt (2)

where � 2 (�⇡/2,⇡/2) is the usual ray-angle measured coun-
terclockwise with respect to the central ray (which is defined
by the source and the center of rotation). The parameters u

and � (respectively for equispaced rays and equiangular rays)
are linked by u = RA tan � so, in the midplane, we have

g
RA(�, �) = ḡ

RA(�, RA tan �, 0), (3)

ḡ
RA(�, u, 0) = g

RA(�, arctan(u/RA)). (4)

B. Configuration studied

We consider the following configuration. The FOV is the
volume inside a cylinder of center O, extended axially without
limit since we consider no axial truncation. We assume that
the support of the object function is contained within a known
ellipsoid which extends outside the FOV (see figure 2).

Fig. 2. The ellipsoid object is partially covered by the cylindrical FOV.

C. The VFB formula used in the midplane

In the midplane, the 2D slice of the object has an elliptic
support and the FOV has a circular support. The chosen virtual
trajectory is the arc of circle at the border of the FOV and
outside the object (see figure 3). In that case, the area for
which the VFB method is mathematically exact is the convex
hull of the virtual trajectory.

We now recall our VFB formula from [11]. The rebinning
relations between two trajectories with different radius can

Fig. 3. Situation in the midplane: the circular FOV of center O and radius
RF covers only a part of the elliptic object. The virtual trajectory is the arc
of circle of center O and radius RV = RF in blue and the vertical black
dashed line is the boundary of its convex hull.

Fig. 4. The parameters (�i, �i) of a ray for source trajectories of radius Ri
with i 2 {1, 2} are linked through s = Ri sin �i and � = �i + �i.

be seen on figure 4. The data are first rebinned from the
acquisition geometry of radius RA to the virtual geometry
of radius RV using

g
RV (�, �) = g

RA(�+ � � �
RV
RA

, �
RV
RA

) (5)

where
�
RV
RA

= arcsin

✓
RV

RA

sin �

◆
. (6)

Then, differentiation and Hilbert filtering is performed on the
non-truncated projections in the virtual geometry with

g
RV
F

(�, �) =
1

2⇡

Z
⇡

�⇡

hH(sin(���
0))(@1�@2)g

RV (�, �0) d�0
.

(7)
where hH(s) =

R
R �i sign(�)e2i⇡�s d� denotes the Hilbert

filter and @i corresponds to the partial derivative with respect
to the i-th variable. As the virtual trajectory is not a full
scan, the redundancy in the filtered projections is handled
by applying a weight w

RV (that we do not detail) to g
RV
F

:
g̃
RV
F

(�, �) = w
RV (�, �) g

RV
F

(�, �). Next, the filtered projec-
tions in the acquisition geometry are obtained from the filtered
projections in the virtual geometry by

g
RA
F

(�, �) =
RA cos �q

R2
V
�R2

A
sin2 �

g̃
RV
F

(�+���
RA
RV

, �
RA
RV

) (8)

where
�
RA
RV

= arcsin

✓
RA

RV

sin �

◆
. (9)

Finally, the backprojection is performed in the acquisition
geometry. For every ~x in the convex hull of the virtual
trajectory, we have:

f(~x) = �
Z 2⇡

0

1

||RA
~✓� � ~x||

g
RA
F

(�, �~x,�) d� (10)
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where

�~x,� = arctan

 
�~x · ~⌘�

RA � ~x · ~✓�

!
. (11)

We can see that this formula is designed for equiangular
data g

RA(�, �). As we consider equispaced data ḡ
RA(�, u, v)

in this paper, an additional rebinning using equation (3) is
required before using the VFB formula above.

D. Modifying the VFB method for cone-beam projections

We now detail how the VFB formula above is modified to be
used on cone-beam projections. First, we perform a weighting
of the cone-beam projections:

ḡ
RA
W

(�, u, v) = ḡ
RA(�, u, v)

p
R2

A
+ u2

p
R2

A
+ u2 + v2

(12)

For an object that is constant in z, (12) ensures that for all
v: ḡ

RA
W

(�, u, v) = ḡ
RA
W

(�, u, 0), so the exact reconstruction
area will be extended axially if each row of the weighted
projections is treated as the row in the midplane.

Then, for all the weighted data rows ḡRA
W

(�, u, v) of param-
eter v fixed, we perform the following steps as if the transaxial
plane of height z = v was the source plane, using the same
virtual source trajectory as in the midplane:

1) Rebinning of the data rows to the virtual geometry:

ḡ
RV (�, �, v) = ḡ

RA
W

(�+���
RV
RA

, RA tan �RV
RA

, v) (13)

2) Differentiation and Hilbert-filtering of the virtual data:

ḡ
RV
F

(�, �, v) =
1

2⇡

Z
⇡

�⇡

hH(sin(� � �
0))

(@1 � @2)ḡ
RV (�, �0

, v) d�0 (14)

3) Rebinning to acquisition geometry with weighting w
RV :

ḡ
RA
F

(�, u, v) =
RA cos �q

R2
V
�R2

A
sin2 �

(w̄RV ḡ
RV
F

)(�+ � � �
RA
RV

, �
RA
RV

, v) (15)

where we take w̄
RV (�, �, v) = w

RV (�, �) for all v, and
� = arctan(u/RA).

Finally, the backprojection is performed in the acquisition
geometry to give f̂ , the 3D VFB reconstruction :

f̂(~x, z) = �
Z 2⇡

0

1

||RA
~✓� � ~x||

ḡ
RA
F

(�, u~x,�, vz,�) d� (16)

for ~x in the convex hull of the virtual source trajectory,

u~x,� =
�RA~x · ~⌘�
RA � ~x · ~✓�

and vz,� =
RAz

RA � ~x · ~✓�
. (17)

III. EXPERIMENTS AND RESULTS

A. Simulations

The simulations were performed on a 3D version of the
Shepp-Logan phantom and on the 3D head Forbild phantom1.
The reconstructed image was computed on a cubic grid of

1See http://www.imp.uni-erlangen.de/phantoms/head/head.html.

size [401, 401, 401] voxels. The data were acquired on a
circular trajectory of center O = (0, 0, 0) and radius RA, using
the software RTK [12]. The projections were transversely
truncated such that the FOV was a cylinder of center O and
radius RF . The virtual source trajectory radius was RV = RF .
The acquisition trajectory along [0, 2⇡) was sampled with N�

vertices and each projection was composed of Nu ⇥Nv ray-
lines. The virtual trajectory was composed of N�virt virtual
segments and each virtual projection was composed of N�virt

ray-lines. For the Shepp-Logan phantom, we took RA = 4,
RF = 0.8, N� = 1256, Nu = 409, Nv = 517, N�virt = 879
and N�virt = 1257. For the head Forbild phantom, we took
RA = 45, RF = 9, N� = 1256, Nu = 409, Nv = 603,
N�virt = 693 and N�virt = 1257.

B. Results

Figures 5 and 6 show, for three slices of the 3D Shepp-
Logan phantom and the head Forbild phantom respectively, the
reference image, the reconstructed image using the FDK algo-
rithm with non-truncated data, the reconstructed image using
our modified 3D VFB method for transversely-truncated data,
and the profiles of the lines drawn in white on the reference
and the 3D VFB reconstructions. The mathematically exact
reconstruction area (convex hull of the virtual source trajec-
tory), which we also call the recoverable area, is delimited by
a black dashed line on the 3D VFB reconstructions.

Looking at figure 5, we can see that the 3D VFB recon-
struction is excellent in the recoverable area in the midplane
(left column). In the planes at x = 0 (middle column) and at
y = 0.4 (right column), the reconstruction is still very good
when we are close to the midplane. Further away from the
midplane, we observe a slow decrease of the intensity when |z|
increases, similar to that on the FDK reconstruction, although
not exactly the same. There are also slight horizontal streak
artefacts, tangent to the white ellipse, which are less marked
on the FDK reconstruction.

The 3D VFB reconstruction of the Forbild head phantom
(figure 6) is good in the recoverable area in the midplane (left
column), but far less accurate that what we obtained for the
Shepp-Logan phantom in figure 5. The difference is that the
Forbild phantom consists of many more and finer anatomical
structures than the Shepp-Logan phantom, making it a far more
challenging phantom to reconstruct. Consequently, we observe
that the FDK and 3D VFB reconstructions suffer from many
artefacts for planes at x = 0 (middle column) and at y = �1
(right column). The artefacts are stronger for the 3D VFB
reconstruction, as we observe for instance with the white area
at the right of the black ellipse at plane x = 0 (middle column),
and also with the large black horizontal streak covering the top
of the two circular structures at plane y = �1 (right column).

IV. CONCLUSION

In this work, we proposed a 3D version of the VFB method,
based on a VFB formula performing the backprojection in the
circular acquisition geometry and detailed in a previous con-
tribution [11]. This method was used for ROI reconstruction
from transversely-truncated cone-beam projections acquired
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Fig. 5. Left column: (x, y) plane at z = 0. Middle column: (y, z) plane
at x = 0. Right column: (x, z) plane at y = 0.4. Top row: 2D slices of
the reference Shepp-Logan phantom. Middle row 1: reconstruction using the
FDK algorithm without truncation. Middle row 2: reconstruction using our 3D
VFB algorithm with truncation. The black dashed line defines the boundary
of the possible reconstruction area. The plotting scale is [1.0 (black), 1.04
(white)]. Bottom row: profile corresponding to the white line, plotted with
scale [1.005, 1.045]. The reference profile is plotted in green dashed line and
the real one in red.

with a circular source trajectory. The numerical results were
satisfactory for the 3D Shepp-Logan phantom but mixed for
the more challenging Forbild head phantom, for which strong
artefacts appeared that were absent from the FDK truncation-
free reconstruction. Both the FDK algorithm and the 3D VFB
had to address the incompleteness of a circular cone-beam
trajectory, but the 3D VFB was also handling truncated data,
so it was not surprising that different artefacts appeared in the
off-plane reconstructed images.
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Iterative image reconstruction for CT with
unmatched projection matrices using

the generalized minimal residual algorithm
Emil Y. Sidky, Per Christian Hansen, Jakob S. Jørgensen, and Xiaochuan Pan

Abstract—The generalized minimal residual (GMRES) algo-
rithm is applied to image reconstruction using linear com-
puted tomography (CT) models. The GMRES algorithm it-
eratively solves square, non-symmetric linear systems and it
has practical application to CT when using unmatched back-
projector/projector pairs and when applying preconditioning.
The GMRES algorithm is demonstrated on a 3D CT image
reconstruction problem where it is seen that use of unmatched
projection matrices does not prevent convergence, while using
an unmatched pair in the related conjugate gradients for least-
squares (CGLS) algorithm leads to divergent iteration. Imple-
mentation of preconditioning using GMRES is also demonstrated.

Index Terms—Linear iterative image reconstruction, GMRES,
unmatched projector/back-projector, preconditioning

I. INTRODUCTION

L INEAR models for computed tomography (CT) play an
important role for iterative image reconstruction. The

most common approach to CT processing involves taking the
negative logarithm of the projection data, so that the line
integration model leads to a linear relation between the image
and processed data. Accordingly, the CT image reconstruction
problem can be written as a large linear system

Ax = b, (1)

where b, a vector of length m, represents the processed pro-
jection data; x, a vector of length n, contains the image pixel
values; and the m×n system matrix A contain the weights that
model line-integration. Linear tomographic models can include
quadratic regularization, cf. [1] and [2, Chapter 12], or more
sophisticated modeling such as noise correlation and blur due
to accurate detector physics [3]. Even when non-linear models
for CT [4] are considered for iterative image reconstruction,
there is usually a large linear system that is involved in the
algorithm. Novel techniques for solving large linear systems
may thus be of practical use for iterative image reconstruction
in CT.

The most common iterative algorithm for solving lin-
ear CT models, excluding row-action, sequential, or SIRT-
type data processing methods, is the conjugate gradients
(CG) algorithm [2, Chapter 11]. For least-squares problems
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with non-symmetric system matrices, in particular, there is
the conjugate-gradients least-squares (CGLS) algorithm that
solves the optimization problem

min
x

1

2
‖Ax− b‖22. (2)

The minimizer of this optimization problem can also be found
from solving the normal equations directly

A!Ax = A!b, (3)

which are derived from (2) by taking the gradient of the
objective function and setting it to zero. In applying CGLS,
the implementation for back-projection B must be the matrix
transpose A!. If B $= A! then the resulting method is not
well defined, there is no convergence theory, and if it does
converge it does not solve Eqs. (2) and (3). Nevertheless
there are practical motivations for considering back-projection
implementations B different than A!. These motivations are
outlined in Ref. [5] in connection with SIRT-type iterative
solvers, where the authors explain that B can be a precondi-
tioner, B may be an efficient but approximate implementation
of A!, or A may involve complex physics modeling that may
make computer implementation of A! prohibitively expensive.
As shown in [6] we can guarantee convergence of SIRT-
type methods with B $= A! (but not CGLS) by shifting the
complex eigenvalue spectrum of BA so that eigenvalues with
negative real part are eliminated; but it forces a modification
of the problem that is being solved.

Use of the GMRES algorithm allows for use of back-
projectors B that are not equal to A! without modification of
the desired reconstruction model. Furthermore, the algorithm
does not involve any parameters other than the iteration
number. In Sec. II we present the ABBA framework [7]
which involves two forms of GMRES called AB-GMRES
and BA-GMRES. In Sec. III we demonstrate use of BA-
GMRES for unmatched projector/back-projector pairs and for
preconditioning. We conclude this abstract in Sec. IV.

II. THE ABBA FRAMEWORK

The GMRES algorithm solves a linear system

Sx = v,

where the coefficient matrix S is a square matrix that is not
necessarily symmetric. The relevance for CT image recon-
struction is that a square non-symmetric matrix arises when
multiplying unmatched back-projection B and projection A
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Fig. 1. Mid-slice images of QA phantom. (Left) FBP reconstructed image
from 720 views. (Right) FBP reconstructed images from 180 views, a 4-fold
sub-sampling of the original CBCT dataset. The grayscale window is [0.,0.25]
cm−1.

matrices; i.e., both AB and BA are square non-symmetric
matrices. The original linear system of interest, Eq. (1), cannot
be directly solved with GMRES because A is not necessarily
square for CT, but this equation can be modified to

ABy = b, x = By, (4)

where the unknown vector y has the same length as the
projection data b and the resulting m×m matrix AB is square.
Also, the normal equations in Eq. (3) can be modified by
replacing A! with B

BAx = Bb, (5)

and again the resulting n × n matrix BA is square. See [8]
for details. Modeling CT with Eq. (4) is similar to the use
of natural pixels [9]–[11] as the image is expressed as the
back-projection of a sinogram.

We refer to the GMRES algorithms for solving Eqs. (4)
and (5) as AB-GMRES and BA-GMRES, respectively. The
pseudo-code for both algorithms is given in Ref. [7], and
we briefly describe the algorithms here. Similar to CGLS,
GMRES is a Krylov subspace method, where the basis vectors
of the subspace are generated by choosing an initial vector and
repeatedly applying the coefficient matrix (AB or BA) to ob-
tain new linearly independent basis vectors. For AB-GMRES
or BA-GMRES with a zero initial vector, the first basis vector
is b or Bb, respectively, and subsequent basis vectors are
generated by applying the matrix AB or BA, respectively. The
GMRES algorithm involves orthonormalization of the Krylov
subspace vectors to obtain a orthonormal basis set that spans
the subspace. At each GMRES iteration the dimension of the
subspace is increased by one and the minimum residual that
can be expressed by the Krylov basis set is found.

The computational burden of GMRES lies with the fact
that the Krylov basis set must be stored and the number of
basis vectors is the same as the number iterations. For AB-
GMRES and BA-GMRES the size of one basis vector is the
same as the size of a sinogram and image, respectively. In
our implementation, the basis set is stored on the computer
disk. Restart methods [12] can reduce the basis vector storage
burden, but for this work we demonstrate the basic GMRES
implementation.

Fig. 2. Data RMSE in the form of (Top) ‖Ax − b‖2 and (Bottom)
‖BAx − Bb‖2. In the top graph unmatched CGLS is also shown to
demonstrate divergence of the data RMSE with unmatched projector/back-
projector pairs. The other two curves correspond to use of voxel-driven back-
projection B = Bun, and FBP B = BFBP . The projector A is a ray-driven
implementation.

The AB-GMRES and BA-GMRES algorithms are guaran-
teed to minimize different data discrepancy measures. In the
case of AB-GMRES, the algorithm minimizes

‖ABy − b‖2,

while BA-GMRES minimizes

‖BAx− Bb‖2.

Note that BA-GMRES is not necessarily minimizing

‖Ax− b‖2.

In this work we focus on BA-GMRES and we demonstrate its
use on cone-beam CT image reconstruction.

III. BA-GMRES APPLIED TO CONE-BEAM CT IMAGE

RECONSTRUCTION

We apply BA-GMRES to a cone-beam CT (CBCT) data
set acquired on an Epica Pegaso veterinary CT scanner. The
particular scan configuration for the data set is 180 projections
taken uniformly over one circular rotation. The detector size
is 1088×896 detector pixels, where each pixel is (0.278mm)2

in size. The 180-view dataset is sub-sampled from a 720-view
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scan of a quality assurance (QA) phantom. Image volumes
are reconstructed onto a 1024 × 1024 × 300 voxel grid, and
a reference volume is generated by use of filtered back-
projection (FBP) applied to the full 720-view dataset and
shown in Fig. 1. Also shown in the figure is FBP applied
to the 180-view sub-sampled dataset.

To demonstrate application of BA-GMRES to CBCT im-
age reconstruction, we use a ray-driven cone-beam projector
where the matrix elements for A are computed by the line-
intersection method. We consider two implementations of B:
(1) Bun voxel-driven back-projection using linear interpolation
to determine the appropriate projection value on the detector,
and (2) BFBP = BunF filtered back-projection, where F
represents the ramp filter. See [2, Chapter 9] for details about
these discretization models. The first BA-GMRES implemen-
tation tests unmatched back-projector/projector pairs where
Bun ≈ A!, and the second implementation includes the
additional ramp-filtering step for preconditioning. Use of Bun

and A is also shown for CGLS, which requires that B = A!.
The data root-mean-square-error (RMSE) curves for both

forms of BA-GMRES and CGLS using Bun and A are shown
in the top panel of Fig. 2. The CGLS result initially shows
convergence of the data RMSE, but after 20 iterations the data
RMSE begins to diverge with increasing iteration number, as
expected, since this algorithm is not designed to work for un-
matched matrix transpose implementations. The corresponding
BA-GMRES result does show a decreasing data RMSE with
iteration number. For the preconditioned form of BA-GMRES,
the decrease in data RMSE is even more rapid. The decreasing
trends in ‖Ax− b‖2 for BA-GMRES occur even though this
algorithm is not guaranteed to reduce this data norm. Also
shown in Fig. 2 is the data RMSE curves for ‖BAx−Bb‖2,
which is guaranteed to decrease with iteration number and
they do indeed show decreasing trends for BA-GMRES. These
issues are elaborated in [7].

The mid-slice images for BA-GMRES using both B imple-
mentations are shown in Fig. 3 at different iteration numbers.
Preconditioning has a clear effect on the convergence as all the
phantom structures are clearly visible in the early iterations
and the gray-level is stabilized already at the fifth iteration.
The BA-GMRES result without preconditioning is also fairly
efficient as the main features of the QA phantom are visible
at 20 iterations.

One measure of image quality is to compare the recon-
structed volumes to a ground truth image. Employing the
720-view FBP reconstructed volume as a surrogate for the
ground truth, the image RMSE is plotted in Fig. 4 for both
versions of BA-GMRES. The BA-GMRES implementation
with B = Bun achieves a minimum image RMSE of 0.0201 at
iteration 29, while the preconditioned version with B = Bun

achieves a minimum image RMSE of 0.0210 at iteration 4. For
comparison the 180-view FBP result has an image RMSE of
0.0347. To appreciate the various image qualities, ROI images
of the mid-slice are shown at the minimum image RMSE
iteration numbers in Fig. 5.

That the image RMSE has a minimum at finite iteration
number is a well-known phenomenon in iterative image recon-
struction and it is known as semi-convergence [2, Chapter 11].

Fig. 3. Mid-slice BA-GMRES images for voxel-driven back-projection B =

Bun (Left column) and FBP B = BFBP (Right column). The shown iteration
numbers are 2, 5, 10, and 20 going from the top row to bottom row. The
grayscale window is [0.,0.25] cm−1.

Early stopping in such algorithms is a form of regularization
because the components associated with large singular values
of A converge fast, while the unwanted noisy components as-
sociated with smaller singular values – that cause strong image
artifacts – appear after more iterations. Semi-convergence is
observed in the image RMSE curves of Fig. 4 and visually
in the preconditioned BA-GMRES series of Fig. 3 where
the image at 20 iterations clearly shows strong artifacts from
iterating too far. The semi-convergence issue also presents a
practical dilemma for preconditioning. With the shown pre-
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Fig. 4. Using the 720-view reconstructed volume (see mid-slice image on the
left of Fig. 1 as a reference), the BA-GMRES reconstructed image RMSE is
plotted as a function of iteration number for B = Bun and B = BFBP .

Fig. 5. Mid-slice ROI images of QA phantom. (Top, Left) FBP reconstructed
image from 720 views. (Top, Right) FBP reconstructed images from 180
views. (Bottom, Left) BA-GMRES image for B = Bun at iteration 29.
(Bottom, Right) BA-GMRES image for B = BFBP at iteration 4. The
grayscale window is [0.,0.25] cm−1.

conditioned BA-GMRES results, the minimum image RMSE
result is obtained already at the fourth iteration; thus the
iteration number provides only coarse control over its image
quality. The un-preconditioned BA-GMRES implementation
achieves its image RMSE minimizer at the 29th iteration,
which is computationally less efficient, but on the other hand
the iteration number provides a finer control over the image
quality. In any case, the BA-GMRES framework provides a
flexible means for implementing back-projectors or precondi-
tioning schemes, and optimizing the B implementation and
iteration number will depend on the imaging task of interest.

IV. CONCLUSION

This work presents an iterative image reconstruction frame-
work for linear CT problems that allows for the use of
unmatched back-projector/projector pairs in a straight-forward
manner. This possibility is convenient for implementation of
efficient back-projectors, linear modeling of complex physics,
and preconditioning. Also, because it is clear what equation
is being solved when B != A!, BA-GMRES can be used
for solving linear sub-problems that may arise in non-linear
iterative image reconstruction. The BA-GMRES algorithm
does present a challenge for computer memory because the
Krylov basis set needs to be stored during the iteration, but
the present demonstration on CBCT image reconstruction
does show that BA-GMRES can be applied to large-scale CT
systems of clinical interest.
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Deep Learning-Based Detector Row Upsampling
for Clinical Spiral CT

Jan Magonov, Julien Erath, Joscha Maier, Eric Fournié, Karl Stierstorfer, and Marc Kachelrieß

Abstract—Due to longitudinal undersampling multislice spiral
computed tomography (MSCT) scans may suffer from windmill
artifacts in reconstructed images. To fulfill the sampling condition
and achieve double sampling in z-direction, some CT scanners
use the z-flying focal spot (zFFS) technique, a hardware-based
solution that effectively doubles the number of detector rows. To
obtain a software-based solution we developed a convolutional
neural network that is trained in a supervised manner with
clinical projection raw data that were acquired with zFFS en-
abled. We presented this approach as the row interpolation with
deep learning (RIDL) network. In this work we simplified the
network architecture, extended the clinical dataset and generated
an experimental synthetic dataset consisting of two-dimensional
projection data. We were able to observe a reduction in windmill
artifacts for both datasets used for training. Especially the
synthetic dataset is very promising as we could observe an
increased reduction of artifacts with this dataset.

I. INTRODUCTION

Multislice spiral computed tomography (MSCT), also
known as multidetector CT, has become an integral part of
modern medical imaging after the theoretical introduction of
spiral CT in 1989 [1]. The most common application of these
systems is spiral scanning, in which the patient is continuously
moved through the gantry, resulting in shorter scan times
and higher temporal resolution [2]. Nevertheless, artifacts can
occur with this modality that degrade quality of reconstructed
images. The windmill artifact is an image distortion in the
axial plane whose appearance is characterized by bright streak-
like patterns emerging from high contrast structures along the
longitudinal axis [3]. When scrolling through the reconstructed
slices these streaks appear to rotate. The cause of this artifact
can be attributed to inadequate data sampling in the z-plane
resulting in not satisfying the Nyquist condition and thus
leading to aliasing [3], [4].
A hardware-based method to fulfill the sampling condition and
reduce windmill artifacts is provided by the z-flying focal spot
(zFFS) [2], [4]. This technique doubles the effective number of
detector rows acquired during the scan by periodically deflect-
ing the X-ray focal spot in longitudinal direction. The resulting
higher sampling rate in z-direction reduces the occurrence of
windmill artifacts. Figure 1 shows a scan acquired without
zFFS compared to a corresponding scan with zFFS enabled.
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Fig. 1: Reduction of windmill artifacts by using zFFS. The
left image was taken without zFFS (32⇥ 0.6 mm collimation,
pitch 1.4) while for the right reconstructed image (2 · 32⇥ 0.6
mm collimation, pitch 1.4) zFFS was enabled for acquisition
(C = 0 HU, W = 200 HU).

However, this method also has some drawbacks, as it is
technically complex and thus prevents the use of zFFS in
CT systems that do not meet these requirements. Previous
works, such as in [5], focus on the reduction of windmill
artifacts in the image domain. In contrast we try to solve the
problem in projection domain. In [6] we presented the row
interpolation with deep learning (RIDL) network, which was
similar to the zFFS designed to double the effective number of
acquired raw detector rows in projection domain. The network
was based on the SRResNet presented in [7] to compute
super-resolution images, i.e. very high-resolution images. In
this paper we simplified the network architecture in order
to reduce complexity of training process while maintaining
existing results. Furthermore, the clinical dataset used for
network training was extended and an experimental synthetic
dataset was generated. Two separate networks were trained
with the individual datasets and the network predictions were
compared in image domain by reconstructing two clinical
spiral CT scans.

II. METHODS AND MATERIAL

A. Clinical Data Preparation

For the clinical dataset, we selected raw projection data
from a total of 40 clinical CT scans from different patients.
The scans covered different body regions such as head, thorax
and abdomen and were acquired with Somatom Flash and So-
matom Force dual source CT scanners (Siemens Healthineers,
Forchheim, Germany) with zFFS enabled. The dataset was
split into two disjoint subsets so that 32 of the scans were used
as training dataset and 8 scans served as validation dataset. It
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was ensured that the different body regions and CT systems
used in the images were equally distributed in both datasets.
Before training, some preprocessing steps were performed, i.e.
instead of using the complete projection data of the scans as a
whole, randomized image patches were generated to simplify
the training process.

B. Synthetic Data Preparation
In addition to the clinical dataset, the acquisition of syn-

thetic data for training the RIDL network was investigated.
An advantage of using synthetic data would be that any
number of data could be generated without requiring a CT
scanner with zFFS. For the simulation we used the software
package CT SIM which is based on the deterministic ray
propagation simulation software Deterministic Radiological
Simulation (DRASIM). These tools allow to simulate the
radiation properties in a defined X-ray imaging setup through
geometrically defined phantoms [8]. In our first experimental
setup, we generated two-dimensional projection data contain-
ing projections of overlapping water spheres with varying
densities (0.5 - 3.0 g/cm3) and diameters (1 - 20 cm). Each of
these water spheres was overlaid with a smaller water sphere
of density 1.0 g/cm3, resulting in narrow circular edges with a
width of 0.3 to 2 mm. These structures are particularly difficult
to interpolate. Figure 2 shows an example representation of
a projection from the synthetic dataset. A total of 200,000
projections with 80 detector rows and 800 channels containing
randomly arranged water spheres were simulated. Comparable
to real clinical projection data acquired with zFFS, the detector
rows were simulated overlapped. No noise was added to the
data. The dataset was split into a training dataset with 160,000
projections and a validation dataset with 40,000 projections. In
addition, the range of values of the synthetic projection data
was linearly scaled to the value range of the clinical data.
Similar to the clinical dataset, random image patches were
selected from the projection data for network training, as we
will describe in more detail below.

C. Row Interpolation with RIDL-CNN
In the previous approach of our work, a neural network

was trained that received raw projection data and generated a
prediction of the input with interpolated rows to effectively
double the number of rows. The clinical projection data
used to train the network were obtained after the rebinning,
which is the rearrangement of the measured fan-beam data to
parallel-beam geometry. These projections were then divided
into alternative rows so that projections containing all rows
(acquired with zFFS) were used as the desired output y, and
every other row from the corresponding projections was used
for the network input x in training. In order to predict an
upsampled version of the input data using the network, a
so-called subpixel convolutional layer [9] was used, which
essentially performs an upsampling of the generated feature
maps within the network by a specific type of image reshaping.
However, this procedure is time-consuming in network train-
ing, as well as in the subsequent use of the trained network
for the prediction of rows.

Fig. 2: Example projection from the synthetic dataset with
different sized water spheres consisting of 80 overlapped
detector rows and 800 channels.

In further experiments, we could observe that a much simpler
convolutional neural network without subpixel convolution is
able to produce results comparable to the RIDL-SRResNet.
In the following, we will refer to this network architecture
as RIDL-CNN. Similar to the previous architecture, random
patches with the size of 64⇥32⇥1 pixels were generated from
the underlying projection data to train the network. Also in this
case, every other row from these patches serves as network
input so that it has a size of 32⇥32⇥1. The desired output has
the same dimension and is obtained from the intermediate rows
in the generated patches. Before network training, all patches
were linearly normalized to a value range in the interval from
0 to 1. Slope and offset were set according to the minimum
and maximum value of the clinical dataset. After network
prediction, the input and output rows have to be interlaced
to obtain corresponding interpolated projections. Furthermore,
the value range of these projections must be denormalized
to the original range of the clinical data. In total, the RIDL-
CNN consists of an input layer followed by 12 convolutional
layers with 128 filters and 3⇥3 kernels. The network output
is computed by a final convolution. The number of trainable
parameters is 1,625,857.

D. Implementation and Training
The RIDL-CNN was trained on both the clinical and syn-

thetic dataset, resulting in two separately trained networks.
For both datasets, 500,000 examples were selected from the
corresponding training dataset and 125,000 from the corre-
sponding validation dataset. For the training we used the Adam
optimizer and a combined loss function that is described by:

Lcomb(y, ŷ) = ↵ · LMS-SSIM(y, ŷ) + (1� ↵) · LMAE(y, ŷ)

This loss function was proposed in [10] and takes into
account the pixel-wise computed error between the network
output ŷ and ground truth y by the mean absolute error (MAE)
but also the structural similarity between the two images by
the multi-scale structural similarity index (MS-SSIM). The
weighting factor was empirically determined as ↵ = 0.84.
The networks were trained with a batch size of 256 and an
initial learning rate set to 1⇥10�5, which was halved if the
error could not be minimized after 25 consecutive epochs.

E. Evaluation and Validation
In order to evaluate and validate the results, two scans of

a skull phantom with real human bones were acquired with a
Somatom Force system. For the first scan, a basic scan mode
with a collimation of 96 ⇥ 0.6 mm and activated zFFS was
used. For the second scan we used a scan mode of the CT
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Fig. 3: Qualitative and quantitative comparison of a reconstructed slice (1. scan) without zFFS, with the RIDL-CNN trained
with the clinical dataset and the RIDL-CNN trained with the synthetic dataset compared to the ground truth scan with zFFS
(C = 60 HU, W = 360 HU). Below the difference images to the ground truth are shown (C = 0 HU, W = 150 HU).

system with a collimation of 48 ⇥ 1.2 mm. In this mode, no
zFFS can be enabled and the acquired images show very strong
windmill artifacts due to the lower sampling in the z-direction.
In both scans the pitch factor was set to 1, since especially
scans with pitch values in this range suffer from windmill
artifacts [2], [3]. A summary for both scan settings can be
found in table I.

Scan Collimation Pitch zFFS Reconstructed slices
1 96⇥ 0.6 mm 1.0 yes 1.0 mm
2 48⇥ 1.2 mm 1.0 no 1.5 mm

TABLE I: Summary of the settings for the two scans used to
evaluate and validate the results.

As in our previous work, the trained networks were applied
to reconstruct these clinical CT scans. For this purpose, the
plugin we developed for the Siemens-specific reconstruction
software was used to adjust the raw projection data after
the rebinning. In the first scan, every second row, i.e. the
zFFS-generated rows were replaced by rows predicted by
the RIDL networks. In addition, a reconstruction with linear
interpolated rows was performed, which should correspond
to an acquisition without zFFS. For all reconstructions, the
error measures RMSE and SSIM were calculated in relation
to the ground truth reconstruction with zFFS enabled. Since
no zFFS can be used in the acquisition setting employed in the
second scan, there is no ground truth data. The results in these
reconstructions can therefore only be evaluated qualitatively.
In this case, the number of rows in the raw data was doubled
by extending them with predictions from the RIDL networks.

III. RESULTS

A. Scan with 96⇥ 0.6 mm Collimation
Figure 3 shows reconstructions of a specific slice with

differently modeled projection row data from the first scan.
Difference images are calculated to the ground truth data
acquired with zFFS. Comparing the reconstruction without
zFFS to the result of the RIDL-CNN trained on the clinical
dataset, only a very slight reduction of the windmill artifacts
can be seen in the image domain. Furthermore, there are noisy
structures noticeable in the difference image in Figure 3c in the
area of the bones. However, MSE and SSIM indicate a quan-
titatively slightly better result compared to omitting the zFFS.
Looking at the reconstruction with the network trained with
synthetic data (see Figure 3d), we find an improvement in the
image quality both in the image domain and in the difference
image. Especially the problem with the noisy structures in the
bone areas does not occur. With regard to the error measures,
this reconstruction also provides the best result quantitatively.

B. Scan with 48⇥ 1.2 mm Collimation
Figure 4 compares the results for two reconstructed slices

from the second scan. In both slices reconstructed with
WFBP without zFFS, very dominant windmill artifacts can
be observed. Comparing these slices with the results of the
network trained with clinical data, a slight reduction of the
artifacts can be seen qualitatively. The results obtained with the
network trained with the synthetic dataset can most effectively
reduce the occurring windmill artifacts and provide superior
image quality compared to the network trained with clinical
data. The comparison of the reconstructions can only be
performed qualitatively due to missing ground truth data, since
the applied scan mode does not allow for enabling zFFS.
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Fig. 4: Qualitative comparison of two selected slices (2. scan) without zFFS, with the RIDL-CNN trained with the clinical
dataset and the RIDL-CNN trained with the synthetic dataset (C = 60 HU, W = 360 HU).

IV. DISCUSSION AND CONCLUSION

In this work, we further adapted our RIDL network and
simplified the network architecture. In addition, we extended
the clinical dataset and generated an experimental synthetic
dataset. This was done by simulating two-dimensional raw
data containing different sized overlapping spherical struc-
tures. In our experiments presented here, we observed that the
results with the synthetic data are very promising. Although no
clinical data were included in this dataset, windmill artifacts
were reduced more effectively than with the RIDL-CNN
trained with the current setup of clinical data. This observation
suggests that training with clinical data can still be optimized.
One problem could be the noise in clinical projection data.
Denoising the clinical data before network training could be
considered. However, it is valuable that training with synthetic
data can address the problem of windmill artifacts, without
having to rely on raw clinical projection data acquired with a
CT system that supports zFFS. The next step is to investigate
how the synthetic dataset can be adapted more efficiently to
our task. In addition, data with a concrete CT system geometry
will be simulated. Furthermore, we will optimize the training
with clinical data and investigate whether the results can be
improved by a combination of synthetic and clinical data.
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Abstract— High-precision image-guided neurosurgery – especially 
in the presence of brain shift – would benefit from intraoperative 
image quality beyond the conventional contrast-resolution limits of 
cone-beam CT (CBCT) for visualization of the brain parenchyma, 
ventricles, and intracranial hemorrhage. Deep neural networks for 
3D image reconstruction offer a promising basis for noise and artifact 
reduction, but generalizability can be challenged in scenarios 
involving features previously unseen in training data. 

We propose a 3D deep learning reconstruction framework (termed 
“DL-Recon”) that integrates learning-based image synthesis with 
physics-based reconstruction to leverage strengths of each. A 3D 
conditional GAN was developed to generate synthesized CT from 
CBCT images. Uncertainty in the synthesis image was estimated in a 
spatially varying, voxel-wise manner via Monte-Carlo dropout and 
was shown to correlate with abnormalities or pathology not present 
in training data. The DL-Recon approach improves the fidelity of the 
resulting image by combining the synthesized image (“DL-
Synthesis”) with physics-based reconstruction (filtered back-
projection (FBP) or other approaches) in a manner weighted by 
uncertainty – i.e., drawing more from the physics-based method in 
regions where model uncertainty is high.  

The performance of image synthesis, uncertainty estimation, and 
DL-Recon was investigated for the first time in real CBCT images of 
the brain. Variable input to the synthesis network was tested – 
including uncorrected FBP and precorrection with a simple 
(constant) scatter estimate – hypothesizing the latter to improve 
synthesis performance. The resulting uncertainty estimation was 
evaluated for the first time in real anatomical features not included 
in training (abnormalities and brain shift). The performance of DL-
Recon was evaluated in terms of image uniformity, noise, and soft-
tissue contrast-to-noise ratio in comparison to DL-Synthesis and FBP 
with a comprehensive artifact correction framework. DL-Recon was 
found to leverage the strengths of the learning-based and physics-
based reconstruction approaches, providing a high degree of image 
uniformity similar to DL-Synthesis while accurately preserving soft-
tissue contrast as in artifact-corrected FBP. 

Index Terms—Cone-beam CT, deep learning, artifact correction, 
image-guided intervention, image synthesis 

I. INTRODUCTION 
eurosurgical approaches to cancer, trauma, or neuro-
degenerative disease require a high degree of geometric 

precision to safely avoid vessels and eloquent brain and achieve 
effective treatment. The state of the art in intraoperative cone-
beam CT (CBCT) is sufficient for visualization and registration of 
high-contrast objects (e.g., bone, surgical instruments), but it does 
not provide contrast resolution suitable to soft-tissue, brain 
parenchyma, or intracranial hemorrhage. Factors limiting CBCT 
image quality include image biases (e.g., scatter, beam hardening) 
and quantum and electronic noise.  

  

Existing methods for improving CBCT image quality include 
artifact corrections [1] and model-based iterative reconstruction 
(MBIR) [2] that leverages physical knowledge of the imaging 
chain and image formation process. Recent developments in deep 
learning approaches provide another means of mitigating artifacts 
and reducing noise, including image synthesis from CBCT to 
approximate diagnostic-quality CT [3]. Such approaches offer 
improvements in computational runtime compared to MBIR, but 
the performance of image synthesis is subject to uncertainties 
arising from features not present in training (e.g., pathology, 
anatomical variations, and unmodeled imaging conditions). The 
fidelity of the synthesized image hence cannot be guaranteed [4].   

Recognizing the potential pitfalls in generalizability of image 
synthesis to highly variable anatomical structures in image-guided 
surgery, we propose a deep learning reconstruction framework 
(referred to as “DL-Recon”) that integrates image synthesis with 
physics-based reconstruction mediated by model uncertainty. 
Previous work [5] proposed a 2D U-Net for image synthesis and 
combined the result with FBP and MBIR reconstruction via model 
uncertainty in simulation studies. In this work, we developed a 3D 
generative adversarial network (GAN) for image synthesis and 
evaluated the performance of DL-Recon for the first time in real 
CBCT images, including anatomical abnormalities unseen in 
training data. 

II.  METHODS 
A. Image synthesis and uncertainty estimation  

A 3D conditional GAN was developed for CBCT-to-CT image 
synthesis. For training (Section II.C), a high-fidelity, physics-
based forward projection framework (including an accurate beam 
model, absorption / scatter characteristics, and model of the 
imaging chain) was used to generate simulated CBCT images 
from corresponding CT images. Two alternative inputs to the 
synthesis network were investigated: (i) an uncorrected FBP 
(𝜇𝑢𝑛𝑐𝑜𝑟𝑟

𝐶𝐵𝐶𝑇 ), and (ii) a precorrected FBP (𝜇𝑝𝑟𝑒𝑐𝑜𝑟𝑟
𝐶𝐵𝐶𝑇 ) for which a simple 

(constant) scatter correction was applied, hypothesizing that the 
precorrection to improve synthesis performance. 

As illustrated in Fig. 1, a 3D GAN was implemented with a U-
Net with a residual block at each level of the encoding / decoding 
path as the generator, and a convolutional pixel-wise classifier [6] 
as the discriminator. The objective function combined GAN and 
L1 loss as follows: 

 𝐺̂ = arg min
𝐺

max
𝐷

ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺) (1) 

where 

 
ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼[log 𝐷(𝜇𝐶𝐵𝐶𝑇, 𝜇𝐶𝑇)] 
  +𝔼 [log (1 − 𝐷(𝜇𝐶𝐵𝐶𝑇, 𝐺(𝜇𝐶𝐵𝐶𝑇)))] 

(2) 

 ℒ𝐿1(𝐺) = 𝔼[‖𝜇𝐶𝑇 − 𝐺(𝜇𝐶𝐵𝐶𝑇)‖1] (3) 
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𝐺 and 𝐷 denote the generator and discriminator, and 𝜇𝐶𝑇 and 
𝜇𝐶𝐵𝐶𝑇  represent paired CT and CBCT images. The L1 loss helps 
avoid over smoothing, and the balance between the GAN and L1 
loss is controlled by 𝜆.  

As described in [7], dropout applied during network training is 
equivalent to a Bayesian approximation of the Gaussian process, 
and uncertainty in the model output can be estimated by 
computing the voxel-wise variance of multiple forward passes. 
Following such an approach, we added dropout layers (dropout 
rate = 0.2) prior to the skip connection in each encoder and decoder 
block and to the final output. Both training and inference were 
performed with dropout. The predictive mean computed from a 
collection of 8 network outputs yields the synthesized image (DL-
Synthesis,  𝜇𝑆𝑦𝑛), and the predictive variance (𝜎2) serves as a 
proxy for model uncertainty. 
B. The DL-Recon framework 

The proposed method (termed DL-Recon) integrates 3D image 
synthesis with physics-based reconstruction via uncertainty 
associated with the synthesis model. The method involves three 
steps: (i) generation of a 3D synthetic CT image (𝜇𝑆𝑦𝑛) from a 
CBCT volume with estimation of model uncertainty (𝜎) as 
described above; (ii) physics-based 3D image reconstruction of 
projection data, including artifact corrections – for example, the 
pipeline described in [1] – to yield an artifact-corrected CBCT 
image (denoted 𝜇𝑐𝑜𝑟𝑟𝐶𝐵𝐶𝑇); and (iii) voxel-wise combination of 𝜇𝑆𝑦𝑛 
and 𝜇𝑐𝑜𝑟𝑟𝐶𝐵𝐶𝑇  weighted by the estimated uncertainty to yield the DL-
Recon image (denoted 𝜇𝐷𝐿−𝑅𝑒𝑐𝑜𝑛). The resulting image is: 

 𝜇𝐷𝐿−𝑅𝑒𝑐𝑜𝑛 = [1 − 𝛽(𝜎)]𝜇𝑆𝑦𝑛 + 𝛽(𝜎)𝜇𝑐𝑜𝑟𝑟
𝐶𝐵𝐶𝑇 (4) 

where uncertainty is contained within a spatially varying map (𝛽, 
with values in the range [0, 1]) related by a sigmoid function: 

 𝛽(𝜎) =
1

1 + 𝑒−(𝑐1⋅𝜎+𝑐2)
 (5) 

where 𝑐1 and 𝑐2 specify the range and level, respectively, of the 
sigmoid, and 𝛽 controls the contribution of 𝜇𝑆𝑦𝑛 and 𝜇𝑐𝑜𝑟𝑟𝐶𝐵𝐶𝑇 in a 
voxel-wise manner. When predictive uncertainty is high, the 𝛽 
map draws more from the physics-based reconstruction. 

The underlying premise in this approach is that the synthesis 
image (𝜇𝑆𝑦𝑛) carries particular benefits (e.g., uniformity and noise 
reduction) but may be subject to systematic error – for example, 
in structures unseen in the training data. The uncertainty map 
[𝜎(𝑥, 𝑦, 𝑧), alternatively 𝛽(𝑥, 𝑦, 𝑧)] were shown previously in 
simulation studies [5] to correlate with deviations from ground 
truth. The “uncertainty map” therefore offers insight on where the 

synthesis image may be subject to error and where it is 
advantageous to draw more from the physics-based 3D image 
reconstruction (𝜇𝑐𝑜𝑟𝑟𝐶𝐵𝐶𝑇). 

Note that the physics-based method incorporated in DL-Recon 
could be FBP or any particular form of MBIR, recognizing that 
the latter may invite disadvantages of computational load 
associated with conventional iterative optimization. Alternatively, 
the synthesis image could be incorporated as a prior within a 
penalized optimization, as in [5]. In any of these scenarios, the 
voxel-wise weighting of synthesis and physics-based image 
reconstructions is intended to leverage the strengths of each, 
mediated by the model uncertainty. In the work reported below, 
DL-Recon incorporates (artifact-corrected) FBP reconstruction as 
a practical implementation that may be compatible with the rapid 
runtime requirements of image-guided surgery, focusing here on 
intracranial neurosurgery. 
C. Training data generation 

To obtain a large training dataset of matched CT and CBCT 
images, CBCT projection data were simulated from 35 real, 
helical CT volumes of 35 healthy subjects using a high-fidelity 
forward projector [5]. CBCT system geometry and image 
acquisition were simulated to match data (~745 views over 360°) 
acquired from the O-arm (the O-armTM “O2” imaging system, 
Medtronic) using nominal head scan protocols (100–120 kV and 
75–240 mAs). Volumes were reconstructed with isotropic 0.7 mm 
voxels via FBP without artifact correction. Signal normalization 
linearly transformed the CBCT intensity histogram within the 
brain parenchyma to [-1, 1]. Volumetric patches (64×64×64 
voxels) were stochastically sampled from the brain volume and 
fed to the network, and a total of 875 patches were used for 
training. The Adam optimizer (learning rate = 5u10-5, 𝛽1 = 0.5, 
𝛽2 = 0.999, L1 regularization 𝜆=100, and batch size = 2) was used 
and early stopping at 800 epochs was applied. 
 

 Figure 2. Experimental setup for cadaver studies using the O-arm.  

Figure 1. Network architecture of 
the generator for 3D image synthesis 
using a conditional  GAN. Model 
uncertainty (𝜎) in the synthesis is 
computed via Monte-Carlo dropout 
layers. 
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D. Experimental studies 
D1. Image synthesis of simulated and real brain CBCT images 

The proposed image synthesis method was validated on both 
simulated and real CBCT data. Simulated CBCT projections of 5 
test CT volumes were generated and reconstructed in the same 
manner as the training set. Intensity differences between 
synthesized images and ground truth were measured within the 
brain region for each volume. Experiments were conducted using 
the O-arm™ system illustrated in Fig. 2. Real projection data for 
3 cadaveric heads (denoted below as cadaver #1-3) were collected 
at 120 kV and 150 mAs. Volumetric images were reconstructed 
on a grid of 320×320×280 voxels with isotropic 0.7 mm voxels. 
The runtime of DL-Synthesis was ~1 min per prediction (NVIDIA 
TITAN Xp). DL-Synthesis images were evaluated with 
uncorrected CBCT as input (denoted 𝜇𝑢𝑛𝑐𝑜𝑟𝑟

𝑆𝑦𝑛 ) and with a basic 
(constant-scatter) precorrection (denoted 𝜇𝑝𝑟𝑒𝑐𝑜𝑟𝑟

𝑆𝑦𝑛 ). Method 
performance was quantified in terms of image non-uniformity 
(NU), the difference in mean voxel value between region of 
interests (ROIs) in the parenchyma near the dural surface / 
sphenoid bone and about the lateral ventricles. 
D2. Uncertainty estimation in real anatomical abnormalities 

Previous work [5] has shown correlation between synthesis 
error and uncertainty for simulated lesions (not exist in the training 
cohort) of difference location, size, and contrast. In this work, the 
accuracy of uncertainty estimation was evaluated in cadaver 
images, including specimens exhibiting true abnormalities that 
were not present in the training data. Specifically, abnormalities 
included a large intraparenchymal calcification, a loss of 
cerebrospinal fluid, and brain shift in which the brain cortex 
collapsed from the interior surface of the cranium. 
D3. Cadaver studies on an intraoperative CBCT system 

Imaging performance was evaluated in terms of visual image 
quality as well as image uniformity, noise, and soft-tissue contrast-
to-noise ratio (CNR) in cadavers imaged on the O-arm™ system 
(Fig. 2). FBP reconstructions were evaluated with and without 
artifact correction. DL-Recon was evaluated in comparison to FBP 
and DL-Synthesis, and uncertainty maps were displayed to 
understand how physics-based and deep learning-based 
approaches contributed to the final result. 

III. RESULTS 
A. Performance of image synthesis 

Fig. 3 shows results of image synthesis on simulated data (high-
fidelity CBCT projections generated from CT). DL-Synthesis 
demonstrated good overall correspondence with the ground truth 
CT, yielding high image uniformity and reduced noise compared 

to the uncorrected FBP image. In 5 test volume images, DL-
Synthesis exhibited a difference in overall mean intensity (in the 
brain) of less than 1 HU (compared to > 12 HU for FBP) to the 
ground truth, with residual differences owing mainly to image 
noise. The estimated uncertainty highlights regions with 
anatomical variations such as the lateral ventricles and sulci in the 
cerebral cortex, which is susceptible to error (e.g., contrast loss) in 
the synthesis mage.  
 

 
Fig. 4 illustrates the performance of image synthesis on real 

data, in which the input to the synthesis network was either 
uncorrected or precorrected image data. DL-Synthesis acting on 
uncorrected FBP input exhibits performance degradation in 
regions affected by severe artifacts, yielding a higher degree of 
non-uniformity near the sphenoid bone (yellow arrow). A simple 
(constant) scatter correction was shown to partially account for 
biases that were not modeled by the forward projector (e.g., 
variation in bone density) and improve the overall image 
uniformity (2–4 HU). As a result, precorrected FBP yielded more 

Figure 3. Synthesis performance in simulated CBCT data. (a) Sagittal 
slice of a test CT image volume. (b) Corresponding CBCT 
reconstruction (network input). (c) Resulting synthesized image. (d) 
Violin plot quantifying the respective difference in voxel values of 
uncorrected FBP and DL-Synthesis to the ground truth measured for 
5 test data. (e) Sagittal and (f) axial slice of the estimated uncertainty. 

Figure 4. Synthesis performance for (a) uncorrected and (b) precorrected FBP of real CBCT images. (c) Boxplot quantifying image non-uniformity 
in synthesized images of 3 cadavers. 
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accurate synthesis, reducing image NU by ~50% compared to 
synthesis acting on uncorrected FBP. However, DL-Synthesis 
exhibited a loss in contrast in structures such as the lateral 
ventricles (cadaver #1, magenta arrows), demonstrating potential 
pitfalls in the generalizability of image synthesis to real and highly 
variable image data. 

B. Uncertainty estimation in cadaver studies 
Fig. 5 demonstrates the performance of uncertainty estimation 

on real data with unseen features (calcium deposit in cadaver #2 
and brain shift in cadaver #3). For both cases, the uncertainty map 
highlights the location of the unseen structure as well as at the 
lateral ventricles, suggesting a lack of reliability in the synthesis 
result and the need for input from physics-based reconstruction.  
C. Performance of DL-Recon 

Fig. 6 shows reconstructed images from conventional methods 
(FBP and DL-Synthesis) and the proposed DL-Recon framework. 

As shown in Fig. 6(b), the comprehensive artifact correction 
pipeline reduced NU by 59%, but led to 38% increase in image 
noise. DL-Synthesis yielded the lowest NU value and noise but 
suffered from loss in soft-tissue contrast. In comparison, DL-
Recon was able to reduce both NU and noise while preserving 
image contrast of the ventricles, providing ~15% increase in soft-
tissue CNR compared to fully corrected FBP. 

The intensity profile of a curve across the brain [yellow dashed 
curve shown in Fig. 6(b)] was plotted in Fig. 7 for fully corrected 
FBP, DL-Synthesis, and DL-Recon. Fully corrected FBP 

exhibited residual nonuniformity, especially just inside the 
cranium due to residual beam-hardening effects, as indicated by 
the nonuniform intensity profile between the ventricle and 
cranium. DL-Synthesis improved uniformity in these regions but 
reduced the contrast in the ventricle, similar to the effects shown 
above in relation to model uncertainty. By comparison, DL-Recon 
maintained the benefits of image uniformity from DL-Synthesis 
while achieving contrast in the ventricles similar to the fully 
corrected FBP. 
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Figure 7. Intensity profiles of FBP, DL-Synthesis, and DL-Recon. 
The DL-Recon image leverages the improved uniformity of DL-
Synthesis (region just inside the cranium) and the improved 
(accurate) contrast of fully corrected FBP (in the ventricles). 

Figure 5. Uncertainty estimation in cadaver CBCT head images. 
Precorrected FBP and the estimated uncertainty (𝛽 map) within the 
brain parenchyma for (a-b) cadaver #1 with calcium deposit and (c-
d) cadaver #3 with brain shift.  

Figure 6. Example axial and sagittal slices of FBP, DL synthesis, and DL-Recon in cadaver CBCT data. Measurements of image non-
uniformity (NU), noise, and contrast-to-noise ratio (CNR) of the lateral ventricles are listed below each image. Difference images show 
the contributions of the physics-based [(d)-(a)] and image synthesis [(d)-(c)] methods to the DL-Recon image (approximate Hounsfield Units). 
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Abstract—Learned iterative reconstruction algorithms for in-

verse problems offer the flexibility to combine analytical knowl-

edge about the problem with modules learned from data.

This way, they achieve high reconstruction performance while

ensuring consistency with the measured data. In computed

tomography, extending such approaches from 2D fan-beam to

3D cone-beam data is challenging due to the prohibitively high

GPU memory that would be needed to train such models. This

paper proposes to use neural ordinary differential equations

to solve the reconstruction problem in a residual formulation

via numerical integration. For training, there is no need to

backpropagate through several unrolled network blocks nor

through the internals of the solver. Instead, the gradients are

obtained very memory-efficiently in the neural ODE setting

allowing for training on a single consumer graphics card. The

method is able to reduce the root mean squared error by

over 30% compared to the best performing classical iterative

reconstruction algorithm and produces high quality cone-beam

reconstructions even in a sparse view scenario.

Index Terms—Inverse problems, computed tomography, itera-

tive reconstruction, known operators.

I. INTRODUCTION

E
XTENDING analytical or iterative reconstruction algo-
rithms for computed tomography (CT) by deep learning

modules has shown to improve the quality of the reconstructed
images, especially in challenging cases like high noise levels
or insufficient projection data [1], [2]. For CT reconstruction,
the input and output data of the problem are connected in
a non-trivial geometrical manner. This is the reason why
most deep-learning-based reconstruction approaches, instead
of learning direct mapping from sinogram to image domain,
incorporate knowledge about the physical operator connecting
both domains and replace single components in the reconstruc-
tion pipeline by their learned counterpart, mostly operating in
one domain only [3].

Unrolled iterative approaches seek to solve the reconstruc-
tion problem by loosely mimicking known iterative algorithms
for inverse problems. This is done by unrolling a fixed number
of iterations in depth as a deep learning architecture and
incorporating learnable components in each step which are
trained end-to-end. The exact architecture and the role of
the trainable modules can vary giving rise to a number of
approaches for MRI [4], [5] and CT [1], [6], [7].

While these unrolled iterative algorithms have achieved
superior performance for the reconstruction of 2D images,
their extension to the 3D case is challenging. Training requires

All authors are with the Pattern Recognition Lab, Friedrich-
Alexander University Erlangen-Nuremberg, Erlangen, Germany (e-mail:
mareike.thies@fau.de).

gradient backpropagation through the entire unrolled sequence
of trainable and known operators, thereby consuming a large
amount of memory on the graphics card (GPU). In the
3D case, the amount of memory occupied by intermediate
representations needed during backpropagation exceeds the
memory of modern GPUs making the direct application of
iterative approaches infeasible.

Previous work addressed the prohibitively high memory
consumption of unrolled 3D models. Greedy training of each
iteration independently reduces memory consumption and al-
lows training on patches but does not result in an optimal joint
weight configuration [8]. When increasing the volume resolu-
tion with network depth, memory consumption is dominated
by the single final iteration on full scale, but image quality is
coupled to the expressiveness of the last iteration [9]. Further,
the use of invertible networks avoids storing intermediate
representations which makes the memory requirement constant
in depth but requires the network architecture to meet certain
criteria for invertibility [10], [11].

In this work, we propose to interpret the series of unrolled
iterations as a continuous residual process and formulate the
problem in terms of an ordinary differential equation (ODE).
This allows us to map the reconstruction problem onto an
initial value problem which can be solved and trained memory-
efficiently using recently proposed neural ODEs [12]. The key
idea is that the memory requirement does not depend on the
number of iterations, i.e., network depth. Instead, the forward
pass is replaced by a call to an ODE solver and gradients are
obtained by solving another adjoint ODE without storing the
intermediate representations of the forward pass. Whereas a
similar idea has been applied to MRI reconstruction [13], to
the best of our knowledge we are the first ones to apply neural
ODEs to CT reconstruction. We show that using this method
we obtain 3D cone-beam CT reconstructions from few angles
with superior image quality compared to classical analytic and
algebraic algorithms.

II. METHODS

A. Learned Iterative CT Reconstruction
The forward model of a CT acquisition can be written as

p = Ax+ ✏ , (1)

where x 2 RM is the volume, p 2 RN is the projection data,
A 2 RN⇥M is the forward operator defined by the imaging
geometry (cone-beam in this case), and ✏ 2 RN is additive
noise. Typically, recovering the volume x from the measured
data p is an ill-posed inverse problem meaning that A is
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U-Net

(a)

ODE solver

U-Net
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Fig. 1: Comparison of an unrolled network (a) and a neural ODE-based version (b). While the unrolled version explicitly
repeats the same network block for a fixed number of steps, the ODE solver receives only one network block parameterizing
the temporal derivative of the volume. The solver computes the numerical integration internally. All trainable parts of our
architecture are highlighted in yellow, the fixed parts are gray.

not square and there are multiple solutions for x which are
consistent with the measured data p. Hence, the reconstruction
is formulated as a regularized optimization problem

x⇤ = argmin
x

{D(x,p) + µR(x)} . (2)

Here, D : RM ⇥ RN ! R is a function which measures the
consistency of volume x and measured data p. We choose
the data consistency term in a least squares sense given as
D(x,p) = 1

2kAx� pk22. R : RM ! R is a regularizer
which helps finding a favorable solution x⇤ and is weighted
against the data consistency term by a scalar µ 2 R. Using
a simple gradient descent optimization scheme, the resulting
update formula is

xn+1 = xn � �r{D(x,p) + µR(x)}
= xn � �(AT (Ax� p) + µrR(x)) ,

(3)

where AT 2 RM⇥N is the adjoint operator of A, � 2 R is
a sufficiently small step size, and n is the iteration index. To
learn a flexible regularizer from data, we replace its gradient
by a network N✓ : RM ! RM with free parameters ✓ which
allows to fit the regularizing component directly from data.
The final update formula is given as

xn+1 = xn � �(AT (Ax� p) + µN✓(x)) . (4)

If x represents a 2D image, this equation could inspire an
unrolled network architecture (Fig. 1a) and the parameters ✓
can be trained from pairs of input projection data and ground
truth reconstruction for a fixed number of unrolled iterations
[1]. This is infeasible for 3D cone-beam data due to extremely
high GPU memory requirements.

B. Neural Ordinary Differential Equations
Equation 4 has a residual form of the type

xn+1 = xn + f✓(x,p) , (5)

with f✓(x,p) = ��(AT (Ax� p) + µN✓(x)). The function
f✓ describes how the volume xn changes incrementally. Chen
et al. [12] proposed to regard such residual neural network
architectures as the numerical integration of some underlying
continuous ordinary differential equation. Here, the continuous
differential equation would be dx

dt = f✓(x(t),p). Following

that idea, a full unrolled iterative reconstruction is similar to
the solution of an initial value problem of the given ODE
starting from an initial condition x0 integrated until some end
time T

x⇤ = x0 +

Z T

0
f✓(x(t),p)dt . (6)

There exist a number of different numerical solvers to ap-
proximate solutions of such initial value problems. In this
work, we use a fixed step-size Runge-Kutta solver of order
4 which integrates Eq. 6 by dividing the interval [0, .., T ] into
a fixed number of steps S to solve the integral numerically.
This highlights the analogy to residual networks of depth S.

To be able to combine this ODE-based problem formulation
with a trainable network architecture, we need to compute
a loss that is based on the output of the ODE solver and
use its gradient to update the weights ✓ contained in f✓. As
demonstrated in [12], this gradient can be obtained without
backpropagating through the internals of the solver. Instead,
the solver is regarded as a black box and the gradient with
respect to ✓ is computed by solving another ODE backward
in time (adjoint sensitivity method). This allows to obtain gra-
dients with a memory cost that is independent of the number of
steps S taken by the solver. Coming back to the analogy with
residual networks, we can unroll the reconstruction problem
in many steps using neural ODEs without further increasing
the memory cost.

C. Network Architecture
In the neural ODE setting, a neural network defines the

dynamics of the system, i.e., its temporal derivative. Following
the classical problem formulation in Eq. 4, we design this net-
work using two branches: (1) A data consistency branch with
no trainable parameters incorporating the system’s forward and
backward model as known operator and (2) a regularization
branch which is trained from data. Figure 1b illustrates the
proposed network architecture. The data consistency branch
implements the term AT (Ax� p). Operators A and AT are
the CT forward and backprojection under the correct cone-
beam geometry, respectively. We use the differentiable version
of these operators described in [14] which computes analytical
gradients and allows for a direct embedding of these operators
in neural networks. For the regularization branch, we use a
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standard 3D U-Net [15] with depth 4 and 8 feature maps
on the first level which are doubled in each stage, ReLU
activation function, and instance normalization. In total, this
leads to a network with 255 000 free parameters. We further
introduce an additional single trainable parameter � (referred
to as data consistency weight) which is multiplied to the output
of the data consistency branch before adding the output of both
branches together in order to enable a data-optimal weighting
between the data consistency and regularization component.
This network together with the initialization x0 is passed to
the ODE solver.

III. EXPERIMENTS

A. Data
The data set consists of 42 walnuts scanned under cone-

beam CT geometry (cone angle: 40�) [16]. It contains the
raw projection data and a corresponding ground truth recon-
struction. The projection images are acquired on three circular
trajectories on different heights along the walnuts’ long axes
with a full rotation of 360� divided into 1200 angular steps
each. The ground truth reconstruction is computed iteratively
from the full set of acquired projections. As input to our
algorithm, we use projection data from only the central one
of the three trajectories and downsample the projections by a
factor of 10 in angular direction and 2 in the spatial directions.
This results in 120 projection images of size 384⇥ 486 pixels
with an angular increment of 3� covering a full rotation of
360�. Hence, the algorithm has much less projection data
available than has been used for computing the ground truth
reconstruction which serves as learning target and is down-
sampled by a factor of 2 resulting in volumes of size 2513.
We use walnut number 1 for validation and walnut number
2 for testing. The rest is used for training. The used data, its
preprocessing and the train-test-splits are identical to [10].

B. Training Details
We use the neural ODE solver provided by [12]. Integration

of Eq. 6 is performed from 0 to T = 1 with a fixed step size
of 0.05. This results in 20 steps and 80 evaluations of the
network per forward and backward pass as the fourth order
Runge-Kutta solver takes four evaluations per step. The initial
volume x0 is a Feldmann-Davis-Kress (FDK) reconstruction
of the projection data. The last layer of the U-Net is initialized
with zeros such that the regularizer has no influence upon
initialization and the data consistency weight is initialized
with � = 0.01. The parameters are optimized by an Adam
optimizer with learning rate 1 ⇥ 10�4 for the U-Net and
1⇥10�2 for the data consistency weight. Training is performed
with batch size 1 for 80 epochs and an L1-Loss evaluated
only inside the cylindrical scan field of view (FOV) captured
in each projection. The model weights corresponding to the
lowest validation loss during training are selected for further
evaluation.

C. Reference Methods
The reconstruction of the proposed method is compared

to (1) an FDK reconstruction, (2) a SIRT reconstruction

Fig. 2: Reconstructed center slices of the test walnut along
each dimension using an analytical FDK algorithm, two clas-
sical iterative algorithms (SIRT, TV) and the proposed method.
The gray value window is 0 to 0.06mm�1. Zoomed regions
are indicated in red.

with non-negativity constraint (500 iterations) [17] and (3) a
total variation (TV) regularized reconstruction using gradient
updates (300 iterations) [14].

IV. RESULTS

The proposed model requires a maximum of 13GB GPU
memory during training. Reconstruction results of the test
walnut are shown in Fig. 2. The FDK reconstruction exhibits
strong streaking artifacts in the xy-plane as well as cone-
beam artifacts at the top and bottom of the walnut visible
in the xz- and yz-planes. The iterative SIRT algorithm only
partly removes these artifacts. The TV regularized algorithm
produces a very smooth image with homogeneous gray values
for different structures inside the walnut. Nevertheless, cone-
beam artifacts in the xz- and yz-plane are still visible. In
contrast, our method achieves images with no noticeable cone-
beam artifacts. Additionally, it performs well in removing
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TABLE I: Quantitative results in terms of root mean squared
error (RMSE), peak signal-to-noise ratio (PSNR), and struc-
tural similarity index measure (SSIM).

FDK SIRT TV Ours
RMSE [·10�3] # 3.735 2.321 2.688 1.586
PSNR " 25.682 29.813 28.539 33.121
SSIM " 0.562 0.813 0.777 0.904

the streaks in the xy-plane and produces images which are
visually closest to the ground truth. The proposed method
also performs best regarding all quantitative metrics (Tab. I).
Compared to the SIRT which is the second-best performing
method, the RMSE is reduced by 31.7% and PSNR and
SSIM are increased by 11.1% and 11.3%, respectively. All
metrics have only been evaluated inside the cylindrical scan
FOV captured in each projection. Concerning reconstruction
time, our method lies between the two investigated iterative
methods with a run time of 43.4 s. The data consistency weight
converges to a value of � = 0.036.

V. DISCUSSION

Our proposed method is able to train a network inspired
from classical iterative reconstruction for 3D cone-beam data
incorporating a trainable regularizer with a GPU memory con-
sumption which is independent of the number of incremental
update steps on the volume. We can reconstruct volumes of
practically relevant size (2513) while using only 13GB of
GPU memory during training. This is feasible with a single
recent consumer graphics card.

The considered reconstruction problem is severely ill-posed
due to the strong undersampling of projection data in angular
direction. Hence, the analytical FDK reconstruction leads
to strong artifacts in the reconstructed images. The trained
algorithm removes the noise and streak artifacts successfully.
While the classical TV-regularized iterative reconstruction also
performs well in this regard, the proposed algorithm is the
only one which is able to remove the cone-beam artifacts. We
hypothesize that one main advantage of the learned regularizer
parameterized by the U-Net over hand-crafted ones such as TV
is its larger receptive field. It can suppress artifacts with non-
local extent such as the cone-beam artifacts while TV depends
only on the local gradient information in the image. A detailed
comparison of our method to other learning-based approaches,
such as [10], will be performed in future work.

Once trained, the reconstruction time of the presented
method is comparable to that of classical iterative algorithms.
Training time is rather high due to the high number of network
evaluations. Potentially, using an adaptive ODE solver instead
of the fixed step size solver can shorten training and inference
times by adaptively adjusting the step size and hence the
number of network evaluations to a given tolerance.

VI. CONCLUSION

This paper presents a method which uses neural ODEs
to train a cone-beam reconstruction algorithm inspired by
iterative reconstruction schemes. It ensures consistency with

the measured data by incorporating a data consistency branch
which exploits analytical knowledge about the physical op-
erator connecting sinogram and image domain along with a
trained regularizer. The proposed method outperforms well-
known FDK and iterative reconstruction algorithms on the
used walnut data set and is able to remove artifacts with
non-local extent such as the cone-beam artifacts while being
tractable concerning GPU memory.
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[7] J. Adler and O. Öktem, “Learned Primal-Dual Reconstruction,” IEEE
Trans. Med. Imag., vol. 37, no. 6, pp. 1322–1332, 2018.

[8] D. Wu, K. Kim, and Q. Li, “Computationally efficient deep neural
network for computed tomography image reconstruction,” Med. Phys.,
vol. 46, no. 11, pp. 4763–4776, 2019.

[9] A. Hauptmann, J. Adler, S. Arridge, and O. Öktem, “Multi-scale learned
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Abstract: We investigate ultrafast silicon photomultiplier (SiPM)-

based scintillation detectors for (medical) X-ray photon-counting 
applications, e.g., photon-counting computed tomography (CT). Such 
detectors may be an alternative to CdTe/CdZnTe (CZT) and Si detectors, 
which face challenges related to cost-effective growth of detector-grade 
material and detection efficiency, respectively. Here, we experimentally 
study energy response and count rate performance of a 1 mm × 1 mm 
single-pixel detector consisting of the commercially available LaBr3:Ce 
scintillator and a fast SiPM prototype. 
 We used three radio-isotopes and an X-ray tube for the experiments. 
Raw detector signals were processed by a second-order low-pass filter 
with a cut-off frequency fc equal to 25 MHz or 100 MHz. 
 The detector pulse height was shown to be proportional to photon 
energy. We measured FWHM energy resolutions of 20% (fc=25 MHz) 
and 22% (fc=100 MHz) at 60 keV. The measured X-ray tube spectra 
showed signs of the expected features of such spectra. The best count rate 
performance was achieved using fc=100 MHz. In case of paralyzable-like 
counting and a 30 keV counting threshold, the maximum observed count 
rate (OCR) was 10.5 Mcps/pixel. For nonparalyzable-like counting and 
the same threshold, the OCR appeared to approach an asymptotic value 
greater than 20 Mcps/pixel. These numbers are close to those of 
CdTe/CZT detectors highly optimized for photon-counting CT. 

In conclusion, we show promising spectral X-ray photon-counting 
performance of an LaBr3:Ce scintillation detector with SiPM readout. 
Depending on the application-specific requirements, miniaturization of 
the pixel size may be necessary, for which we discuss potential dose-
efficient implementations. 
 

Keywords: Count rate performance, energy response, scintillator, 
silicon photomultiplier (SiPM), X-ray photon-counting. 

I. INTRODUCTION 
HOTON-COUNTING detectors (PCDs) for X-ray imaging, 
e.g., for medical computed tomography (CT), are heavily 

investigated [1,2]. A PCD counts X-ray photon-induced 
detector pulses and registers them in one of at least two energy 
bins. This enables energy-resolved X-ray imaging. However, 
the task at hand is formidable, because the impinging photon 
fluence rate may exceed 108 mm-2s-1 [3], so pulse pile-up is 
likely to distort the measurement of counts and energies. 

The main detector concept under consideration at the 
moment is based on the mechanism of direct conversion, i.e., 
each X-ray photon absorbed in a semiconductor is directly 
converted into a number of electron-hole (e-h) pairs. This 
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number is proportional to the absorbed energy. Under the 
influence of an electric field, the e-h pairs are separated and 
guided towards (pixelated) electrodes on which they induce a 
current pulse. The pulse processing chain then outputs pulses 
of which the height is a measure of the energy of the X-ray 
photon. The semiconductors used in the existing prototype CT 
scanners are CdTe [4], CdZnTe (CZT) [5], and Si [6]. 

Although such a detector outputs short pulses and allows 
for pixel size miniaturization (both help to reduce pile-up), the 
cost-effective growth of CdTe and CZT detectors with a 
sufficiently low density of charge trapping centers (necessary 
to guarantee stable and reliable performance over time) 
remains an issue [2], [7]. On the other hand, Si detectors face 
challenges related to low mass density (ρ) and atomic number 
(Z). Thus, it is not clear what the best choice of detector is, 
leaving room for developing other detector concepts.  

We are investigating fast scintillation detectors with silicon 
photomultiplier (SiPM) readout for X-ray photon-counting 
applications. This detector concept is based on the mechanism 
of indirect conversion, i.e., an X-ray photon is first converted 
into a pulse of optical scintillation photons, which is then 
converted into a current pulse by an SiPM (see Fig. 1a). The 
light pulse incident on the SiPM as a function of time t1 after 
the X-ray interaction may be described as A1exp(-t1/τd), with 
amplitude A1 depending on deposited energy and τd the 
scintillation decay time constant. In order to minimize pile-up, 
shorter τd than those of CsI (1 µs) and GOS (2.5 µs), the 
scintillators used in integrating detectors, are needed [8].  

Each scintillator pixel must be coupled to its own SiPM. 
This light sensor consists of a two-dimensional array of single-
photon avalanche diodes (SPADs, see Fig. 1b). The absorption 
of a single optical photon in a SPAD creates an e-h pair that 
can trigger an avalanche multiplication process providing a 
gain in the order of 106. The time profile of the SPAD current 
pulse as a function of time t2 after the detection of an optical 
photon may be described as A2exp(-t2/τr), with amplitude A2 
and recharge time constant τr. Since the SPADs on an SiPM 
are connected in parallel, the time profile of an X-ray photon-
induced pulse is essentially a convolution of A1exp(-t1/τd) and 
A2exp(-t2/τr) (see Fig. 2). The high internal gain assures that 
the signal due to a single X-ray photon exceeds the noise level 
of the electronics (difficult to accomplish using conventional 
photodiodes) and allows for a processing chain relying only on 
current-to-voltage conversion and pulse height discrimination.  

Since the detector is based on transport of photons rather 
than charges and scintillators with high ρ and Z exist, this X-
ray photon-counting detector concept may provide a solution 
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for the aforementioned issues of direct conversion detectors. 
Here, we experimentally investigate the count rate 

performance of an ultrafast SiPM-based scintillation detector 
irradiated by a 120 kVp X-ray beam. The scintillator used in 
this study is LaBr3:Ce, a commercially available scintillator 
that we previously identified as having favorable properties 
for high-rate, energy-resolved X-ray photon-counting [8]. We 
compare the results with data from CdTe- and CZT-based 
PCDs and study the energy response of the detector. 

II. MATERIALS AND METHODS 
LaBr3:Ce (5% Ce-doping, Saint Gobain Crystals) combines 

high X-ray detection efficiency (ρ=5.1 g cm-3, ZLa=57, and 
ZBr=35) with a short and intense scintillation pulse (τd=16 ns 
and a high light yield of 63 photons per keV). Using optically 
transparent glue, we coupled a 1 mm×1 mm LaBr3:Ce crystal 
to a 1.0 mm×1.0 mm prototype SiPM (provided by Broadcom 
Inc., τr=7 ns). The LaBr3:Ce crystal was 3.5 mm thick 
(equivalent to 2.5 mm CdTe in terms of detection efficiency in 
the diagnostic energy range). We also covered the crystal in 
reflective powder. Since LaBr3:Ce is a hygroscopic 
scintillator, we applied an epoxy coating to our single-pixel 
detector, such that it can be used outside the moisture-free 
glovebox in which it was built. Note that the hygroscopic 
nature of a scintillator does not limit its applicability. The 
commonly used NaI:Tl scintillator is hygroscopic, and applied 
in detectors for medical SPECT scanners, for example. 

The current signals from the SiPM were converted into 
voltage signals by a trans-impedance amplifier (gain=10) 
before being digitized by a TeledyneLeCroy HDO9404 
oscilloscope (sampling rate = 1 GHz, bandwidth = 200 MHz). 
Due to the finite number of optical photons in the scintillation 
pulse, the raw detector pulses are not perfect convolutions of 
A1exp(-t1/τd) and A2exp(-t2/τr), but show random fluctuations. 
In order to prevent double counting of single pulses due to 
these fluctuations, all digitized signals were first smoothened 
by a second order low-pass filter with a cut-off frequency 
fc=25 MHz or fc=100 MHz. The former is expected to provide 
better energy resolution at low rates, the latter should yield 
faster pulses (see Fig. 2a) and better count rate performance. 

In order to calibrate (mean) pulse height as a function of 
energy, we recorded pulses while exposing the detector to 
three low-activity radioactive sources with the following five 
photon emissions: 14 keV (Co-57), 32 keV (Ba-133), 60 keV 
(Am-241), 81 keV (Ba-133) and 122 keV (Co-57).  

We performed X-ray tube experiments using an Yxlon 
Y.TU 320-D03 tube, which had a tungsten target and an anode 
angle of 20o. We selected a tube voltage of 120 kVp. The 
beam was filtered by  3.0 mm Be and 7.5 mm Al in total. The 
resulting spectrum ranges from 20 keV to 120 keV. We 
performed a tube current sweep starting at 0.5 mA and ending 
at 20 mA at a fixed source-detector distance. For each value of 
the tube current, we recorded ten pulse trains of 100 ms each. 

We determined the number of counts for counting 
thresholds at 15 keV and 30 keV, because such low-energy 
thresholds usually limit the count rate capability of PCDs. 
Additionally, we determined the number of counts for two 

counting algorithms. The first one is paralyzable-like (p-like) 
counting. Here, every positive threshold crossing leads to a 
count and the maximum signal before the subsequent negative 
threshold crossing is considered a measure of the energy. The 
second one is nonparalyzable-like (np-like) counting. In this 
case, we determine, after a fixed time period τnp following the 
registration of a count, whether or not the signal from the 
detector is still above threshold. If yes, a second count will be 
registered, and so on. If not, the next count will only be 
registered when the next positive threshold crossing occurs. 
The maximum signal within the time period τnp is considered a 
measure of the energy. The value of τnp should exceed the 
time-over-threshold of the highest-energy pulses in order to 
prevent double counting of pulses. We therefore used the 
pulses caused by 122 keV photons from the Co-57 source to 
determine proper values of τnp for the detector (see Fig. 2b).  

III. RESULTS AND DISCUSSION 
Fig. 3a and Fig. 3b show pulse height spectra obtained by 

exposing the detector to the Am-241 source and setting fc to 25 
MHz and to 100 MHz, respectively. From right to left, we 
observe: The main photopeak corresponding to the full 
absorption of 60 keV photons in the crystal. It overlaps with a 
Br K-escape peak at approximately 48 keV.  A La K-escape 
peak at about 26 keV is also visible, which overlaps with a 
peak caused by an 11-22 keV X-ray emission from Am-241. 

We used Gaussian fits to determine the mean pulse heights 
corresponding to the five main peaks (photon energies) in the 
spectra of the three radioactive sources. The results are 
summarized in Fig. 3c and indicate that the detectors have a 
proportional response in the energy range of interest. As Fig. 
3a and Fig. 3b show, a double Gaussian fit with a constraint 
on the distance between both peaks was used if a K-escape 
peak clearly overlapped with the photopeak. We derived the 
energy resolutions at 60 keV from the fits and found 19.9% 
FWHM for fc=25 MHz and 22.3% FWHM for fc=100 MHz. 

Based on linear interpolation of the data points in Fig. 3c, 
we determined that the 15 keV and 30 keV thresholds are at 
31.0 mV and 58.4 mV, respectively, for fc =25 MHz. In case 
fc=100 MHz, these thresholds are at 41.8 mV and 77.2 mV. 

Based on the mean shape of the pulses due to the 122 keV 
photons from Co-57 (see Fig. 2b), the time-over-the x keV 
threshold for fc=y MHz (ToTx,y) was found to be as follows: 
ToT15,25=68 ns, ToT30,25=55 ns, ToT15,100=53 ns, and 
ToT30,100=42 ns. Thus, we used these values of τnp: τnp,15,25=70 
ns, τnp,30,25=60 ns, τnp,15,100=55 ns, and τnp,30,100=45 ns. 

Fig. 4 shows the observed count rate (OCR) as a function of 
tube current Itube. We estimated an incident count rate (ICR) 
for each value of Itube by taking into account that ICR and Itube 
are proportional to each other and by assuming that 
ICR=OCRnp,15,100 for Itube=0.5 mA (the selected source-
detector distance was such that the pile-up level was limited 
for Itube=0.5 mA). The estimated ICRs are displayed on the top 
horizontal axes in Fig. 4 and indicate that we characterized the 
detector up to ICR≈31 Mcps/pixel. As expected, the curves for 
p-like counting feature a maximum OCR, which lies between 
6 Mcps/pixel and 7.5 Mcps/pixel for fc=25 MHz, and between 
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8 and 10.5 Mcps/pixel for fc=100 MHz, depending on the 
threshold value. The curves for np-like counting should 
approach asymptotes defined by OCR=1/τnp for high values of 
Itube, i.e., they should approach OCRs of 14.3-16.7 Mcps/pixel 
for fc=25 MHz and 18.2-22.2 Mcps/pixel for fc=100 MHz, 
again depending on the threshold value. However, Fig. 4 
shows that, especially for fc=100 MHz, we did not reach these 
asymptotic values at the maximum available tube current of 20 
mA yet. Thus, we plan to take measurements at shorter source 
-detector distances and show the results at the conference. 

To put the results into perspective, existing CdTe and CZT 
detectors that have been highly optimized for medical photon-
counting CT aim for a maximum OCR of 10-15 Mcps/pixel in 
case of p-like counting (e.g., the CZT detector in the prototype 
scanner of Philips [5]) or an OCR approaching 25-30 
Mcps/pixel in case of np-like counting (e.g., the CdTe detector 
in the prototype scanner of Siemens [4]). Our prototype 
LaBr3:Ce detector already approaches these numbers closely. 

The rate capability per mm2 can be further improved by 
having multiple pixels of 0.5 mm × 0.5 mm or smaller on a 
square millimeter. However, the reflective isolation between 
pixels (see Fig. 1a) then starts to become a relatively large X-
ray insensitive area that limits the achievable OCR and dose 
efficiency. However, Canon managed to manufacture an 
energy-integrating detector for its Aquilion Precision CT 
scanner that has scintillator pixels of such small dimensions 
with very thin reflective septa. Even dead area-free options 
exist, such as a columnar microstructure of the scintillator (cf. 
the CsI scintillator in flat panel detectors) [9], and laser-
induced optical barriers [10]. 

Lastly, examples of X-ray tube spectra measured using the 
LaBr3:Ce detector under low fluence rate conditions (Itube=0.5 
mA) are shown in Fig. 5. The typical shape of such spectra is 
clearly present in the data, including signs of the characteristic 
X-rays from the tungsten target of the tube. For photon 
energies exceeding 80 keV, the spectral intensity gradually 
decreases towards the maximum energy of 120 keV, with 
some overflow to higher energies because of the finite energy 
resolution of the detector and some pulse pile-up. 

 
 
 
 
 

 

IV. CONCLUSIONS 
We are investigating ultrafast scintillation detectors with 

SiPM readout as alternatives to direct-conversion detectors for 
(medical) X-ray photon-counting applications. In this work, 
we built a 1 mm×1 mm single-pixel detector consisting of the 
fast and commercially available LaBr3:Ce scintillator and an 
ultrafast SiPM prototype. We measured energy resolutions in 
the range 20%-22% at 60 keV, depending on the cut-off 
frequency of the filter used in the pulse processing. Moreover, 
we were able to measure an X-ray tube spectrum with signs of 
its characteristic features. We also measured count rate curves 
and found a maximum observed count rate (OCR) of 10.5 
Mcps/pixel for paralyzable-like counting, a threshold of 30 
keV, and a cut-off frequency of 100 MHz. In case of 
nonparalyzable-like counting, the OCR seemed to approach an 
asymptotic value exceeding 20 Mcps/pixel. This means the 
performance of our prototype detector already approaches that 
of CdTe/CZT detectors optimized for photon-counting CT. 
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Fig. 1. a) Schematic side view of a scintillation detector. Each pixel consists of a scintillation crystal, in which an X-ray photon is converted into a pulse of 
optical scintillation photons, one-to-one coupled to a light sensor, which converts the light pulse into a current pulse i(t). The isotropically emitted photons are 
guided towards the light sensor by a reflective optical isolation around the pixel, which also prevents light sharing among pixels (cf. charge sharing in 
semiconductor detectors). b) Schematic top view of the light sensor in our case, i.e., a silicon photomultiplier (SiPM). An SiPM is a 2D array of single photon 
avalanche diodes (SPADs) connected in parallel. When a SPAD detects an optical photon, an avalanche multiplication starts, which the resistor R quenches [8]. 
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Fig. 2. a) Four examples of pulses due to 60 keV photons. The solid curves are the raw detector pulses, whereas the dashed and dash-dotted curves describe these 
pulses after they have been smoothened by second-order low-pass filters with cut-off frequencies fc of 25 MHz and 100 MHz, respectively. b) The mean pulse 
shape for 122 keV photons and fc=100 MHz. Start and end points of the time-over-threshold (ToT) at 15 and 30 keV used to determine τnp are visualized, too. 
 
 
 
 
 
 
 
 
 

 
Fig. 3. a) An Am-241 pulse height spectrum measured using the LaBr3:Ce detector and a second order low-pass filter with cut-off frequency fc=25 MHz. The 
double Gaussian fit accounts for the K-escape peak at approximately 48 keV in order to determine the FWHM pulse height resolution at 60 keV. b) The same 
Am-241 spectrum measured using the same detector, but with fc=100 MHz. c) Results of the pulse height calibration, showing highly proportional behavior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Observed count rate as a function of tube current, counting algorithm, and low-energy threshold for a) the LaBr3:Ce detector and a second order low-pass 
filter with cut-off frequency fc=25 MHz and b) the same detector, but a filter with fc=100 MHz. The top horizontal axes display our estimates of the incident 
count rate corresponding to each value of the tube current. The dashed lines represent ideal counting behavior, i.e., the observed rate equaling the incident rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. X-ray tube spectra (120 kVp, tungsten anode, anode angle of 20o, 3.0 mm Be and 7.5 mm Al filtration) measured using a) the LaBr3:Ce detector and a 
second order low-pass filter with cut-off frequency fc=25 MHz and b) the same detector, but a filter with fc=100 MHz, for p-like counting and a 15 keV threshold 
under low fluence rate conditions (i.e., a tube current of 0.5 mA). The energy-axes are based on the pulse height calibrations shown in Fig. 3c). 
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Preliminary Investigations of a Novel Dynamic CT
Collimator

J. Webster Stayman, Nir Eden, Yiqun Q. Ma, Grace J. Gang, Allon Guez

Abstract—In this work we describe a new dynamic x-ray
collimator that may be used to collect sparse computed tomog-
raphy projection data. Data sparsity may be user-specified and
controlled both angularly and radially - allowing a broad range
of acquisition strategies. We consider protocols that have fully
sampled projection data for a volume-of-interest with a sparsely
sampled background. Model-based reconstruction methods are
adapted to process the non-uniformly sampled projections. We
demonstrate the ability of a CT system with this novel dynamic
collimator to provide user controllable regional image quality
and dose reduction in a set of phantom experiments.

Index Terms—Dynamic Bowtie Filter, X-ray Modulation, Dose
Reduction, Region-of-Interest Imaging

I. INTRODUCTION

Image quality and radiation exposure are closely related in
x-ray computed tomography (CT). In general, higher expo-
sures are used to produce higher quality images. This is par-
ticularly true when image quality is largely driven by quantum
noise associated with the incident x-ray beam. Thus control
over the intensity of x-ray beam provides an important control
over the balance between radiation dose and image quality.
Modern clinical CT systems provide control over the overall
beam intensity through tube current modulation. Dynamic
current control can be optimized to provide minimum noise
variance in images.[1] The spatial distribution of fluence may
also be shaped - typically through bowtie filters that attenuate
the beam more at the periphery of the patient where less
fluence is required. Current clinical systems often have the
capability to select between a small number of static filters.

There have been many research efforts to construct modu-
lators to permit dynamic control of the spatial distribution of
the x-ray beam. Such devices are often described as dynamic
bowtie filters and have taken many forms. Several designs
based on variable beam attenuation have included actuated
split filter designs, fluid-filled filters[2][3], piece-wise linear
filters with independently controlled leaves[4], and grid-like
structures that shape the beam based on angle of incidence[5].
Other designs have leveraged binary filters that block x-rays
on a fine scale (below system resolution)[6] or that reduce
fluence at a position based on dwell time.[7][8]

With the advent of advanced reconstruction algorithms,
another widely researched strategy for altering the dose-
image quality trade-off is sparse sampling. Angular under-
sampling has been widely explored and is straightforward to
implement in pulsed cone-beam CT systems[9]. Combined
angular and radial undersampling has been explored with the
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use of moving, structured collimators[10] and with alternate
system geometries (e.g. a moving line detector with a pulsed
source[11]).

Such dynamic beam control permits increased control
over radiation dose and image quality. For example, the
beam profile may be dynamically controlled to avoid radi-
ation sensitive organs or to provide a customized regional
dose deposition[12]. Customized regional image quality may
also be specified or optimized for particular imaging tasks
or anatomical locations [Gang]. This includes specialized
volume-of-interest (VOI) scans that focus on a particular organ
or region (e.g. cardiac, spine, etc.). With some acquisition
approaches, only a small region-of-interest is exposed leading
to increased complexity in data processing/local tomography
due to truncated projections. Other approaches are able to
provide very low exposure outside the VOI avoiding full
truncation of projection data.

This work considers a new dynamic modulator that incor-
porates many of the ideas mentioned above. Specifically, the
device uses a multitude of individually actuated ”fingers” that
locally block the x-ray beam. This enables various acquisition
protocols including a fully sampled VOI surrounded by a
background with angularly and radially sparse projection data.
In this paper we describe the construction of the device and its
installation in an x-ray imaging test-bench. Model-based image
reconstruction is adapted and applied to the sparse projection
data acquired from the experimental bench in two phantom
experiments.

II. METHODS

A. Dynamic Collimator Design and Integration

A photograph of the proposed dynamic collimator is shown
in Figure 1A. The device consisted of 26 independently
actuated beam blockers. Each ”finger” is made of a lead
compound and is approximately 3 mm wide and 1.5 mm
thick. This thickness stops > 99% of x-rays to provide a
nearly binary beam profile. The blockers are connected to a
linear solenoid which is computed controlled. The array of
blockers is contained in a 3D-printed housing with a lead-
shielded entrance and exit slot (approximately 6 mm in height)
on either side of the housing.

The collimator was mounted on an experimental x-ray test-
bench comprised of a flat-panel detector (Varex 4343CB,
Salt Lake City, UT), a radiographic/fluoroscopic x-ray tube
(Varex Rad-94, Salt Lake City, UT), and a motion stage
(Physik Instrumente, Auburn, MA). The dynamic collimator
was placed with the blockers at ⇠30 cm from the x-ray focal
spot. This permitted full lateral coverage of the 43 cm detector
in a CT system with 785 mm source-to-axis distance and

The 7th International Conference on Image Formation in X-Ray Computed Tomography

53



2

Fig. 1. (A) Photograph of the fabricated dynamic collimator with 26 independently controlled blockers. (B) Integration of the dynamic collimator on an
experimental x-ray imaging test-bench.

Fig. 2. Illustration of fully sampled and dynamically controlled sampling. (A) Full sinogram data. (B) Dynamically collimated data with full sampling in an
off-center VOI and 1:4 sampling outside the VOI. (C) A data mask generated for model-based reconstruction of the dynamically collimated data. (Note that
there are four faulty blockers in this data which are stuck open.)

1050 mm source-to-detector distance. The x-ray tube was fitted
with 2.1 mm of aluminum and 0.2 mm of copper filtration
without any bowtie filter.

Computer controls for the collimator have been developed
and integrated within the x-ray test-bench so that blocker
motion occurs (with rotary stage motion) between acquisition
frames in a step-and-shoot acquisition. Control software per-
mits arbitrary positioning of blockers (e.g. open or closed) for
every projection frame.

B. Data Acquisition and Processing

While the dynamic collimator permits arbitrary actuation
of each blocker over each data frame, in this work we have
focused on fully sampling a VOI surrounded by an under-
sampled background. This acquisition should provide image
quality within the VOI that is comparable to fully sampled
data and (generally) lower image quality in the background.
We note that the sparse background sampling should help to
avoid the complexity of local tomography and fully truncated
data. Moreover, even if the background is lower image quality,
this provides additional context for clinical tasks that would
be absent from fully truncated data.

In these preliminary studies, we have opted to apply a duty
cycle of 1:4 with respect to the background sampling. That is,

outside the VOI, blockers were open for 1 frame followed by
4 closed frames. Moreover, open blockers were shifted frame-
to-frame providing a combination of sparsity both angularly
and radially. Thus, the exposure and sampling outside the VOI
should be approximately 1/5 of the fully sampled case. This
protocol for data collection is illustrated in Figure 2.

To reconstruct data acquired using this protocol, we used
a modified penalized weighted least-squares (PWLS) recon-
struction approach. Specifically, the mean measurement model
was

ȳ(x) = I0 exp
⇣
�Aµ

⌘
, (1)

where I0 denotes the incident x-ray intensity, A is the system
matrix representing forward projection, and µ denotes the
vector of attenuation coefficients we wish to estimate. The
PWLS objective is

µ̂ = argmin
µ

⇣
Al � µ

⌘T
W

⇣
Al � µ

⌘
+ �

���
��� µ

���
��� (2)

l = � log(y/I0) (3)

where l denotes an estimate of the line integrals from the
measurements y. The weighting matrix W is a modified
version of the standard PWLS weighting by the inverse of
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Fig. 3. Summary of head phantom experiments. (A) Photograph of head phantom with three inserts. (B) Comparison of fully sampled and VOI+1:4 sparse
sampling reconstructions. Two rectangular regions are identified over which sample noise variance is computed. The VOI is indicated by a dashed yellow
circle. (C) Dose measurements for each acquisition protocol.

the variance. A total variation penalty with weighting � and
first-order difference operator  was applied.

To account for the sparse sampling pattern, a projection
mask was estimated from a system gain scan. Specifically,
the same actuation pattern was applied with no object in
the scanner. A mask was formed using simple thresholding
followed by a dilation operation to increase the size of mask.
Dilation was applied only in the radial direction of the sino-
gram. A modified diagonal weighting matrix was formed such
that W = D{y � mask}. In essence this informs the PWLS
algorithm that blocked measurements should be ignored for
reconstruction.

For all experiments in this work, a single central row of
flat-panel data was used to form a sinogram. This projection
data was comprised of 2x2 binned pixels (0.556 mm) and
360 projections. Reconstructions were formed using 200 it-
erations of the separable paraboloidal surrogates method[13]
using 20 angular subsets and 0.75 mm voxels.

C. Physical Experiments

Two different physical experiments were conducted. Both
use the system geometry and processing scheme described
above. Acquisitions were conducted using an x-ray technique
of 120 kVp and 20 mA. Exposures of 1 ms yield 0.02
mAs/frame. With 360 frames the total exposure was 7.2 mAs.

The first experiment used an ATOM head phantom (CIRS,
Norfolk, VA) and two sampling strategies: 1) fully sampled
data, and 2) the VOI plus 1:4 background sampling scheme
described above. Data were reconstructed using the above
processing with � = 1 for fully sampled data and � = 1.3
for the dynamically collimated data. Noise was measured at
location both inside and outside the VOI.

Radiation dose was measured for each scan using a standard
16 cm CTDI head phantom and a 0.6 cc Farmer chamber
(RadCal, Monrovia, CA). Center and peripheral dose was
measured for the fully sampled scan, and all five dosimeter
locations were used for the dynamically collimated scan. Total
dose was computed using 1/3 center plus 2/3 peripheral
averages.

A second experiment was performed using a thorax phantom
(Kyoto Kagaku, Japan). Both fully sampled and dynamically
collimated data were acquired. A VOI around the spine was
selected and scanned using the VOI plus 1:4 sparsity as well
as a VOI plus 2:4 sparsity. The latter method used open pairs
of adjacent blockers.

III. RESULTS

Results of the head phantom experiment are summarized
in Figure 3. Note that within the circular VOI the noise
levels (as computed in the region identified by the magenta
square) are nearly identical suggesting a very similar level of
image quality. Outside the VOI, the noise levels (computed
in green rectangle) are approximately 1.5 times higher in the
VOI scan. We also note some ring artifacts associated with the
boundaries of the blockers. We conjecture that this is the result
of incomplete gain correction, gaps in radial sampling due to
overlap of blockers (e.g. a whole column of missing data in the
sinogram), and other uncorrected physical effects like scatter,
lag, etc. Dosimetry results are summarized in Figure 3C. We
see that the dynamic collimation scan was acquired with 57%
of the dose of the fully sampled scan - indicating a significant
potential for dose reduction.

Results from the thorax scan experiment are shown in
Figure4. In comparing the fully sampled scan with the two
dynamic collimation protocols we see a similar level of image
quality in the VOI that was chosen around the spine for all
methods. As one would expect the 1:4 protocol has increased
noise over both the 2:4 protocol and the fully sampled data.
Interestingly, the ring artifacts are significantly reduced in
the 2:4 protocol. We conjecture that the pairwise actuation
of blockers eliminates the systematic omission of radial bins
that are present in the singlet blocker opening, which reduces
systematic ring artifacts. The image quality outside the VOI is
better in the 2:4 protocol (over the 1:4 case) with its increased
sampling.

The 7th International Conference on Image Formation in X-Ray Computed Tomography

55



4

Fig. 4. Summary of the thorax phantom experiment including fully sampled data and two different sparse sampling protocols: VOI+1:4 and VOI+2:4. Both
sinogram data and the associated PWLS reconstruction are shown for each case. The circular VOI is shown as a yellow dashed circle in all volumes.

IV. CONCLUSION

In this work we have demonstrated a novel dynamic colli-
mation approach based on the independent actuation of beam
blockers placed along the radial direction of a CT scanner.
The device was constructed, calibrated, and used to acquire
projection data on a experimental test-bench. A model-based
approach was developed to reconstruct data from acquisition
protocols with variable sampling. We demonstrated the ability
to maintain image quality within a VOI while significantly
reducing radiation dose.

These preliminary studies show one potential use of the
dynamic collimator to control image quality and limit dose.
Much more general dynamic sampling patterns are possible.
For example, we have illustrated how pairwise actuation can
limit certain artifacts. A wide range of other image quality
and dose objectives could also be applied including smoother
variations in image quality (spatially), organ-by-organ specifi-
cation, task-driven sampling, etc.

There are numerous engineering details that would need to
be addressed to translate this approach to a clinical system
including strict constraints on the motion (accelerations, ve-
locity), overall size, control and communication, etc. However,
these initial studies suggest that the underlying technology has
potential to provide a new way to control and balance the
image quality-dose trade-off.
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Abstract—In certain CT applications such as dental CT imag-
ing, a scanning configuration with an offset-detector is often used
for extending the field of view (FOV) of the system. While data
are truncated on one-side of the detector, it remains possible
to accurately reconstruct an image from the truncated data
collected over a full-angular range (FAR) of 360� by use of
existing analytical-based algorithms such as the FDK algorithm.
However, there also exist interests in scanning configurations
that collect data only over limited-angular ranges (LARs) for
practical considerations, and existing algorithms generally yield
reconstructions with significant artifacts from LAR data collected
with an offset-detector. It has been demonstrated recently that,
for non-truncated data, the directional-total-variation (DTV)
algorithm can reconstruct images with significantly reduced
artifacts from LAR data. In this work, we developed and tailored
the DTV algorithm for image reconstruction from truncated
LAR data collected with a scanning configuration employing an
offset-detector. We carried out a study on image reconstruction
for a number of LAR scanning configurations with an offset-
detector of practical interest. The study results demonstrate that
the DTV algorithm can be tailored to yield, from truncated
LAR data, images with significantly reduced artifacts that are
observed otherwise in images obtained with existing analytical-
based algorithms.

Index Terms—limited-angular range (LAR), truncated data,
offset detector, directional total variation (DTV), primal-dual
algorithm

I. INTRODUCTION

In certain CT applications, a scanning configuration with
an offset-detector is used often for effectively increasing its
field of view (FOV) [1], [2]. While data collected with an
offset-detector at each view are truncated on one side of
the detector, accurate images can be reconstructed from the
truncated data collected over a full-angular range (FAR) of
360�. It is also recognized that a reduced scanning angular
range can be exploited for potentially lowering radiation dose
and scanning time and for avoidance of the collisions between
the gantry and scanned objects, e.g., in C-arm cone-beam CT
(CBCT). Therefore, it is of interest and potential value to
investigate scanning configurations with offset-detectors for
data collection over limited-angular ranges (LARs) that are
considerably shorter than the FAR of 360�. Clearly, existing
algorithms, such as the FDK algorithm and its variations
widely used for image reconstruction from FAR data collected
with an offset-detector, will yield images with significant
artifacts when applied to LAR data collected with the same
offset-detector.

It has been shown recently that the directional-total-
variation (DTV) algorithm can accurately reconstruct images
from LAR data without any truncation [3], [4]. In this work,
we developed and tailored the DTV algorithm for image
reconstruction from truncated LAR data collected with scan-
ning configurations in which an offset-detector is employed.
The study results demonstrate that the DTV algorithm can
be tailored to yield, from truncated LAR data, images with
significantly reduced artifacts that are observed otherwise in
images obtained with existing analytical algorithms.

II. MATERIAL AND METHODS
A. LAR scanning configuration with an offset-detector

In the work, the X-ray transform [5] in a discrete form
is used as the imaging model, and image reconstruction is
equivalent to inverting the imaging model. Clearly, the ill-
conditionedness of the imaging model depends upon the LAR
extent and distribution over which knowledge of the discrete
X-ray transform (DXT), i.e., the imaging model, is available.
Without loss of generality, we consider a circular fan-beam
configuration with an offset-detector, as shown in Fig. 1a.
From the head image in Fig. 1b, truncated data generated with
the configuration over an FAR of 360� are shown in Fig. 1c.
On the other hand, an LAR scanning configuration with an
offset-detector is shown in row 1 of Fig. 2a, which consists of
two orthogonal arc components, separated by 90�, indicated
by arcs ↵1 and ↵2, where ↵1 and ↵2 indicate their angular
ranges. We refer to this configuration as a two-orthogonal-arc
(TOA) LAR configuration, and thus as a single-arc (SA) LAR
configuration if ↵1 = 0 or ↵2 = 0 as displayed in row 2
of Fig. 2a. We investigated image reconstruction from data, as
shown in Figs. 2b-2d, collected over the TOA and SA scanning
configurations, of the same total angular range, with an offset-
detector.

In the circular fan-beam configuration, the distances from
the X-ray source to the detector and to the rotation center
are 60 and 40 cm, respectively. The detector consists of 754
elements with a size of 0.2 mm. A detector-offset L = 30
mm is used for yielding an extended FOV. The head phantom
shown in Fig. 1b consists of 200⇥200 pixels of size 0.8⇥0.8
mm2.

Using the head phantom, we first generate data, as shown
in Fig. 1c over an FAR of 360� with an angular interval of
0.5� per view. For each view, the generated data are truncated
on one side of the detector as a result of the detector-offset.
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(a) (b) (c)

Fig. 1. (a) A circular fan-beam scanning configuration with an offset-detector in which O and L denote the rotation center and the length of the detector-offset.
(b) The numerical head phantom, and (c) data collected over an FAR of 360�. It can be observed that the data are truncated in the right-hand side of the
data space in (c). Display windows are [0.15, 0.3] cm�1 and [0, 3], respectively.

(a) (b) (c) (d)

Fig. 2. (a) Two-orthogonal-arc (row 1) and single-arc (row 2) scanning configurations with an offset-detector. Data generated with the two-orthogonal-arc
scanning configurations (row 1) over LARs (↵1,↵2) = (75�, 75�) (b), (67.5�, 67.5�) (c), and (60�, 60�) (d), and with the single-arc scanning configurations
(row 2) over LARs ↵⌧=150� (b), 135� (c), and 120� (d). Display window is [0, 3].

We consider TOA scanning configurations with LARs (↵1,↵2)
= (75�, 75�), (67.5�, 67.5�), and (60�, 60�), and use them to
generate data from the head phantom, as shown in row 1 of
Figs. 2b-2d. For comparison, we have also investigated image
reconstruction from data of the head phantom generated over
SAs with LARs ↵⌧ = ↵1 +↵2 = 150�, 135�, 120�, as shown
in row 2 of Figs. 2b-2d.

In addition, using noiseless LAR data generated above,
we created noisy LAR data by adding the Poisson noise,
corresponding to 107 noise equivalent quanta (NEQ) per
detector bin in air scans, and we subsequently performed
image reconstructions from the noisy LAR data.

B. Image reconstruction

For CT scans over TOA or SA LAR with an offset-detector,
the image reconstruction can be formulated as the solution to
a constrained optimization program in which a weighted data-
`2 fidelity is minimized under image-DTV constraints along

the x- and y-directions. The optimization program is given by

f? = argmin
f

⇢
1

2
k W (Hf � g[M]) k22

�

s.t. ||Dxf ||1  t1, ||Dyf ||1  t2, and fi � 0, (1)

where vector g[M] of size M denotes discrete measured data
acquired with two-orthogonal-arc or single-arc LAR scanning
configuration; vector f of size N is a 2D discrete image; fi
is the entry i of f ; H the system matrix of size M ⇥N rep-
resenting the X-ray transform, with element hj,i representing
the contribution of pixel i to ray j; W is an M ⇥M diagonal
matrix in which each diagonal element represents a positive
weighting factor for a corresponding X-ray measurement; ||·||p
indicates the `p-norms of the input vector for p = 1 and
2; matrices Dx and Dy of size N ⇥ N denote two-point
differences along the x- and y-axes, respectively; vectors Dxf
and Dyf are of size N ; and parameters t1 and t2 depict
the upper bounds on the DTV constraints along x- and y-
directions.
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(a) (b) (c)
Fig. 3. Row 1: images reconstructed by use of the DTV algorithm from noiseless data of TOA scanning configurations over LARs (↵1,↵2) = (75�, 75�) (a),
(67.5�, 67.5�) (b), and (60�, 60�) (c); row 2: images reconstructed by use of the DTV algorithm from noiseless data of SA scan configurations over LARs
↵⌧=150� (a), 135� (b), and 120� (c); and row 3: images reconstructed by use of the FDK algorithm from noiseless data of TOA scanning configurations
used for obtaining images in row 1. Display window is [0.0, 0.6] cm�1.

Weighting matrix W is introduced for controlling the nu-
merical effect of the discontinuity of truncated data on image
reconstruction. Different designs of weighting matrix W may
result in different reconstruction programs, leading to different
reconstructions when data are inconsistent with the imaging
model.

Based upon the general primal-dual optimization framework
[6], [7], a DTV algorithm was developed previously for solv-
ing the constrained optimization program minimizing data-`2
fidelity without weighting matrix W under DTV constraints
[3], [4], [8], [9]. In this work, we tailored the DTV algorithm

to solve Eq. (1) including a weighting factor W for image
reconstruction from truncated data acquired with the offset-
detector.

III. RESULTS

A. Reconstruction from noiseless data

Using the tailored DTV algorithm, we first reconstruct
images of the head phantom from noiseless data generated
over a number of TOAs with LARs (↵1,↵2) = (75�, 75�),
(67.5�, 67.5�), and (60�, 60�), (i.e., data in row 1 of Figs.
2b-2d), and display the reconstructed images in row 1 of
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(a) (b) (c)
Fig. 4. Row 1: images reconstructed by use of the DTV algorithm from noisy data of two-orthogonal-arc scanning configurations over LARs (↵1,↵2) =
(75�, 75�) (a), (67.5�, 67.5�) (b), and (60�, 60�) (c); row 2: images reconstructed by use of the DTV algorithm from noisy data of single-arc scanning
configurations over LARs ↵⌧=150� (a), 135� (b), and 120� (c); and row 3: images reconstructed by use of the FDK algorithm from noisy data of two-
orthogonal-arc scanning configurations used for obtaining images in row 1. Display window is [0.0, 0.6] cm�1.

Fig. 3. In an attempt to compare the differences between
TOA and SA LAR reconstructions from the offset-detector
data (i.e., truncated data), we also perform reconstructions
from noiseless data collected over several SAs of LARs ↵⌧

= 150�, 135�, 120� (i.e., data in row 2 of Fig. 2b-2d), and
show the reconstructed images in row 2 of Fig. 3. The FDK
reconstructions from the truncated TOA LAR data are shown
in row 3 of Fig. 3 for demonstrating the artifacts as the
combined result of LAR and data truncation issues.

It can be observed that FDK reconstructions contain sig-
nificant LAR artifacts that overwhelm soft-tissue contrast of

interest, and tooth structures in the reconstructed images are
difficult to be discerned. DTV reconstructions from both TOA
and SA data appear visually comparable to the phantom image
and the LAR artifacts observed in the corresponding FDK
reconstructions are significantly reduced. Although the DTV
reconstructions for SA scanning configurations show clearly
the tooth structures without much of the artifacts in the FDK
images, there remain residual artifacts around the spine region.
As the LAR ↵⌧ is reduced from 150� to 120�, the artifacts
become more significant, caused by the combination of data-
truncation and LAR. Conversely, the DTV reconstructions for
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the TOA scanning configurations remain visually identical to
the phantom image and largely free of the artifacts.

B. Reconstruction from noisy data

In order to investigate the robustness of the DTV recon-
struction from truncated TOA and SA LAR data, we repeat
the study in Sec. III-A with noisy data and show the results
in Fig. 4. Again, for noisy LAR data considered, the DTV
reconstructions for both the TOA and SA scans yield images
with significantly reduced LAR artifacts as compared to the
FDK reconstructions. Also, the TOA configurations appear
to yield images with minimum artifacts as compared to that
obtained for the SA configurations, consistent with the obser-
vation made above.

IV. DISCUSSION
In this work, we have investigated accurate image recon-

struction from truncated data acquired with TOA and SA scan-
ning configurations of LARs. The investigation is enabled by
tailoring the primal-dual-based DTV algorithm to reconstruct
images through solving an optimization program that includes
a weighted data-`2 fidelity and DTV image constraints. The
study results suggest that the tailored DTV algorithm can
significantly reduce the LAR artifacts that are observed other-
wise in reconstructions obtained with the existing algorithms.
Moreover, it is also revealed that TOA scanning configurations
generally appear to be more effective than the SA scanning
configurations in terms of reducing the combined LAR and
data-truncation artifacts. Further investigation will focus on
the impact of the extent of detector-offset, weighting matrix
W , and cone-beam effect on image reconstruction from LAR
data.
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Extension of the cone-beam CT field-of-view using
two short scans with displaced centers of rotation

Gabriele Belotti, Simon Rit, Guido Baroni

Abstract—A robotic cone-beam computed tomography (CT)
scanner has inherent advantages. In particular, it enables source
and detector trajectories capable of extending the field-of-view
(FOV) of the reconstructed CT images, where the FOV is defined
as the region in the source trajectory plane for which all ray
lines are acquired (at any position and direction in this plane).
Previous extensions of the FOV used an offset detector or a
displaced center of rotation and a single full 360� scan. However,
due to limitations in the conventional range of motion inside
the treatment room to avoid collisions, some systems can only
perform short scans. This paper investigates a new approach
to FOV extension for an existing system by adapting the FOV
extension to two complementary short scans with displaced
centers of rotation. We validate this approach on numerical
simulations of the Forbild thorax phantom.

Index Terms—Cone-beam computed tomography (CT), short
scan, filtered backprojection, Feldkamp-Davis-Kress (FDK) algo-
rithm, displaced center of rotation, tilted detector.

I. INTRODUCTION

Cone-beam computed tomography (CBCT) is a common
solution to provide in-room imaging in various forms of
radiotherapy. Several commercial solutions are available, often
as an imager mounted on the gantry of a linear accelerator.
At the same time, custom solutions exist as well, in particular
for hadrontherapy [1]. The National Center for Oncological
Hadrontherapy (CNAO, Pavia, Italy) employs such a scanner:
a custom CBCT scanner mounted on a Kawasaki robotic
manipulator [2]. It provides high geometric reproducibility and
is employed for both individual X-ray radiographs and CBCT
acquisitions inside the treatment room before the delivery
of the treatment fraction. The device was primarily intended
for correcting the patient setup based on registration of the
bony anatomy and cannot produce a sufficiently wide field-
of-view (FOV) to avoid data truncation when targeting wider
locations, e.g. the abdomen or the thorax. In this work, the
FOV is defined as the region in the source trajectory plane
for which all ray lines are acquired (at any position and
direction). Adaptive radiotherapy using the acquired CBCT
images is being investigated, but it is of clinical interest to
accurately reconstruct complete axial slices in wide locations
for qualitative and dosimetric assessments of interfractional
variations. Like most CBCT scanners with a fixed flat panel
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detector (FPD), the conventional geometry of the system is
such that for all source positions, the midline, defined by
the point source and the center of the detector, is orthogonal
to the rotation axis and intersects it at the center of the
source trajectory [3]. Axial FOV enlargement is typically
achieved through a technique called half fan, suitable for
filtered backprojection (FBP) reconstruction [4]. Mechanically,
half fan requires a detector capable of transverse displacements
and an adjustable X-ray source collimation. Both features are
not available in the aforementioned CNAO CBCT scanner. A
feasible alternative is to perform a complete displaced center
of rotation (DCoR) scan with a fixed tilt of the detector. This
consists of a 360� scan where the midline is offset w.r.t. the
axis of rotation. This offset can be realized by the CNAO
CBCT scanner while the relative positions of the source and
detector are unchanged and the same collimation can be used.
Previous works dealt with DCoR and aimed at correcting it
as a misalignment [5]. Instead, we would like to use this
geometry to enlarge the reconstructed FOV, as in [3]. Such a
trajectory is compatible with robotic manipulators as the one
of the CNAO CBCT scanner and is easily programmable in
the robot controller. However, bulky hardware in the treatment
room limits the sampling arc of the C-arm to 220�. The
objective of this work is to exploit a couple of short scans
[6] with complementary offset centers of rotation to obtain the
same FOV as a single full 360� DCoR scan would produce.

Fig. 1. Short time-lapse depicting conventional motion of custom in-room
CBCT imaging system at CNAO. On the bottom left, one can observe the
base of the robotic couch, which prevents the full rotation of the C-arm.
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II. MATERIALS AND METHODS

A. Circular geometry with displaced center of rotation

We examine the scanner geometry in the central plane z = 0
containing the trajectory of the source S. The source and
detector are attached to a C-arm which rotates around the
isocenter I . We note SID and SDD the source-to-isocenter and
source-to-detector distances which are fixed by construction.
In the conventional operation, the source and detector rotate
on a circle centered on I which is static. We note � the
gantry angle between the y-axis and the midline (defined by
the source S and the isocenter I).

The DCoR geometry makes use of the possibility given by
the robotic manipulator to modify the position of I during the
system rotation. With respect to the conventional operation,
both the source and the FPD are offset from the center O in
a direction orthogonal to the midline (and therefore parallel
to the detector) as shown in Figure 2. We note ⌧ the angle
between the source-center line and the midline which is also
the tilt angle between a conventional detector (orthogonal to
the source-center line) and the DCoR detector. Like in [5] and
unlike [3], ⌧ is constant w.r.t. the gantry angle �. The angle
⌧ is positive when I is on the positive side of the x-axis at
gantry angle � = 0 as in Figure 2. The offset of the isocenter
w.r.t. to the conventional geometry, i.e. the isocenter-to-center
distance, is RI = SID| tan ⌧ |.

x

y

FOVFOV

S

RI
I

O

u

Fig. 2. Circular geometry defined as displaced center-of-rotation (DCoR) in
the central plane. The FPD and source S are bound together while S travels
the circle with radius RS . The midline is offset from the center O of the
source trajectory.

The source trajectory is still a circle, centered on O and
defined by S(⌧,�) = RS(� sin(� � ⌧), cos(� � ⌧), 0), where
RS =

q
SID2 +R2

I is the radius of the circle. The isocenter
trajectory is also a circle of center O such that I(�) =

RI(cos�, sin�, 0). The conventional geometry is when ⌧ = 0,
i.e. when RI = 0 and RS = SID.

We note ↵⌧ = ↵ + |⌧ | the large fan angle captured by the
detector in the central plane with ↵ = arctan(Nu�u/2 SDD)
the fan angle captured by the detector w.r.t. the midline (Figure
2), Nu the number of pixels of the detector in the transaxial
direction and �u their spacing. If |⌧ | < ↵, the source-to-center
line hits the detector and the DCoR strategy could achieve
exact reconstruction in the central slice of the FOV with radius
RFOV = RS sin↵⌧ . This is normally done with a full 360�
scan but we propose to combine it with short scans.

B. Short scan

Let g⌧ be the set of cone-beam projections acquired for a
given DCoR geometry with an angle ⌧ defined by the line
integral

g⌧ (�, u, v) =

Z

L(⌧,�,u,v)
f(x)dx (1)

where L(⌧,�, u, v) is the line defined at gantry angle � and
tilt angle ⌧ by the source position S(⌧,�) and the position of
the detector pixel with coordinates (u, v).

If the projections were untruncated with a full fan ↵u 2
[�↵⌧ ,↵⌧ ] with ↵u = ⌧ + arctan(u/SDD), a short scan of
⇡+2↵⌧ would be sufficient to reconstruct from divergent rays
in the central plane using Parker pre-reconstruction weights [6]

wP (�, u, v) =
8
>>>><

>>>>:

sin2
✓
⇡

4

�

↵⌧ � ↵u

◆
if 0  �  2↵⌧ � 2↵u,

sin2
✓
⇡

4

⇡ + 2↵⌧ � �

↵⌧ + ↵u

◆
if ⇡ � 2↵u  �  ⇡ + 2↵⌧ ,

1 otherwise.
(2)

In [3], the authors provide an adaptation of the FDK algo-
rithm [7] to a full scan DCoR geometry and we note R⌧ its
application to a short scan:

f ' R⌧ {wP g⌧} . (3)

This short scan DCoR reconstruction is only exact in the
central slice and approximate elsewhere due to the cone-beam
artifact stemming from incomplete data with a circular source
trajectory.

C. Complementary short scans

We note that for two scans with opposite offsets ⌧1 and
⌧2 = �⌧1, the source rotates on the same circle since
S(⌧1,�) = S(⌧2,� � 2⌧1). We therefore acquire the cor-
responding cone-beam projections g1 and g2 for the same
arc of source trajectory using the two sets of gantry angle
B1 = [⌧1,⇡+2↵⌧1 + ⌧1] and B2 = [⌧2,⇡+2↵⌧2 + ⌧2] which
measure the same line integrals in the central plane

g1(�, u, 0) = g2(� � 2⌧1, SDD tan(↵u � ⌧2), 0). (4)

We refer to this composition of trajectories as complementary

displaced centers-of-rotation (C-DCoR). The detectors are
however in different positions with a small overlap (Figure 3).
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Fig. 3. Illustration of two projections of two complementary scans with ⌧1
and ⌧2 = �⌧1, with gantry angle �2 = �1 � 2⌧1 such that the source is at
the same position S(⌧1,�1, 0) = S(⌧2,�2, 0) in the two arcs.

We follow the approach of [4] and [6] to manage redundancies
with the weights

wi(�, u, v) =
8
<

:

1

2

✓
sign ⌧i sin

✓
⇡↵u

2(↵� |⌧i|)

◆
+ 1

◆
if |↵u| < ↵� |⌧i|,

1 otherwise,
(5)

which are derived from the displaced detector weights of [8].
We obtain the reconstruction formula

f ' R⌧1 {wPw1g1}+R⌧2 {wPw2g2} . (6)

It can be shown that the reconstruction is exact in the central
plane, as in (3). The result of (3) is however different in other
planes but previous investigations have shown that the effect
of the tilt is limited compared to the cone-beam artifacts in
these planes [3].

III. EXPERIMENTS

The proposed C-DCoR trajectories have been tested on
simulated projections of a Forbild thorax phantom using RTK
[9]. Geometrical parameters of the simulations mimick the
CNAO scanner with SID = 1100 mm and SDD = 1600 mm.
The detector has isometric spacing �u = �v = 0.388 mm
and size Nu ⇥ Nv = 768 ⇥ 1024 pixels; we therefore have
↵ = 5.32�. We set ⌧1 = �⌧2 = 4.159� which results in
RI = 80 mm and RS = 1102.91 mm. The same arc of
the circle trajectory is covered with B1 ' [�102�, 110�] and
B2 ' [�110�, 102�], which is larger than 180�+2↵⌧ ' 199�

and accounted for in the redundancy weights ws (by replacing
↵⌧ by half the scan range minus ⇡ in (2)).

Fig. 4. Top row shows the weight maps wpw1 and wpw2 (grayscale range
[0, 1]) for the two fan-beam sinograms of the central slice. Vertical dotted red
lines indicate the limit for the offset detector weights w1 and w2 (Equation
5). Slanted blue dotted lines indicate the limits for Parker short scan weights
(Equation 2). Bottom row shows partial reconstructions R⌧1 (wpw1g1) and
R⌧2 (wpw2g2), the sum of which gives the axial slice shown at the left of
the second row in Figure 5. The grayscale range is [�740, 920] HU.

The reconstructed DCoR scans have a FOV diameter of
363 mm instead of 204 mm for the conventional geometry.
The Forbild phantom is isometrically rescaled 0.8 times such
that the thorax ellipse semi-minor and semi-major axes are 80
mm and 160 mm and fit in the DCoR FOV. The phantom is
centered on O and 400 projections are generated along each
complementary scan. The reconstructed scans have size 400⇥
400⇥ 400 pixels with a resolution of 1⇥ 1⇥ 1 mm.

IV. RESULTS

The weight maps wPw1 and wPw2 and the partial recon-
structions R⌧1{wPw1g1} and R⌧2{wPw2g2} are displayed in
the central slice along with the corresponding weight maps in
Figure 4. The resulting phantom reconstruction is qualitatively
compared to the reference phantom in Figure 5. The images
are masked to the FOV of the C-DCoR scan. In the latter,
artifacts caused by strong attenuation in high density vertebrae
along the z axis are visible in the sagittal plane. Intensity
profiles are extracted from the middle of each slice along the
colored lines in Figure 5 in the same figure. The difference
between the reference image and the reconstructed image
resulted in a mean absolute error (MAE) of 20.5(±24.5)
HU inside the FOV. Slightly worse results are obtained when
simulating and reconstructing a complete 400 projections half
fan acquisition with a 130 mm detector offset with a MAE of
27.6(±25.5) HU (image not shown). Finally, we find equiva-
lent results when simulating and reconstructing a conventional
geometry acquisition with a large panel (1536⇥ 1024 pixels)
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Fig. 5. Top row shows central slices (axial, coronal, sagittal) extracted from the Forbild reference volume, with grayscale in Hounsfield Units. Central row
shows the same slices from a C-DCoR image with an offset RI = 80 mm. Grayscale level and window are set to 0 and 2000 HU, where -740 HU is the
value in the lung and 920 HU is the vertebrae density. Note that axial slices are cropped in the antero-posterior direction for optimal display. Colored lines
indicate where the intensity profiles (bottom row) have been evaluated.

on the same source trajectory with a MAE of 20.6(±24.0)
HU (image not shown).

V. DISCUSSION AND CONCLUSIONS

We successfully developed a reconstruction algorithm to ex-
tend the FOV of the CNAO scanner. The C-DCoR acquisition
can nearly double the FOV diameter. The method requires
two short scans with a short movement of the isocenter and
detector between the scans to ensure that the same source
trajectory arc is imaged twice with different detector positions.
With these arcs, we are able to produce CBCT images of
similar quality as conventional short scan or displaced detector
CBCT images. Most discrepancies in the reconstructed C-
DCoR are caused by the phantom vertebrae and seem to
be linked to the cone angle of incident X-rays. Physical
effects such as scatter or geometrical fluctuations remain to
be assessed on real data.
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X-ray CT Data Completeness Condition for Sets of
Arbitrary Projections

Gabriel Herl, Andreas Maier, Senior Member, IEEE, and Simon Zabler

Abstract—X-ray tomography reconstruction requires a set of
projections that provides sufficient information for the examined
region. Commonly, to ensure mathematically complete recon-
struction, first, a continuous curve (trajectory) that fulfils the Tuy
conditions is chosen. Second, this curve is sampled based on the
Nyquist-Shannon sampling theorem. This two-step approach is
efficient for most standard X-ray tomography scanning scenarios.
For agile X-ray tomography systems, e.g. robot-supported com-
puted tomography systems, choosing a set of projections based on
a continuous curve is often not useful. Instead, sets of projections
from arbitrary views might be necessary.

This work combines the Tuy-Smith condition with conclusions
from the Nyquist-Shannon sampling theorem. In particular, the
maximal pixel size and a requirement for the arrangement of
projections are formulated depending on the smallest relevant
object feature and integrated into the Tuy-Smith condition. We
derive a comprehensive condition for data completeness that
can assess the completeness of any set of arbitrary projections,
e.g. for complex scanning scenarios with robot-supported X-ray
tomography systems.

Index Terms—Data completeness condition, arbitrary scan
geometry, robot-supported CT, Tuy conditions, Nyquist-Shannon
sampling theorem.

I. INTRODUCTION

X -RAY computed tomography (CT) allows digitisation of
three-dimensional inner and outer structures for many

applications in medicine [1] and in industry [2].
In a standard industrial CT, the examined object is placed on

a turntable between an X-ray source and a detector. By rotating
the object, projection views from a circular trajectory around
the object are generated. In addition to these classical systems,
twin robotic CT systems have been developed where the
source and the detector are mounted on individual robots. This
setup allows agile movement of source and detector in order
to create projections from arbitrary views around the object.
This agility of robot-supported CT systems enables new, more
complex trajectories which can be utilised in numerous ways,
e.g. to scan large-scale objects [3], to reduce metal artefacts
[4], [5] and to reduce the scan time [6].

However, this agility of robot-supported CT systems com-
plicates the CT scan process. In order to enable a true,
mathematically complete reconstruction, it has to be ensured
that the available projections generate sufficient information.
In the standard CT process, first, the CT user chooses a con-
tinuous curve (commonly a circle or a helix) around a region
of interest. Second, by choosing the number of projections,
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this continuous curve is sampled into individual, equidistantly
placed views for the generation of individual projections.

A two-step approach is performed to ensure that the re-
sulting set of projections provides sufficient information for
mathematically complete reconstruction. First, the Tuy-Smith
condition [7] assesses whether the continuous trajectory can
provide enough information. Second, the sampling is validated
based on the Nyquist-Shannon sampling theorem. This two-
step process is efficient and sufficient for most scenarios
for standard CT systems. However, especially when using
agile CT systems, this process has weaknesses. The two-step
approach requires a continuous curve as a base trajectory.
However, in many scenarios, the requirement of a continuous
curve is impractical. Fig. 1 shows an example from [4] of two
sets of views for a region of interest scan of a defect in a
motorcycle. A continuous curve would not be a useful basis
for both sets of views.

Fig. 1: Visualisation of two sets of views on a motorcycle.
The green dots represent individual source positions.

This work extends the Tuy-Smith condition with the
Nyquist-Shannon sampling theorem to create a single con-
dition that indicates data completeness for a mathematically
complete reconstruction. For the first time, this condition
allows the assessment of data completeness for arbitrary sets
of views.

II. STATE OF THE ART OF CT DATA COMPLETENESS

The X-ray attenuation process can be depicted as the Radon
transform which maps every hyperplane of the spatial domain
to a point in the Radon space. Let f be the density function of
the examined object, u be the normal vector of a hyperplane
and s be the distance of this plane to the origin. The Radon
transform can be written as

Rf(u, s) =

Z

x·u=s
f(x)dx. (1)

In 1917 [8], Radon proved that if f(u, s) is continuous,
there exists a unique inverse. Therefore if the Radon space
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is continuous and known, complete CT reconstruction can be
ensured. However, it is not trivial whether a specific trajectory
or a specific set of arbitrary X-ray projections can be applied
to measure the Radon space sufficiently.

A. Trajectory Requirements
In 1983 [9], Tuy published data completeness conditions

for continuous curves that ensure mathematically correct re-
construction. Following Tuy, a curve is a continuous function
� : ⇤ ! R3 where ⇤ is an interval in R. Let S ⇢ R3 be the
unit sphere and ⌦ ⇢ R3 be a compact region that contains the
complete object with density function f .

Tuy implicitly used several assumptions about the mea-
suring and reconstruction processes to ensure mathematically
correct reconstruction. This includes the following two (unre-
alistic) assumptions:

1) Detector resolution assumption: Tuy assumes that the
exact position of impact of each measured photon is
known. This corresponds to a detector with infinitely
small pixels.

2) Source assumption: Tuy assumes that X-rays are emit-
ted at every position of the trajectory of the source.
This assumption corresponds to an infinite number of
projections on the trajectory.

Tuy conditions
Using assumptions 1 and 2, an object in region ⌦ can be
reconstructed from projection data generated on a curve � if
the following three conditions are valid:

1) The curve � is outside of the region ⌦.
2) The curve � is bounded, continuous and almost every-

where differentiable.
3) For all (x,u) in ⌦ ⇥ S, there exists � 2 ⇤, such that

x>u = �(�)>u and �0(�)>u 6= 0.

In 1985 [7], Smith proved that Tuy’s third condition is
sufficient:

Tuy-Smith condition
Using assumptions 1 and 2, an object in region ⌦ can be
reconstructed from projection data generated on a curve �
if, for all (x,u) in ⌦ ⇥ S, there exists � 2 ⇤, such that
x>u = �(�)>u.

Descriptively, the Tuy-Smith condition states that every
plane through the region of interest must intersect the source
trajectory. As every point in the Radon space corresponds
to one plane in the spatial domain, the Tuy-Smith condition
ensures a full sampling of the Radon space.

B. Sampling Requirements
As both assumptions, the detector resolution assumption and

the source assumption of Section II-A, are impossible in prac-
tice, the projections as well as the continuous trajectory need
to be sampled. To nevertheless ensure sufficient information,
the Nyquist-Shannon sampling theorem can be applied.

A detailed derivation of the maximal pixel size and minimal
number of projections is presented by Buzug [10]. Let k be the
minimal magnification factor and fmin be the smallest relevant
feature. Based on the Nyquist-Shannon sampling theorem, the
maximal pixel size 4⇠ is given by

4⇠ <
k

2
fmin (2)

Let r be the radius of the measuring field. Following Buzug
[10], the maximal angular gap 4� between projections is
given by

4� <
fmin

2r
. (3)

As an example for parallel-beam geometry, for an equian-
gular sampling of a semi-circular trajectory, the minimum
number of projections follows by

n =
⇡

4�
. (4)

III. NEW DATA COMPLETENESS CONDITION FOR SETS OF
ARBITRARY VIEWS

To directly assess the data completeness of a set of arbi-
trary projections, we combine the Tuy-Smith condition with
the presented conclusions of the Nyquist-Shannon sampling
theorem. This means that, first, the pixel size and, second,
the maximal angular gap of projections are integrated in the
Tuy-Smith condition.

The maximal pixel size can directly be applied to create a
realistic new assumption:

1b. Adapted detector resolution assumption: The detector
has a maximal pixel size

4⇠ <
k

2
fmin

based on the smallest magnification k of any of the used
projections and the size fmin of the smallest feature that
should be detectable.

To integrate the maximal angular gap into the Tuy-Smith
condition, we extend the estimations of Maier et al. [11].
We assume parallel-beam scanning geometry to allow more
intuitive and straightforward phrasing. The conclusions remain
for cone-beam CT. Let ũ 2 S be a normal vector that
represents an arbitrary plane in Radon space and D the set
of the normal vectors of all measured planes in Radon space.
According to the Nyquist-Shannon sampling theorem, the
angular distance between neighbouring planes in Radon space
does not have to be zero, but only must be smaller than the
specified maximum angular gap 4� of (3). This means, for
any possible plane in Radon space, there has to be a measured
plane that is tilted less than 4�. The cosine angle between
two vectors equals the inner product of the corresponding unit
vectors. Thus, this condition can be written as

8ũ 2 S 9d 2 D : | cos�1(d>ũ)|  4�. (5)

Let u 2 S be a vector perpendicular to vector ũ. Vector ũ
being tilted less than 4� according to vector d equals vector u
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being perpendicular to vector d apart from an angle 4�. Two
vectors are perpendicular apart from an angle 4� if |d>u| 
sin(4�). Equation (5) thus is equivalent to

8u 2 S 9d 2 D : |d>u|  sin(4�). (6)

The normal vector of a measured plane in Radon space
corresponds to the directional vector of the projection that
measured this plane in Radon space. Let L be the set of
all source positions of a set of projections and x 2 ⌦ any
point in the region of interest. Defining directional vectors of
projections by dx,l :=

x�l
||x�l||2 , Equation (6) can be written as

8(x,u) 2 ⌦⇥ S 9l 2 L : |d>
x,lu|  sin(4�). (7)

This equation ensures that sufficient projections for a
complete reconstruction are available. In total, by integrating
the conclusions of the Nyquist-Shannon sampling theorem
(Assumption 1b and Equation (6)) into the Tuy-Smith
condition, the following combined condition can be derived:

Data completeness condition for sets of arbitrary projections
An object in region ⌦ can be reconstructed based on projec-
tions with corresponding source positions L if

1) the maximal pixel size of the projections is 4⇠ < k
2fmin

depending on the smallest magnification factor k and
the smallest relevant feature fmin,

2) for all (x,u) 2 ⌦ ⇥ S, there exists a projection with
corresponding source location l 2 L such that

|d>
x,lu|  sin(4�)

with 4� = fmin
2r as the maximal sufficient angular sam-

pling rate depending on the radius r of the measuring
field.

IV. EXAMPLES

As example, let fmin := 0.03 cm be the smallest relevant
feature of an examined object with maximal radius r := 1cm
and k := 10 be the magnification (due to cone-beam CT).
Using the presented equations, we can calculate the maximal
detector pixel size 4⇠ and the maximal angular gap 4� for
data complete reconstruction:

4⇠ <
k

2
fmin = 0.15 cm (8)

4� <
fmin

2r
= 0.015. (9)

This means, a set of projections provides complete data if,
first, the pixel size is smaller than 0.15 cm and, second, for
all positions x in the region of interest and possible vectors
u through the region of interest, there exists a projection
with a normal vector dx,l so that the maximal angular gap
�max = d>

x,lu  sin(0.015) ⇡ 0.015.

For the following examples, we chose a sufficiently small
pixel size of 0.12 cm and tested different sets of views. In the

first example, we chose to reconstruct a spherical object with
concentric spherical shells in order to visualise cone-beam and
aliasing artefacts. Fig. 2, 3 and 4 show examples of different
sets of views and slices of the corresponding reconstructions.
With each a maximal angular gap of �max = 0.308 at the
bottom and the top of the sphere, both circular trajectories
of Fig. 2 and 3 do not fulfil the presented data completeness
conditions. Cone-beam artefacts appear at the bottom and the
top due to a lacking sampling. Aliasing appears in Fig. 2 due
to too few projections. Fig. 4 shows a set of views with 300
arbitrary projections that does fulfil the presented condition
with a maximal angular gap of �max = 0.013. It contains no
aliasing or cone-beam artefacts as the corresponding Radon
space is sampled sufficiently.

Fig. 5 shows two additional sets of views for a plastic
test specimen that all fulfil the presented data completeness
condition. The right image contains highly attenuating metal
blocks. This example demonstrates that our condition can be
applied to assess data completeness in scenarios that require
complex sets of views.

V. CONCLUSION

We have presented a CT data completeness condition that
can be used to assess the completeness of any set of projec-
tions. This condition is not based on continuous curves, but
can be applied directly to assess the completeness of data for
any arbitrary set of projections. Thereby, this work introduces
a method for evaluating sets of projections even for complex
scanning scenarios, e.g. for robotic CT systems and scenarios
with strongly attenuating components and spatial restrictions.
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Fig. 2: Circular trajectory with 50 projections: Visualisation of the source positions and two reconstruction slices of a spherical
object. This set of projections is not data complete due to missing information outside of the centre plane and too few
projections.
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Fig. 3: Circular trajectory with 300 projections: Visualisation of the source positions and two reconstruction slices of a spherical
object. This set of projections is not data complete due to missing information outside of the centre plane.
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Fig. 4: Data complete set of 300 arbitrary projections: Visualisation of the source positions and two reconstruction slices of a
spherical object. This set of projections is data complete.
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Fig. 5: Two data complete sets of views: Visualisation of the source positions and a test specimen. The right scenario also
contains highly attenuating metal blocks. The presented set of projections mostly avoids X-rays through these blocks, generating
complete data for the reconstruction of the test specimen without metal disturbance.
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Abstract—Because of the ability to present molecular and 
functional information in organisms, nuclear medical imaging 
(NMI) is attracting more and more attention. Among NMI 
modalities, X-ray fluorescence computed tomography (XFCT) has 
the advantage that the tracers used in XFCT are not spontaneously 
decayed. The synthesis, storage of contrast agents is more 
convenient, the price of XFCT is much lower as well. However, 
XFCT usually has mechanical collimation to tell the incident 
photon direction, which results in the reduction of the detection 
efficiency. The Compton camera is an imaging modality, which 
does not need mechanical collimators in its structure, which makes 
Compton cameras have high detection efficiency. Therefore, it is a 
great idea to use Compton camera-based imaging systems to 
realize X-ray fluorescence (XF) imaging. In this work, the first 
XFCC imaging system in the laboratory environment is 
established, which consists of a 150keV X-ray tube and a single-
layer Compton camera system based on the Timepix3 photon-
counting detector (PCD). The element Gd (43keV) is used as the 
XF element. The first imaging reconstruction results of the XFCC 
system are represented. 
 

Index Terms—Compton camera, image reconstruction, X-ray 
fluorescence computed tomography, Timepix3, photon counting 
detector 
 

I. INTRODUCTION 
ECAUSE of the ability to present molecular and functional 
information in organisms, nuclear medical imaging (NMI) 

is attracting more and more attention. Compared with 
traditional NMI modalities like single photon emission 
computed tomography (SPECT) and positron emission 
tomography (PET), the X-ray fluorescence computed 
tomography (XFCT) has the advantage that the tracers used in 
XFCT are not spontaneously decayed[1, 2]. The synthesis, 
storage of contrast agents is more convenient, the price of 
XFCT is much lower as well. SPECT and XFCT, which can use 
a variety of traces, usually have mechanical collimation to tell 
the incident photon direction, which results in the reduction of 
the detection efficiency. 

The Compton camera (CC) is an imaging modality that does 
not need mechanical collimators in its structure[3]. This makes 
Compton cameras have high detection efficiency. Compton 
camera has been widely used in astronomical detection, 

environmental radiation detection, proton therapy, and medical 
imaging[4-6].  So it is a great idea to use Compton camera-
based imaging systems to realize X-ray fluorescence (XF) 
imaging. However, the imaging of the X-ray fluorescence 
Compton camera (XFCC) is not easy. A large number of 
scattered photons enter the detector together with X-ray 
fluorescence photons, and it is tough to distinguish them. 
Besides, the commonly used elements of XF imaging are 
usually below 100keV. The high-resolution reconstruction of 
Compton cameras is difficult in this energy range. 
 There are few studies about Compton cameras for XF 
imaging. Vernekohl et al. carry out the Monte Carlo simulation 
with the incidence of ideal 82keV monochromatic X-rays and 
gold nanoparticle (GNPs) solution as the XF element[7]. In this 
work, the first XFCC imaging system is established in the 
laboratory environment, which consists of a 150keV X-ray tube 
and a single-layer Timepix3 detector Compton camera. The 
element Gd (43keV) is used as the XF element. The first 
imaging reconstruction results of our XFCC system are 
represented. 
 

II. METHODS 

A. Compton camera 
In Compton camera imaging, photons are incident on the first 

layer of the detector and interact with the detector atoms. The 
scattering detector will record the interaction position and the 
deposition energy of recoil electrons. The scattered photons are 
then emitted from the first lie detector and absorbed by the 
second layer detector. The absorption detector records the 
absorption position and the deposited energy. The Compton 
scattering angle θ is according to the Compton effect formula: 

���� = 1 − ���� �
1
��

−
1
��
� (1) 

First results on Compton camera system used 
for X-ray fluorescence computed tomography 
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Fig. 1.  The principle of the Compton camera. 
  

ScattererAbsorber

The 7th International Conference on Image Formation in X-Ray Computed Tomography

70



 

where �� is the energy of the incident photon, �� is the energy 
of the scatted photon, � is the Compton scattering angle, ��  is 
the rest mass of the electron. 
  

After calculating the scattering angle �, we are still not sure 
where the specific incident direction of the incident photon is. 
But we can build a cone surface with ���� as the axis and � as 
the cone angle, on which we can find the incident direction. 
When enough Compton scattering events are detected, each 
event can be inversely calculated to a cone surface. The 
intersection of these cone surfaces is theoretically the spatial 
position of the radioactive source, which is the reconstruction 
principle of the simple back-projection (SBP) algorithm. 

 

B. LM-MLEM reconstruction algorithm 
In the SBP algorithm with cone intersection, each incident 

photon event will be back-projected to all points on a cone 
surface. So the spatial positions where the source is not located 
also obtain the weight by mistake, which makes the 
reconstruction result inaccurate. 

The most commonly used high-resolution reconstruction 
algorithm is the list-mode maximum likelihood expectation 
maximization (LM-MLEM) algorithm. The iteration formula of 
LM-MLEM is as follows[8]: 

��
(���) =

��
(�)

��
� ���

1
��

(�)  , (2) 

���ℎ  ��
(�) = � �����

(�)
�

���

(3) 

where ��
(�) is the reconstruction image. ��� is the element of the 

system matrix, indexed on the events � and the voxels �. ��  is 
the element of the sensitivity matrix. The system matrix is 
obtained by our proposed numerical calculation method with 
detector resolution and Doppler broadening correction. While 
the sensitivity matrix is obtained by the Monte Carlo simulation 
method. 
 

C. Timepix3 data processing 
The Compton camera system established by us is based on 

the single-layer Timepix3 detector[9]. Timepix3 is an advanced 
photon-counting detector (PCD) with high spatial resolution, 
high time resolution, and fast readout speed.  

The raw data of Timepix3 is the time of arrival (ToA) and 
time-over-threshold (ToT), which is corresponding to the time 
and energy information of the interaction event after calibration. 
The array of 256*256 pixels can give 2-dimensional position 
information. After time clustering and spatial clustering, the 
data belonging to the same incident photon can be clustered 
together, and the charge sharing effect is eliminated. 

The information of the z-direction can be obtained by the 
carrier drift time, which is calibrated by the muon track. Due to 
the constant carrier drift velocity, the depth of the interaction is 
proportional to the carrier drift time. After calibration of the 

carrier drift velocity, the depth difference of the scattering 
position and the absorbing position can be calculated from the 
drift time difference. So that all information needed for the 
Compton camera reconstruction is obtained, including the 
energy information and the three-dimensional position 
information. Then coincidence operations are used for the 
detected interaction signals. And the valid Compton scattering 
events in the single-layer Timepix3 detector are selected for the 
SBP and LM-MLEM reconstruction of the proposed Compton 
camera. 
 

III. EXPERIMENT SETTINGS 
The experimental design is shown in Figure 2. The incident 

X-ray is emitted by a 150kV microfocus X-ray tube with a 
copper filter. The X-ray is collimated to the fan beam by a 
tungsten slit and then and then irradiated on the Gd solution. 
The Timepix3 detector is placed at the location of 90° from the 
X-ray incident direction.  

In all experiments, the X-ray tube is set to 150keV and 
0.5mA. The concentration of the Gd solution is 100mg/ml. The 
Timepix3 detector has 256×256 pixels. The size of the detector 
unit is equal to 55 μm and the size of the detector is 14.08×
14.08 mm2. The detector is with a bias voltage equal to 200V 
and an energy threshold equal to 3.02keV. The detector 
temperature is maintained at 26-28°C to keep the carrier drift 
velocity stable.  

There are two groups of experiments, as shown in Figure3. 

 

 
Fig. 2.  The experiment settings in the laboratory environment. 
  

   
Fig. 3.  The position of the solution tubes in the two group of experiments 
respectively. 
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One has a single solution pipe, and another has two solution 
pipes. The diameter of all the solution pipes is equal to 5mm. 
The distance between the detector plane and the position where 
X-ray fluorescence photons emit is 50mm. For each experiment, 
the acquisition time is 100s. The imaging space is set to 60×60
×20 pixels and the pixel size is equal to 4mm. Therefore, the 
field of view (FOV) is 240×240×80 mm3. The central slice of 
the FOV is 50mm far away from the detector plane, and the 
center of the FOV is on the z-axis, which is passing through the 
center point of the detector and perpendicular to the detector 
plane. 

IV. RESULTS AND DISCUSSIONS 
After data acquisition of the Compton camera system, the 

Compton scattering events detected by the Timepix3 detector 

are selected. These events are used for SBP reconstruction and 
LM-MLEM reconstruction. The iteration number is 50 and the 
initial image of the LM-MLEM iteration is the SBP image. 

Figure 4 shows the energy spectrum of all photons detected 
by the XFCC system. The spectrum peak below 20keV 
represents the photons that incompletely deposit their energy. 
The two peaks in the range of 40~50keV are the Kα (42.280 keV 
& 42.983 keV) peak and Kβ (48.718 keV & 49.961 keV) peak 
of Gd, respectively. The peak around 60keV is the Kα peak of 
W, while the peak around 65keV is Kβ. This is because many 
photons go through the tungsten slit and excite these 
characteristic gammas. From the spectrum, we can know that 
the proportion of the X-ray fluorescence photons is relatively 
low, which needs more improvement in our further works. 

The reconstruction results of the first experiment prove the 
correct imaging reconstruction of the XFCC system. The 
solution pipe is placed at (20,0), which is the out center of the 
FOV. It is obvious that the SBP algorithm cannot realize a high-
resolution reconstruction of the XFCC system at all. The single 
solution pipe can be clearly distinguished with the LM-MLEM 
algorithm. The spatial resolution is about 10mm for the single 
solution pipe.  

For the second experiment, the reconstruction of the double 
solution pipes is also completed with LM-MLEM and there are 
two circle areas in the result image. However, the voxel value 
of the two areas is not very consistent, which may be due to the 

 

 
Fig. 4.  The energy spectrum of the photons detected by the Compton camera 
system. 
  

 
Fig. 5.  The SBP result of the first experiment. 
  

 
Fig. 6.  The LM-MLEM result of the first experiment. 
  

 

 
Fig. 7.  The SBP result of the second experiment. 
  

 

 
Fig. 8.  The LM-MLEM result of the second experiment. 
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imperfection of system geometric correction and the lack of 
Compton events. Besides, the reconstruction resolution 
becomes worse than the single pipe experiment. Multi-source 
reconstruction is a classic problem in the field of Compton 
cameras, which is to be overcome in the future. Besides, it is 
important to help increase the proportion of X-ray fluorescence 
photons. 
 

V. CONCLUSIONS 
In this work, we proposed the first XFCC imaging system in 

the laboratory environment, which consists of a 150keV X-ray 
tube and a single-layer Timepix3 detector Compton camera. 
The element Gd (43keV) is used as the XF element. The first 
results of the XFCC system are represented. Experiments with 
both single solution pipes and double solution pipes are carried 
out, and the LM-MLEM reconstruction result images illustrate 
the spatial resolution of about 10mm. For the double solution 
pipes experiment, the interaction between multi-sources makes 
the result not satisfactory enough. Besides, the problem of 
increasing the proportion of XF photons is still another 
important problem to be overcome in the future. 
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Iterative grating interferometry-based phase-contrast
CT reconstruction with a data-driven denoising prior
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Abstract—Breast cancer is the most common malignancy in
women. Unfortunately, even though screening programs have
helped to increase survival rates, the number of false positives
and false negatives remains high. phase-contrast X-ray CT is a
promising imaging technique which could improve breast cancer
diagnosis by combining the high three-dimensional resolution
of conventional CT with higher soft-tissue contrast. Grating
Interferometry CT (GI-CT) arguably has the highest chance to
make the transition to clinical practice. Unfortunately though,
obtaining high-quality images is challenging. Grating fabrication
defects and photon starvation lead to high noise amplitudes in the
measured data. Moreover, the highly ill-conditioned differential
nature of the GI-CT forward operator renders the inversion
from corrupted data even more cumbersome. In this article we
report on a novel regularized iterative reconstruction algorithm
with a powerful data-driven regularization strategy to tackle
this challenging inverse problem. In particular, we present an
algorithm that combines the L-BFGS optimization scheme with a
Plug-and-Play denoiser parameterized by a deep neural network
and empirically show that the proposed method achieves high
quality images, both on simulated data as well as on real
measurements.

Index Terms—Breast Imaging, Computed Tomography, Itera-
tive Reconstruction, Data-driven Prior, Deep Learning

I. INTRODUCTION

MALIGNANCIES of the breast still represent the most
prevalent cancer in women [1]. Unfortunately, none of

the currently used breast imaging techniques (mammography,
breast ultrasound, breast MRI and absorption-based breast CT
and tomosynthesis [2], [3]) is able to provide fully three-
dimensional images with sufficiently high isotropic resolution
and soft-tissue contrast necessary to identify critical breast
cancer imaging biomarkers [4]. Therefore, better imaging
modalities are needed to improve early detection and increase
survival rates. X-ray phase-contrast CT could potentially offer
a solution by combining the high three-dimensional resolution,
which comes with CT, with superior soft-tissue contrast.

When X-ray waves interact with matter, their amplitude and
phase are modified according to the refractive index of the
material they interact with. The refractive index of a material
is given by n = 1��+ i�. The real part � dictates the change
in the beam’s phase � as

� =

Z
�(x, y, z)dz. (1)
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From this, the refraction angle ↵ can be computed using

↵ =
�

2⇡

@�

@x
. (2)

The imaginary part � is directly linked to the attenuation
coefficient via µ = 4⇡�/�, which can then be used to compute
the beam’s attenuation by using the Beer-Lambert law.

It is widely known that soft tissues are characterized by
similar �’s [5], which makes it difficult to distinguish different
tissue types in conventional absorption-based CT. Conversely,
larger differences in �’s [5] can theoretically yield higher soft
tissue contrast in reconstructed phase-contrast CT volumes.

The X-ray’s phase must be computed indirectly and many
approaches to achieve this have been proposed over the years.
Grating interferometry [6], [7], [8] arguably has the highest
chance of making the transition to clinical practice. In fact,
it has non-restrictive requirements in terms of temporal and
spatial coherence of the X-ray beam, it can be operated at large
fields-of-view (FOV) and it has a comparably high mechanical
robustness [6].

Grating interferometry detects the X-ray’s refraction angle
↵ by exploiting a peculiar interference pattern called Talbot
carpet [9]. When an X-ray beam is refracted, this results
in a lateral shift in the interference pattern. Therefore, by
measuring this shift, the wavefront’s change in phase can
be easily obtained by integrating (2). To obtain this Talbot
carpet, three gratings are positioned between the source and
the detector [7]. The first grating (source grating or G0) is
composed of a highly absorbing material such as gold and
is placed immediately in front of the X-ray tube to improve
beam coherence. The second grating (phase grating or G1),
which is not designed to absorb photons, imposes a significant
phase-shift to the X-ray beam and creates the interference
pattern. To measure the lateral shift of this interference pattern
induced by the sample, which is in the µm range, a highly
resolving detector would be required. Unfortunately, to date
no such detectors exist. Therefore, to circumvent this problem,
a highly absorbing third grating (analyzer grating or G2) is
placed in front of the detector. By moving one of the gratings
with respect to the others in x-direction, it is then possible to
obtain an interferogram called phase stepping curve [10], from
which it is in turn possible to compute the lateral shift of the
interference pattern.

The interferogram is modeled as

Ik = I0T · [1 + V0D · cos(k + �0 � ')] (3)
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where I0, V0, and �0 are the flat-field intensity, visibility and
phase maps, respectively, and k is the k-th phase step. The
transmission T , the dark-field D and the differential phase
sinograms are given by:

T = exp


�
Z

µ(x, y, z)dz

�
, (4)

D = exp


�
Z

✏(x, y, z)dz

�
, (5)

' =
�d2
g2

@

@x

Z
�(x, y, z)dz (6)

with � being the wavelength, g2 the pitch of the G2 grating
and d2 the distance between the origin and G2.

The interference pattern’s shift ', which is directly linked
to the beam’s refraction and thus phase, can then be retrieved
with Fourier analysis. The same holds for the absorption
signal, which is related to the average intensity of the curve,
and for the dark-field signal, which is related to the curve’s
amplitude. In this work though we will focus exclusively on
phase. When combined with a CT acquisition protocol, grating
interferometry (GI) naturally extends to GI-CT.

In an attempt to bring GI-CT to clinical practice, our group
has embarked in a long term effort to build a first-of-its-
kind Grating Interferometry Breast CT (GI-BCT) prototype.
As such, deposited radiation dose, scanning times and patient
comfort must be compatible with clinical standards.

With these constraints in place, high quality images with
grating interferometry CT represent a challenging objective.
In fact, to date, the successful use of grating interferometry
phase-contrast CT has been limited to synchrotron beamlines
[11] and laboratory setups [12] where high image quality is
achieved by a high X-ray flux or by long scanning times.

There are two main reasons why it is so challenging to
obtain high-quality images with GI-CT. First, an intrinsic
noise amplification takes place during signal retrieval [13].
Second, the differential nature of the phase-contrast forward
operator causes the inverse problem to be more ill-conditioned
as compared to conventional CT.

The main figure of merit which determines the quality of
a grating interferometer is its visibility, i.e. the amplitude of
the interference pattern in a flat-field scan. The higher the
visibility, the more precisely one can compute the interference
pattern’s lateral shift and, consequently, the X-ray beam’s
refraction. Visibilities of 30% have been reported for poly-
chromatic 46keV setups [14]. Unfortunately, high visibilities
are challenging to achieve for systems which are shorter and/or
have higher sensitivity, which requires the grating structures
to be smaller.

Given the highly noisy sinogram data, it is important to
reconstruct the tomograms with a stable inversion algorithm.
A pseudo-inverse such as the filtered backprojection (FBP)
algorithm could be applied in conjunction with the Hilbert
filter [15] to solve this task. However, it is widely accepted in
the CT community that iterative reconstruction algorithms are
better suited to deal with highly ill-conditioned problems.

Typically, in iterative reconstruction, we need to define a
variational loss function comprising a data-fidelity term and a
regularization functional which incorporates prior knowledge
about the expected reconstruction. Minimization of this loss
with an optimizer of choice then allows to reconstruct an im-
age which is simultaneously consistent with the measurements
as well as with the prior knowledge.

The most widely used prior in image reconstruction is the
total variation (TV) prior [16], which promotes homogeneous
regions separated by sharp edges in the solution by assuming
piece-wise constant signals. While TV is still considered to
be a powerful baseline algorithm to regularize ill-conditioned
inverse problems, recent years have witnessed the rise of data-
driven algorithms which outperform traditional methods and
thus constitute the current state-of-the-art in the field.

Two main data-driven approaches that draw inspiration from
classical variational optimization schemes have been proposed
in the literature. The first approach comprises end-to-end
methods which unroll iterative schemes, thereby transforming
each iteration of the iterative reconstruction algorithm into a
distinct layer of a neural network [17], [18]. Since the imaging
physics is embedded into the network, these models are
generally believed to be more robust to noise and adversarial
perturbations compared to pure black-box neural networks. In
the second approach, the idea is to learn the regularizer a-
priori on a representative training set, and to then use the
trained regularizer in conjunction with the data-fidelity term
in a classical variational optimization framework [19], [20],
[21], [22], [23].

The first type of approach tends to yield superior results
and deliver faster reconstructions [18]. However, it has the
important disadvantage that no convergence guarantees can
be derived and that it needs explicit supervision. Algorithms
in the second category tend to be slower and potentially
yield slightly inferior results. However, they have several
advantages. The algorithms can be trained independently of
the forward operator, they are more data-efficient (and pos-
sibly unsupervised), and they are amenable to stability and
convergence analysis [21]. Since it is of utmost importance
in the medical field to reliably reconstruct the tomograms, we
propose a novel algorithm that fits into the second category.

Many different ideas have been proposed to learn a regular-
izer in a data-driven manner. Some notable ones are adversarial
regularization [20] and its convex counterpart [21], score
matching networks [24], regularization by denoising (RED)
[19], network Tikhonov (NETT) [25] and data-driven Plug-
and-Play denoisers [22], [23].

To address some of the challenges in GI-BCT and to be
able to reconstruct phase-contrast tomograms from highly
corrupted measurement data, we propose an iterative recon-
struction algorithm which leverages the power of deep learning
to regularize the highly ill-conditioned tomographic inversion
problem. In particular, we propose an algorithm that alternates
between data updates governed by the L-BFGS algorithm
[26] and regularization steps performed with a denoising
deep neural network in a Plug-and-Play fashion [27]. We
apply the proposed approach to both simulated data and real
measurements and show that it achieves excellent results.
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II. METHODS

The optimization problem we aim to solve is

argmin�
1

2
kA� � 'k22 (7)

where � is the image containing the real part of the index of
refraction, ' is the retrieved differential phase-contrast sino-
gram, and A is a linear forward operator modeling equation
(6).

Unfortunately, (7) is a highly ill-conditioned problem. Since
an unregularized optimization of (7) will converge to a highly
unstable solution, a powerful regularization strategy is neces-
sary to stabilize the reconstruction.

As mentioned in the introduction, data-driven regularizers
have emerged as the new state-of-the-art in the field and now
routinely outperform classical regularization strategies such as
total variation (TV) [16]. Among the many proposed strategies,
we found data-driven Plug-and-Play regularizers to work best.
Therefore, we here propose to learn a regularization network
which is able to remove both noise and artefacts from the
image iterates as they converge to the final reconstruction.

Given corrupted and clean images, we wish to train a
network f✓ which maps the corrupted image � to its clean
counterpart �⇤. The objective function to achieve this is

L =
1

n

nX

i=1

kf✓(�i)� �⇤i k
2
2 (8)

where f✓ is an deep neural network with sufficient expressive
power and {�i, �⇤i } are training data pairs.

We parameterized f✓ with a 7 million parameter, bias-free
U-net [28]. We removed the biases because it has been shown
that this leads to 1) more interpretable denoising performance,
and 2) that biasless networks generalize better to different
noise amplitudes [29]. The higher interpretability comes from
the fact that we can regard the denoising process as being
locally linear [29]. Therefore, computing the Jacobian shows
how the pixel neighborhood is used for denoising a particular
pixel. The higher robustness is important in our case since
1) the noise encountered during image reconstruction might
slightly differ from iteration to iteration, and 2) it makes it
easier to train the network as we do not have to find the perfect
amount of noise to train on.

To solve (7) we use the L-BFGS optimization scheme
proposed by [26] and apply a denoising step after every k-th
iteration. The proposed method is summarized in Algorithm
1.

By removing noise and artefacts, the denoising step can
be interpreted as a projection of the current image iterate
to the data manifold to which clean reconstructions belong.
Iteratively alternating between data-fidelity optimization and
projection to the data manifold thereby allows to get close to
the measured data, while staying close to the data manifold of
clean reconstructions.

III. RESULTS

A. Simulated data
To quantitatively assess the performance of our method we
applied it to simulated breast phantoms developed in-house.

Algorithm 1: L-BFGS optimization with data-driven
Plug-and-Play denoiser
input : i = 0; �0 = 0; kmax = 20; ✏ = 103;
while 1

2kA�k � 'k22 > ✏ do
k = 0; y = 0; s = 0;
if i > 0 then

�k = �reg;
end
while k < kmax do

Lk = 1
2kA�k � 'k22;

r�kLk = AT (A�k � ');
if k > 0 then

s[k � 1] = �k � �k�1;
y[k � 1] = r�kLk �r�k�1Lk�1;

end
�k+1 = �k � LBFGS(r�k , s, y);
k = k + 1;

end
i = i+ 1;
�reg = f✓(�kmax);

end
output: �reg

Fig. 1. Reconstruction results on simulated breast phantoms. First column:
full slice, second column: the part inside the red region enlarged.

We simulated 600 projections and added Poisson noise that
matched real measurements. The results in Figure 1 show that
the proposed method achieves excellent results and clearly
outperforms analytical reconstruction, both qualitatively as
well as in terms of structural similarity index (SSIM) and mean
squared error (MSE).

B. Real data
To demonstrate the effectivenss of our method on real data,
we scanned a fixed mastectomy obtained at the University
Hospital Zürich on our GI-BCT prototype. We acquired 600
projections under continuous circular rotation. A total of 10
scans have been averaged to compensate for the low visibility
(thus high noise amplitudes) we are currently working with.

We applied exactly the same algorithm as for the simulated
data. Importantly, we used the neural network that has been
trained on simulated data. Figure 2 shows that the proposed
method once again achieves excellent results and clearly out-
performs analytical reconstruction. We want to emphasize that

The 7th International Conference on Image Formation in X-Ray Computed Tomography

76



4

Fig. 2. Reconstruction results on mastectomy data. First column: full slice,
second column: the part inside the red region enlarged.

the applicability of a denoiser, that was trained on simulated
data, to real-world data, is a crucial advantage of our method
since it is very difficult to obtain high-quality real data in a
medical setting.

IV. CONCLUSION

In this article we have proposed a novel iterative reconstruction
algorithm with a data-driven denoising prior and have shown
that it is able to produce excellent results. Importantly, the
regularizer can be trained on simulated data and later be
applied to real measurements. Ongoing work focuses on the
theoretical convergence guarantees of the proposed algorithm.
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A scatter correction method of CBCT via
CycleGAN and forward projection algorithm

Tianxu Tang, Wei Zhang, and Weiqi Xiong

Abstract—Scatter artifacts is one of the limitations of cone-
beam computed tomography(CBCT) image quality, this paper
proposed a novel scatter correction method for CBCT via
combining the deep learning and forward projection algorithm.
This method can be mainly divided follow steps: Firstly, raw
projections were used to reconstruct raw CBCT via FDK algo-
rithm, and then the raw CBCT was processed by CycleGAN
network to generate synthetic CT, after that the synthetic CT
was used to forward projection based on the Beer’s laws to
generate scatter free primary projections. The raw scatters can
be estimated via subtracting the primary projections from the
raw projections, and then a median and low-pass Gaussian
filter was used to smooth the raw scatters. Finally, The scatter
corrected projections can be acquired by subtracting the filtered
scatters form raw projections. The study results of pelvis and
chest validated the effective of proposed correction method in
reducing scatter artifacts of CBCT. Compared with uncorrected
CBCT and CBCT corrected by scatter kernel superposition(SKS)
method, the proposed method can more effectively improve the
quality of reconstructed CBCT, reducing the CT number errors
and increasing contrast-to-noise(CNR) and so on. All results show
that this method has strong scatter artifacts restriction ability,
so it has significant promising for clinical application.

Index Terms—CBCT, scatter correction, CycleGAN, forward
projection.

I. INTRODUCTION

CONE-beam CT (CBCT) has been widely used in image-
guide radiation therapy, it can provided accurate patient

position, and also can track the tumor positon in therapy.
But as the existing of scatter signals in CBCT, it will
lead to strong noise and CT number errors. This is one
of reasons to limit the application of CBCT in dose cal-
culation, adaptive radiation therapy and so on. Scatter cor-
rection technology for CBCT has been widely study, those
methods can be mainly divided three categories: software-
based[1-4], hardware-based[5,6] and software-hardware hy-
brid methods[7-11]. In earlier study, many hardware-based
methods been proposed, such as anti-scatter grid method, air
gap method and so on. Software-based mainly contains Monte
Carlo, deep learning and SKS methods. Furthermore, there are
also some methods combined the hardware and software, those
study usually include beam stop array, primary modulation
method and so on. Above scatter correction methods mainly
via direction measurement or theoretical calculation to esti-
mate scatter, considering the characteristic of existing planning
CT in radiation therapy, there are also methods estimate
scatter signals via planning CT forward projection and then

Tianxu Tang, Wei Zhang and Weiqi Xiong are with United Imaging
Healthcare, shanghai, 201807, china. (E-mail: tangtianxu0815@gmail.com)

subtracted it from raw projections[12-15]. Nui et al[12] via
rigid registration of the planning CT with CBCT, and then
forward projection process be used in planning CT to acquire
primary projections, so the scatter signals can be estimated
easily and be smoothed. To further decrease the estimated
scatter errors, they also used some improvement technologies
such as deformable registration, gas pocket matching in this
method. As the mismatching of CBCT with planning CT, it
will leads serious errors for scatter estimation, Cui et al[15]
used local filtration technique for the estimated scatter signals
to improvement the accuracy of scatter estimation furthermore.

Nui and Cui’s method just can used in those situation there
are planning CT and it significantly rely on the accuracy
of registration. In this paper, We proposed a novel scatter
correction method via combine the deep learning and forward
projection technique. A CycleGAN deep learning network was
used to convert the CBCT to synthetic CT, and then use
synthetic CT to generate primary projections, and estimating
scatter signals. Our method has significant advantages that it
didn’t need any prior information, so the application regions
are more extensive, and proposed method also avoided the
scatter estimation errors bring by registration.

II. METHODS

A. Generating Synthetic CT

We used CycleGAN network[16] as basic deep learning
network to convert raw CBCT to synthetic CT, it used two
generators and discriminators to convert images between two
cycle networks. We used a U-net architecture for generators
and a patchGAN for discriminators. Generators are used
to generate synthetic CT, while discriminators are used to
distinguish real or fake data, Fig2 shows the architecture
of CycleGAN network in this paper, it mainly include two
cycles. In cycle one, CBCT is converted to synthetic CT via
generator G1, and discriminator D2 is used to discriminate
synthetic CT and real fan-beam computed tomography(FBCT)
to restrain generator G1, generator G2 is used to generator
synthetic CBCT from synthetic CT. In cycle two, FBCT is
firstly converted to synthetic CBCT by generator G2, while
discriminator D2 discriminates between synthetic CBCT and
real CBCT, and the same time synthetic CBCT is converted
to synthetic CT using generator G2. We used 24 patients
dataset as training, 5 patients dataset as validation, and 2
patients dataset as test to train CycleGAN network. Every
patient contains 270 CBCT slices with 512x512 axial pixel and
thickness 1mm, the corresponding FBCT also was resampled
to same size with CBCT.
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Fig. 1. The workflow of proposed scatter correction method.

Fig. 2. The architecture of CycleGAN network in this paper.

B. Scatter Estimation

The work flow of proposed scatter correction method as
show in Fig1. Raw CBCT images were reconstructed firstly
using standard FDK algorithm, and then the CBCT images
were used to generate synthetic CT images via CycleGAN
network. In forward projection procedure, HU number of
synthetic CT firstly was transformed to corresponding water
density, scatter free primary projections were acquired via
forward projection of synthetic CT images based on Beer’s
law. In traditional scatter correction using deep learning di-

rectly, the high-frequency errors can not be tolerant, but in
our case only the low-frequency signals of synthetic CT are
used, so our method has some tolerance for high-frequency
errors of synthetic CT. To improve the calculation times
and save memory space, the primary projections and raw
projections were downsampled from 1024×1024 to 256×256.
When subtracting estimated scatter form raw projections, the
scatter signals will be upsampled firstly back to 1024×1024.
For every projection angle, subtraction of primary projections
from raw CBCT projections gives the raw scatter projection
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Fig. 3. The pelvis study with different way: (a)no correction, display window:[-200 400]; (b)with proposed correction, display window:[40 400]; (c)ground
truth FBCT, display window:[40 400].

images. Synthetic CT maybe has some slight errors, so there
were some mismatching between raw CBCT projections and
primary images of forward projection, and the low frequency
characterize of scatter signals, a median filter(size 45-by-45
pixels) and a low-pass Gaussian filter(size 51-by-51 pixels)
was used to smooth raw scatter projection images. Finally,
subtracting smoothed scatter from raw projections, and then
using subtracting results to reconstructed via FDK algorithm.

C. Evaluation Metrics
To evaluate the performance of proposed correction method,

using contrast and contrast-to-noise (CNR) as the evaluation
metrics, the contrast calculated as:

Contrast = HUr �HUs (1)

the CNR calculated as:

CNR =
HUr �HUsp

�
(2)

here HUr is the mean of selected region, HUs is the mean
of surrounding area, � is the standard deviation of selected
region.

III. RESULTS AND DISCUSSION

We performed our study on United-Imaging uRT-linac
506c, it contains an advanced MV-CBCT and FBCT sys-
tem. The reconstructed FBCT images had a pixel size of
512×512×90 and voxel size of 0.97mm in axial plane and
3mm in longitudinal direction, while the CBCT images had
a pixel size of 512×512×270 and voxel size of 0.78mm in
axial plane and 1mm in longitudinal direction. To enlarge
the field of view of MV-CBCT imaging, the flat detector
was shifted by 90mm, and the reconstruction system of uRT-
linac 506c contains strong denoising process. Fig3 shows a
pelvis study, it contains without correction CBCT, proposed
correction CBCT and ground truth FBCT. In the pelvis case,
the HU number of CBCT corrected by proposed method
has significant increase than without correction CBCT, and
the serious artifacts in without correction images had been
improved via proposed method. The red line profile showed
in Fig4 also demonstrate the effective of our method, and it
is more nearing the FBCT compare with without correction.
To quantitatively evaluate the performance of our method,

three ROIs were chosen to calculate the CNR and contrast
number as show in table1. In the selected ROIs, the CNR
and contrast of three areas had obvious increasing. To further
evaluate proposed scatter correction method, Fig5 shows the
CBCT images of a chest data corrected by proposed method
and SKS correction method. SKS scatter correction has been
wildly study and used in commerce, because it has good
performance and fast calculation, and don’t need any other
hardware equipment. From the chest performance at axial,
coronal and sagittal plane, we can see that the contrast and
HU uniformity of CBCT corrected by proposed correction has
significant improvement compared with SKS correction.

Fig. 4. 1D horizontal profile along the solid line drawn in Fig3(c).

TABLE I
CONTRAST AND CNR OF SELECTED REGIONS

Method Metrics ROI1 ROI2 ROI3

Proposed correction Contrast 104 80 121

CNR 25.22 17.45 31.4

Without correction Contrast 52 48 11

CNR 18.44 13.9 3.5
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Fig. 5. The chest study with proposed and SKS correction. Left column is
proposed correction, right column is SKS correction.From top to bottom is
axial, coronal and sagittal plane. All images with display window:[40 400].

IV. CONCLUSION

An effective CBCT scatter correction method was proposed
in this paper, this method combined the advantage of deep
learning and forward projection. In traditional scatter correc-
tion using deep learning directly, there is a big problem is that
can’t tolerate high-frequency errors, but in our method slight
high-frequency errors are can be tolerated, because we just
used the low-frequency signals of synthetic CT to estimate
scatters, and a median filter and low-pass Gaussian filter was
used to smooth the raw scatter images. Previous correction
method for CBCT via forward projection all most based on
planning CT, while the mismatching and registration errors
between CBCT and planning CT will affect the correction
effects, out method don’t need planning CT, so it can avoid
above disadvantages bring by forward projection of planning
CT. Whatever compared with raw CBCT or SKS correction
CBCT with subjective feeling and quantitative analysis, the
quality of CBCT corrected by proposed method all is better,
and it is very close to FBCT. But there are also some
problems, when the CBCT appears truncation for large body,
the performance of proposed method is not good for those
case. And at present, we just used a simple 2D median and
Gaussian filter for raw scatters, more effective or precision
filtering algorithms could be study in the future.
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Abstract— We have developed VSHARP®, a suite of scatter 
correction solutions that have been incorporated into the 
commercially available cone-beam software development 
toolkit, CST (Varex Imaging, Salt Lake City, UT) enabling 
scatter correction to be applied as part of an entire CBCT 
reconstruction pipeline. The suite includes 2D VSHARP®, a 
deconvolution correction using asymmetric Gaussian kernels, 
2D VSHARP-ML, a U-NET machine-learning correction, and 
3D VSHARP®, a correction using a rapid finite-element Linear 
Boltzmann Transport Equation (LBTE) solver to estimate 
scatter in a manner similar to traditional stochastic Monte Carlo 
(MC) simulations. Of the three corrections, 3D VSHARP is the 
most accurate and flexible since it can be readily applied to 
arbitrary scanner geometries, protocols, and scan parts while 
the 2D VSHARP models may need to be regenerated for each 
configuration. On the other hand, 3D VSHARP is inherently 
slower since a minimum of two reconstruction passes are needed 
and the LBTE solver, while much faster than traditional MC, is 
still computationally intensive. The goal of this work was to 
minimize LBTE run times for (typically large) industrial 
datasets by optimizing parameter settings, particularly the 
choice of the sampling grid dimensions. This was achieved by 
applying a multi-objective genetic algorithm to find the Pareto 
front characterizing the tradeoff between speed and accuracy 
and identifying key operating points on the curve.  Testing with 
720 frames of 3720x3720 projection data to make a 
reconstruction volume of size 500x500x600, we found that 
excellent image quality can be obtained by using a coarse scatter 
grid size of 27x27x32 volume and 44x44 detector and a primary 
grid size of 246x246 x295 volume and 295x295 detector, both 
over 42 frames for a grand total of 21 seconds LBTE 
computation time.  We show the Pareto characterization, as well 
as demonstrations of 3D VSHARP image quality with 
significantly reduced scatter-induced artifacts such as streaking 
and shading. 

Keywords— CBCT, Scatter Correction, Linear Boltzmann 
Transport Equation (LBTE), Genetic Algorithms, Pareto 
Optimization 

I. INTRODUCTION 

Recent algorithmic and computational advances have 
made MC-like scatter correction approaches much more 
practical.  The Acuros platform [1,2] rapidly solves the linear 
Boltzmann Transport Equation (LBTE) using finite element 
methods to determine the scatter distribution directly rather 
than stochastically as in conventional MC.  Recently, we 
unveiled 3D VSHARP [3,4] that uses Acuros to achieve 
accuracies comparable to MC methods in a tiny fraction of the 
time.  Acuros’ accuracy and run-time are both highly 
dependent on the choice of sampling grid used for the finite 
element solution.  If the grid is too coarse then results are 

inaccurate, and if the grid is too fine then time is wasted.  
Wang et al [2] have addressed this issue for medical use by 
optimizing the Pareto front over the set of sampling 
parameters.  In this work we perform a similar Pareto 
optimization for an industrial case of an aluminum motorcycle 
cylinder head. 

II. METHODS 

A. CST Framework 
The correction utilizes CST, Varex’s CT reconstruction 

SDK, which allows for flexible connection of modular plugins 
to perform a reconstruction. CST includes over 30 bundled 
plugins, including those necessary to implement 2D VSHARP 
[5], 2D VSHARP-ML [6], and 3D VSHARP.  CST also 
includes a Physics Library that contains user-selectable cross-
sections as well as x-ray spectra and detector response files 
required by 3D VSHARP. 

B. Pipeline with 3D VSHARP and 2-Pass FDK 
Reconstruction 

An example pipeline with 3D VSHARP is shown in Figure 1. 

Figure 1. Two-pass pipeline for FDK reconstruction with 3D VSHARP. The 
data flow green lines indicate projection data and purple lines indicate volume 
data.  

Processing for 3D VSHARP is in 6 basic stages: 

1. Acquisition and Pre-processing: Read data from disk 
or from the detector, and perform pre-processing 
operations such as offset correction, bad-pixel 
correction, or lag correction. 
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2. 2D VSHARP: Perform 2D (kernel-based) scatter 
corrections for scatter from the detector housing and 
from the scanned object. 

3.  FDK1: Complete a first pass reconstruction using 
the 2D VSHARP scatter-corrected projection data.  

4. 3D VSHARP contains six main components: 

a.  Segmentation and Material Estimation: The 
FDK1 volume is segmented into different regions 
corresponding to different materials, and a density is 
assigned to each material-voxel. 

b. Volume Downsampling: To reduce BTP 
computation time and GPU memory requirements, 
the volume is downsampled to make a lower 
resolution volume sampling grid. 

c.  The Boltzmann Transport Projector (BTP) runs 
the LBTE solver for a subset of projection angles. In 
addition to using a lower resolution volume sampling 
grid, the BTP detector matrix size is typically smaller 
than the original detector matrix size. 

d. Scatter Rescaling:  The simulated scatter output 
from BTP is rescaled to be at a comparable signal 
level to the measured data. To help determine the 
scaling factor, the simulated primary output signal is 
used as a reference since the measured data should 
be proportional to the sum of the primary and scatter. 

e. Scatter Upsampling: The scatter signal is 
upsampled in 3 dimensions (detector matrix U,V and 
projection angle) so that sampling matches the 
measured data. 

f. Scatter Subtraction:  The subtraction also includes 
a scatter-fraction smoothing and clipping step to 
ameliorate noise amplification from the subtraction. 

5. FDK2: Perform a second pass reconstruction. Apply 
post-processing operations such as ring correction. 

D. Data Acquisition and Reconstruction 
A motorcycle cylinder head was scanned and reconstructed 
with the parameters shown in Table 1. 
 

Acquisition Parameters 
Number of Detector Pixels 
(Dexels) 

3072 x 3072 

Projection Detector Pixel 
(Dexel) Size 

139 Pm x 139 Pm 

Detector Size 427 mm x 427 mm 
Number of Projection Frames 720 
Source-Axis Distance 1084 mm 
Source-Imager Distance 1302 mm 
Tube Spectrum 450 kV + 2 mmCu 
Detector Model 4343HE with DRZ Plus 

Reconstruction Parameters 
Number of Voxels 500 (x) x 500 (y) x 600 (z) 
Voxel Size 0.5 mm x 0.5mm x 0.5 mm 

Table 1: Acquisition and Reconstruction Parameters. 
 
Reconstruction was performed on a PC with 2 Intel Xeon ES-
2637v4 chips each containing 8 cores at 3.5 GHz, and an 
NVIDIA Titan RTX GPU with 4608 cores at 1.35 GHz. 
 
 

E. Pareto Optimization 
To characterize the processing time-vs-error tradeoff, we 

used the NSGA2 algorithm [7], a genetic algorithm (GA) for 
discovering Pareto fronts in multi-objective problems.  The 
two objectives were time and error. To measure error, a 
“golden” reconstruction was performed with all parameters 
set for maximum accuracy, then for each operating point the 
root mean square (RMS) error versus the golden 
reconstruction was measured.  

The total search space included: 1.  Primary Volume 
Matrix Size, 2 Scatter Volume Matrix Size, 3. Primary 
Detector Matrix Size, 4. Scatter Detector Matrix Size, 5. 
Number of Primary Projections, 6. Number of Scatter 
Projections.  

The constraints on the search were: 

1. All voxels were isotropic and completely filled the 
prescribed reconstruction field-of-view (FOV) in the 
x-, y- and z-directions. As the z-axis FOV was 
somewhat larger than the transaxial FOV -- because 
the first pass reconstruction was extrapolated to 
better capture second-order scattering events in the 
top and bottom portions of the object -- the GA 
algorithm chose values for the number of voxels in 
the x-y direction, denoted as Primary NumVoxeslXY 
and Scatter NumVoxelsXY. and then automatically 
compute the corresponding number of primary or 
scatter voxels that spanned the entire z-axis FOV. 

2. All detector pixels (dexels) were isotropic and 
completely filled the (square) detector extent in the 
U and V directions. The number of scatter dexels, 
Scatter NumDexelsUV, was chosen by the GA but 
the number of primary dexels depended on the 
number of primary voxels (Primary NumVoxelsXY) 
so that the Primary Dexel Size (mm) was the 
Magnification * Primary Voxel Size = SID/SAD * 
Primary Voxel Size = 1.2 x Primary Voxel Size. 

3. The primary and scatter projection angles were 
equally spaced. The relevant native search 
parameter was termed the Downsampling Factor 
from which an AngularIncrement value, quantized 
to multiples of 0.5°was computed. The number of 
frames then was then equal to Floor 
(720/AngularIncrement). The scatter frame rate 
downsampling factor (Scatter FrameRate 
Downampling) was an integer multiple of the 
Primary FrameRate Downsampling.  
 

Table 2 shows the native search space used by the GA. 

Search Parameter Search Range (Integers Only) 

Scatter NumVoxelsXY 25 to 90 
Primary NumVoxelsXY 25 to 500 
Scatter NumDexelsUV 10 to 42 
Primary FrameRate 
Dowsampling 

6 to 60 

Scatter FrameRate 
Downsampling 

PrimaryFrameRateDownsampling 
u (1,2,3) 

Table 2: Native search space used by the GA. 
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We ran 25 generations of NSGA2 with a population of 50, 
then another 25 generations with a population of 75.  

 III. RESULTS 

A. Motorcyle Cylinder Head Reconstructions 

Figure 2 shows example reconstructions of a sagittal slice 
including A) an “Uncorrected” reconstruction, B) the first 
pass reconstruction (from the unoptimized 2D VSHARP), 
and two 3D VSHARP reconstructions: C) the “Golden” 
reconstruction performed at maximum LBTE resolution for a 
run time of about 6 hours, and D) the “Operating Point F” 
reconstruction using a coarser LBTE grid, requiring only 21 
seconds of BTP time. Significant improvements in crispness 
and homogeneity are seen in the 3D VSHARP images with 
Operating Point F retaining similar image quality to the 
Golden image. 

Figure 2:Central sagittal slice. The window for each is chosen so that the 
10% and 90% gray values within the window correspond to the 5th and 95th 
percentiles of the voxel values.  The red outline shows the zoomed-in region 
in Figure 4.  

B. Pareto Results 

Figure 3 shows results from all generations of the NSGA2 
run.  Each operating point is shown as a blue dot, the Pareto 
front is shown as a red line, the convex hull of all the operating 
points is shown in green, and the set of points that were further 
studied is indicated by labeled circles.   

 
 Figure 3: Log-Log plot of Pareto Optimization Results. 

Table 2 shows search parameter and objective results for 
several operating points (A,D,F,I). As expected, RMS error 
decreases as 3D VSHARP runtime increases as do the 
sampling grid dimensions in general. Of note, is the 
exception that Scatter NVoxelsXY is relatively constant. This 
may partially reflect that its lower bound was 25. Also of 
note, Scatter NDexelsUV is more than 1.5x larger than 
ScatterNVoxelsXY which is greater than the 1.2x 
magnification one might have assumed. This may reflect the 
relatively high fidelity and angular resolution of each voxel’s 
computed scatter distribution which is enabled by the use of 
Legendre polynomials to describe the profile and propagate 
scatter across the grid [1] which, in turn, might allow for 
coarser volume resolution than detector resolution. Finally of 
note is that FrameRateDownsampling for each operating 
point was the same for the primary and scatter computations 
even though higher voxel and dexel resolution was required 
for the primary estimate. 

Sampling Grid Search 
Parameter 

 

GA results for selected 
Operating Points 

A D F I 

Scatter NVoxelsXY 27 27 27 25 
Primary NVoxelsXY 85 119 246 449 
Scatter NDexelsUV 13 44 44 57 
Number Primary 
Projections 

14 37 42 120 

Number Scatter 
Projections 

14 37 42 120 

Objectives A D F I 

RMS Error .038 .015 .010 .005 

3DVSHARP time (s) 3.9 12.9 21.1 168 

Table 2: Results for selected 0perating points matching Figure 3. 

C. Example Images Along the Pareto Front 

Figure 3 shows zoomed-in images, corresponding to the red 
outlined region in Figure 2c, for the Operating Points in 
Table 3.  The red arrows point to inhomogeneities in the 
form of streaks or shading.  The top image (Operating Point 
A) takes the least amount of BTP time, 3.9 seconds, but does 
show artifacts.  Moving down the figure, artifacts decrease as 
execution time increases.  While homogeneity steadily 
improves with increased BTP time, we note that for many 
applications, images D or F may be perfectly acceptable, 
requiring 13 and 21 seconds BTP time respectively. 

D. Contrast Analysis 

The histograms of different reconstructed volumes are shown 
in Figure 4.  In the Uncorrected Image, the air and aluminum 
peaks are poorly separated, with slightly better separation 
occurring in the 2D VSHARP image and good separation in 
3D VSHARP images.  

To quantify the separation of air and aluminum, the contrast-
to-noise ratio in each histogram was computed by segmenting 
the images into “Air” or “Object” voxels and using the 
equation CNR = 

(𝜇𝑂𝑏𝑗−𝜇𝐴𝑖𝑟)√2

√𝜎𝑂𝑏𝑗
2 +𝜎𝐴𝑖𝑟

2
 where Pair and Pobj are the respective 

typical linear attenuations of the Air and Object voxels and Vair 

and Vobj are the respective standard deviations.  We used the 
histogram peaks for P, and their midpoints as the segmentation 
thresholds, shown respectively by an o and an x in Figure 4. 
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Fig. 3. Zoom-in on the central sagittal slice from various reconstructions. 
The window for each reconstruction is [PObj-3VObj, PObj+2VObj].  The 
window for each difference image is [-0.02 mm-1, +0.02 mm-1]. 

 

The resulting CNRs for operating Points A, D, F, I and 
“Golden” were 8.1, 8.9, 9.0, 9.0, 9.0 respectively. The 
Uncorrected CNR of 4.7 was the lowest while the 2D 
VSHARP CNR was slightly improved at 5.3. Points F and I 
have CNRs comparable to the golden image, which again 
suggests that there is no significant benefit to spending more 
than 10-20 seconds on the LBTE solution.   

IV. DISCUSSION 

MC or pseudo-MC scatter correction methods such as 3D 
VSHARP can produce highly accurate scatter estimates and, 
in fact, are used as a gold standard for training ML-scatter 
correction methods. A main advantage of MC methods is that 
they are versatile since all that is needed at runtime is the 
geometric specification of the CBCT system and a physics 
library which characterizes it. However, MC or even pseudo-
MC methods are generally not as fast as Machine Learning or 
Kernel methods since a first pass reconstruction is required 
and the scatter transport calculation is computationally 
intensive.  

For this data set, it was found that 10 to 20 second LTBE 
run times are sufficient if using an optimized sampling grid.  
We expect this result to be somewhat problem dependent, and 
may change with object size, complexity, or material, as well 
as with scanner geometry.  However, it is interesting to note 
that our optimal time is roughly in line with the results of [2].  

  
Fig. 4. Histograms of reconstructed volumes 
 

Of note is that the 2D VSHARP calibration was not 
optimized for this setup.  Although proper tuning may 
improve 2D VSHARP image quality, we chose to leave it 
unoptimized to show that the segmentation algorithm is fairly 
forgiving. 

For future work, there are still many interesting parameters 
left to optimize including looking into non-uniform angular 
sampling [2], optimizing interpolation and segmentation 
methods, and optimizing intrinsic LBTE parameters such as 
energy grouping. 

V. CONCLUSION 

3D VSHARP was shown to significantly reduce scatter 
artifacts and produce excellent results with 10-20 seconds of 
computation time. Although a first-pass reconstruction is still 
needed, for the second pass reconstruction the results show 
that the additional time added by 3D VSHARP is minimal 
especially given that CST permits the LBTE computation to 
be performed in parallel with other FDK operations such as 
filtering and backprojection. 
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Abstract— NeuralCT [1] has been recently proposed as an 

implicit neural representation-based image reconstruction that 
can produce time-resolved images from CT sinograms and reduce 
motion artifacts, even when undergoing complex motions. 
NeuralCT does not require the prior motion model or estimation 
of object motion. Instead, it utilizes a network to implicitly 
represent the time-varying object boundary by singed distance 
function and optimizes the network via differentiable rendering. 
In this work, we modify the NeuralCT framework to reconstruct 
scenes that have multiple moving objects with distinct attenuation 
levels. We show that the performance of NeuralCT reconstruction 
depends on the quality of the initialization of the network (in this 
case, object segmentation in motion corrupted FBP image). We 
show how spatially aware object segmentation can improve 
motion-corrected reconstruction in moving objects with multiple 
attenuation levels despite high angular motion and complex 
topological changes.  
 

Index Terms— Motion Correction, Implicit Neural 
Representation, Differentiable Rendering 
 

I.    INTRODUCDTION 
ardiac computed tomography (CT) has emerged as a 
noninvasive method to evaluate the coronary artery disease 

and assess the cardiac function. However, image quality can be 
limited by motion of cardiac structures. For example, even slow 
coronary vessel motion (~15mm/s) can cause significant 
blurring of vessels [2]. Improved hardware such as faster gantry 
rotation or dual source designs can avoid/reduce motion 
artifacts but further improvement appears limited by physical 
constraints. Machine learning algorithms [3], [4] have been 
used to correct motion artifacts in reconstructed images. 
However, current approaches are limited by the need as a true 
motion vector field (for training) is unavailable in clinical data.  

Recently, implicit neural representations (INR) [5] have been 
used to improve reconstruction of medical images [6], [7]. 
Gupta et al. [1] recently developed an INR-based framework to 
improve reconstruction of CT data corrupted by object motion. 
This framework, called “NeuralCT”, takes CT sinograms as the 
input and produces time-resolved images and was shown to 
correct motion artifacts. A key benefit of NeuralCT is that it 
does not impose a motion model nor require estimates of the 
object motion. An overview is shown in Fig 1. 

NeuralCT utilizes a neural network to implicitly represents 
(neural representation) the moving object boundary via the 
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signed distance function (SDFs). Concretely, the INR maps the 
spatiotemporal domain of the moving object (a point at a 
particular position and time) to SDF value domain (the real-
time relative position of this point with respect to the object 
boundary). In this work, the neural representation was 
initialized using intensity-based segmentation of the motion 
corrupted Filtered Backprojection (FBP) result. The 
representation was then optimized via differentiable rendering 
(DR) [5], a technique used to identify the shape of an object that 
best “explains” its acquired projection. Thus, NeuralCT aims to 
identify the optimal time-varying shape of moving object such 
that the resultant projection agrees with the CT sinogram 
(ground truth projections). We emphasize that NeuralCT is not 
a learning task that requires training and testing datasets as such 
approaches depend on data driven priors which have a tendency 
to introduce bias in the reconstruction. Instead NeuralCT builds 
on work where INR problems are solved via optimization. In 
this case, NeuralCT performs optimized reconstruction by 
forward rendering the moving object to acquire projection 
estimates, calculating the error between projection estimates 
and the true sinogram, and then updating the reconstruction by 
backpropagating the error via gradient descent.  

In the initial description of NeuralCT, Gupta et al. showed 
high-quality motion-correction for a single foreground object 
with high angular motion (up to 200o displacement per gantry 
rotation) as well as complex topological deformation [1]. 
However, clinical CT scans are not composed of a single 
foreground class. Therefore, the core contribution to this study 
is to extend NeuralCT to successfully correct motion artifacts 
in scenes with multiple (i.e., different intensity) moving objects. 
In particular, we observed that imaging multiple moving 
objects with different attenuations can limit the accuracy of 
intensity-based segmentation and consequently decrease the 
reconstruction performance. As a result, we incorporate spatial 
information into the segmentation and compare our improved 
reconstruction result with the initial NeuralCT and FBP. 

 

Motion Correction Image Reconstruction using NeuralCT 
Improves with Spatially Aware Object Segmentation 

Zhennong Chen1, Kunal Gupta1, Francisco Contijoch1,2 

C 

 
Fig. 1.  NeuralCT framework. FBP = filtered backprojection, SDF = signed 
distance function, DR = Differentiable Rendering. In this study we proposed a 
new segmentation (red box) to extend NeuralCT to more complicated scenes. 
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II.    METHODS 
A.  NeuralCT Framework 

The NeuralCT framework is described in Fig. 1 and the full 
description can be found in Ref [1]. The CT sinogram is the 
input and a time-resolved attenuation map !*(#, %) (motion-
corrected image) is the output. The steps of the algorithm are: 

Step 1: FBP images are created via backprojection of the 
sinogram P (comprised of a set of projections {P1, P2, …, Pn} 
for n gantry positions). This results in a series of motion-
corrupted attenuation images !!"#(#, %).  

Step 2: Segmentation Seg is used to identify different 
foreground objects from !!"#(#, %). The choice of Seg will be 
further discussed in Section II.B and II.C. Segmentation results 
in a binary time-varying images '(#, %, ()  where the ( th 
channel corresponds to the (th foreground object. 

Step 3: The time-varying scene of ( binary images '(#, %, () 
is implicitly represented using the signed distance function 
(SDF). Specifically, )*+(#, %, () is generated to represent the 
position of the boundary as the signed distance of a point at 
location # in space at a particular time % to the boundary of the 
($% object. 

Step 4: For each location # ∈ -& where N is the number of 
spatial dimensions, the temporal evolution of an object’s SDF 
was represented by Fourier Features (FF) using Fourier 
coefficients {A0, A1, …, AM, B0, B1, …, BM}: 

)*+(#, %, () ≜ 	
1
123'(#, ()456(289'%) 	

(

')*
+ ''(#, ();<4(289'%)	 		(1) 

Here, 9' are M randomly sampled frequencies. In our work, 
we approximated the SDF map )*+(#, %, () by a SIREN neural 
network [8] (an efficient framework to capture high frequency 
information). This neural network =(#, (;?) , where w are 
weights in the network, was trained to output correct Fourier 
coefficients {Ai, Bi} in Eqn. 1: 3'(#, (; =) and ''(#, (; =).  

 The weights ? were initialized randomly, and then updated 
by the standard gradient descent, 

?	 ← 	?	 − 	B∇ℒ  (2) 
where ℒ	 = 	ℒ+,! + Fℒ-. ℒ is the total loss; ℒ+,! is the 

mean difference of the true SDF map (derived from FBP) 
versus )*+(#, %, (; =) for all #, %, (; ℒ- is the Eikonal 
constraint computed as the mean value of absolute value of 
||∇.)*+(#, %, (; =)||2 -1 for all position #. F is the 
regularization factor.  

To conclude, after Steps 1-4 a SIREN neural network = is 
created that implicitly approximates the SDF map of the 
motion corrupted FBP images so = contains motion artifacts 
present after FBP.  

Step 5: Differentiable Rendering (DR) is used to optimize = 
such that it represents a scene that is consistent with the 
acquired sinogram. Specifically, DR was used to identify the 
optimized shape )*of an object that minimizes the projection 
loss ℒ#	between the true projections (G') and the projections 
obtained via rendering of the estimated shape S: 

ℒ# =2|G' 	− 	*-(); I')|	
/

')*
			(3) 

 
Here, *-(); I') is the differentiable rendering operator; in 

CT, it represents the projection of an object shape )  from 
“spatiotemporal attenuation space” !(#, %)  to the “projection 
space” G' by the line integral of attenuation along the x-ray path 
K traversing through the scene at a gantry position I': 

*-(!(#, %); I') 	= L !(#, %)ℛ0!(%)NK1
		(4) 

where ℛ0(%) is the time-varying rotation matrix describing 
the gantry rotation with angle I'.  

Spatiotemporal attenuation maps !(#, %)  in Eqn. 4 were 
obtained from the SIREN SDF ()*+(#, %, (; =))  by first 
converting the SDF to an occupancy map ℰ	(where negative 
SDF value means the pixel is occupied) and then multiplying ℰ 
with the object’s attenuation Q(()  (Eqn. 5). Q(()  was 
approximated as the median attenuation of the ($% segmented 
object in the FBP image. 

!(#, %) 	= 	2 Q(() × ℰ()*+(#, %, (; =))
2

			(5) 

Combining Eqn. 3-5, this approach enables the loss ℒ#	to be 
defined as a differentiable function of =. Additional loss terms 
– ℒ-  (Eikonal constraint), ℒ34+  and ℒ343  (total variances 
computed as the gradient of the SDF with respect to # and %) 
were added to constrain the result, leading to a total loss ℒ	 =
	ℒ# + F5ℒ- + F6ℒ34+ + F7ℒ343  where F5	 to F7  serve as 
regularization weighting parameters. 

Step 6: After optimization, the result )*+(#, %, (; =*) was 
convert to the motion-corrected image !*(#, %) (i.e., the final 
product of NeuralCT reconstruction) via Eqn. 5.  

 
B.  NeuralCT with Intensity-based Segmentation 

As outlined above, a key step in the NeuralCT framework is 
the initialization described in Step 4 where SIREN = aims to 
approximate the SDF map of the scene of interest. Gupta et al. 
[1] used a Gaussian Mixture Model (GMM) [9] that was solely 
based on the intensity histogram in !!"#(#, %). GMM fits a finite 
number of Gaussian distributions to the intensity histogram and 
assigns pixels with intensity from the same Gaussian 
distribution as the same class. After excluding the background, 
the top (  classes with the most pixel were used to identify 
foreground objects. As shown in [1], this segmentation method, 
hereafter referred to as SegGMM , worked well in the scenes with 
a single foreground object – as it readily separates the object 
from the background, despite motion artifacts. 

 
C.  NeuralCT with Spatially Aware Segmentation 

However, when SegGMM is applied to a scene with multiple 
moving objects, each with different attenuations, it becomes 
difficult to differentiate objects based solely on the intensity 
distribution. Fig. 2 shows a failure of SegGMM when analyzing 
the FBP reconstruction of two moving dots with two different 
attenuations (top = 0.7, bottom = 0.2). Based on the histogram, 
GMM identifies the top two intensity values with the most 
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pixel counts from the distribution. However, this results in 
incorrect labeling of two dots as one bright foreground class 
and a second dimmer object spread throughout the image. 
 The core contribution of this study is to improve 
NeuralCT performance in the case of multiple intensity 
objects by resolving this segmentation error. We did so by 
applying a spatially-aware segmentation approach SegSI 
which incorporated both the Spatial (S) and Intensity (I) 
information of each object in the FBP image. SegSI aims to 
assign different classes to objects with different spatial 
positions and be aware of the different intensities between 
the real object and the motion artifacts. This can be achieved 
using various approaches such as Region-Of-Interest (ROI) 
definition plus thresholding or data-driven methods (e.g., 
deep learning segmentation). Here, we focus on 
demonstrating that this improvement in segmentation leads 
to improvements in NeuralCT performance. In Fig. 2, we 
show a simple approach to add spatial information. 
Specifically, bounding boxes were used to guide 
thresholding-based segmentation. Each bounding box was 
defined to only contain one moving dot such that we 
assigned one individual class to each box. In the box, we 
defined an intensity threshold = T ×Imax where Imax is the 
maximum intensity in the scene in each box to capture the 
real object. T = 0.7 was set empirically. 

Given that artifacts will always be present in the initial 
FBP images, we highlight here that the goal with this new 
segmentation is not to achieve a perfect segmentation but 
rather to provide a segmentation that is not so poor that it 
precludes improvement by the NeuralCT framework. We 
hypothesize that by improving the initial segmentation, we 
will avoid overt failures and improve image quality obtained 
with NeuralCT. 

III.    EXPERIMENTS AND RESULTS 
We performed two experiments to demonstrate the impact of 

the segmentation on the subsequent result and evaluate the 
improvement associated with our new segmentation approach. 
 

Experiment 1: Angular Displacement of Two Dots 
As shown in Fig. 2, two circular dots which translate with 

angular displacement ∆∅ per full gantry rotation were imaged. 
The two dots had different attenuation levels (top = 0.7, bottom 
= 0.2), mimicking the difference between contrast-enhanced 
vessels and the myocardium in cardiac CT. Background = 0. 
The image resolution was set to 128×128 and a parallel beam 

 
Fig.2. Two different object segmentation approaches used in NeuralCT. The first image shows the ground truth motion of two dots (top intensity = 0.7, moving 
from left to right, bottom intensity = 0.2, moving from right to left). ∆∅ is the angular displacement per gantry rotation. SegGMM: Gaussian mixture model incorrectly 
assigned the motion artifacts and the bottom dot as the same class. SegSI: Spatially aware segmentation utilized both spatial info (by setting bounding box in this 
example) and intensity info (thresholding) and led to correct detection of both top and bottom dots. 
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Fig. 3.  NCT-SegSI accurately depicts the moving dots with two attenuations 
and high angular displacements. FBP suffers from motion artifacts for all ∆∅; 
NCT-SegGMM failed the reconstructions for high ∆∅  (>60); Only NCT-SegSI 
maintained high-quality motion-corrected reconstruction for all ∆∅ with higher 
DICE and lower RMSE when compared with FBP and NCT-SegGMM. ∆∅ = angular 
displacement per gantry rotation. 
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CT geometry was used with 720 gantry positions per rotation. 
Two NeuralCT frameworks were then evaluated – intensity-
based segmentation (NCT-SegGMM) and spatially aware 
segmentation (NCT-SegSI) – across a range of ∆∅ (from 20° to 
200° per gantry rotation). Performance was evaluated using 
root-mean-square-error (RMSE) and DICE coefficients 
relative to the ground truth image. 

As shown by the images and metrics in Fig. 3, FBP motion 
artifacts increased at higher ∆∅. Reconstruction with NCT-
SegGMM was limited when ∆∅ > 60°. In contrast, NCT-SegSI 
maintained high-quality motion-corrected reconstructions for 
all ∆∅ and achieved low RSME (<0.028) and high (>0.89) 
DICE for ∆∅ up to 160°. 
 

Experiment 2: Complex Deformation of Letters 
In experiment 2, we evaluated the ability of NCT-SegSI to 

improve reconstruction of scenes with complex topological 
changes. As shown in Fig. 4, in this case, we simulated CT 
imaging during transformation of letters. The top letter 
transformed from “A” to “B” to “A” (attenuation = 0.7) while 
the bottom letter transformed from “B” to “A” to “B” 
(attenuation = 0.4). NCT-SegSI (red line) significantly reduced 
the severity of artifacts observed with FBP (blue) and NCT-
SegGMM (orange), especially during transformation periods 
(2nd-3rd and 5th-6th columns). Quantitatively, median RMSE of 
NCT-SegSI (median = 0.050 [0.042-0.061]) was significantly 
lower (p<0.05) than NCT-SegGMM (0.090 [0.076-0.096]) and 
FBP (0.069 [0.047-0.085]). Median DICE for NCT-SegSI 
(0.89 [0.86-0.93]) was significantly higher (p<0.05) than 
NCT-SegGMM (0.72 [0.69-0.76]) and FBP (0.72 [0.64-0.87]). 
Lastly, NCT-SegSI increased the percentage of the frames with 
RMSE< 0.05 (NCT-SegSI: 45.7%, NCT-SegGMM: 0%, FBP: 
28.0%) as well as with DICE > 0.85 (NCT-SegSI: 89.6%, NCT-
SegGMM: 0%, FBP: 27.6%). 

IV.     SUMMARY 
Reconstruction of moving scenes using a neural implicit 

representation-based framework (NeuralCT) can improve 
image quality the need for a prior motion model or estimation. 
Here, we show that when imaging scenes with multiple moving 
objects, performance of NeuralCT can be limited by poor 
segmentation of motion-corrupted FBP images. Using a 
spatially aware object segmentation method that incorporates 
both spatial and intensity information can result in an NeuralCT 
solution which maintains high reconstruction performance for 
moving objects with multiple attenuation levels despite high 
angular motion and complex topological changes. 
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Fig. 4. NCT-SegSI accurately depicts the complex topological change with 
multiple attenuations. The ground truth image (red box) contains two letters that 
transform over two gantry rotations. Seven frames including three stationary 
phases (column 1,4, 7) and four intermediate transformation phases (column 2-3, 
5-6) are displayed. Both reconstructed images and the quantitative metrics 
indicates that NCT-SegSI improved the imaging of a complex scene. 
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� 
Abstract—Photon-counting detector (PCD) CT promises to 

improve routine CT imaging applications with higher spatial 
resolution, lower levels of noise at fixed dose, and improved image 
contrast while providing spectral information with every scan. We 
propose and demonstrate a novel application of PCD imaging in a 
preclinical model of head and neck squamous cell carcinoma: 
spectral perfusion imaging of cancer. To handle the high 
dimensionality of our data set (3D volumes at 12 perfusion time 
points times 4 energy thresholds), we update our previously 
proposed multi-channel iterative reconstruction algorithm to 
handle the perfusion reconstruction problem, and we propose an 
extension which adds patch-based singular value thresholding 
(pSVT) along the perfusion dimension. Adding pSVT reduces 
noise by an additional 45% relative to our standard algorithm, 
which itself reduces noise by 2-7 times relative to analytical 
reconstruction. Preliminary analysis suggests that the addition of 
pSVT does not negatively impact material decomposition accuracy 
or image spatial resolution. Notable weaknesses of this 
preliminary study include relatively high contrast agent dose (0.5 
mL ISOVUE-370 over 10 seconds), ionizing radiation dose (~570 
mGy), and computation time (2.9 hours, no pSVT; 11 hours with 
pSVT); however, following from our past work, our 
reconstruction algorithm may be an ideal source of training labels 
for supervised deep learning applied to computationally cheap 
analytical reconstructions. 
 

Index Terms—X-ray CT, photon counting, multi-energy CT, 
perfusion, preclinical, head and neck cancer 
 

I. INTRODUCTION 
hoton-counting detector (PCD) technology brings 
significant advancements to traditional X-ray CT imaging 
applications, including higher spatial resolution, reduced 

electronic noise, and improved image contrast [1, 2]. 
Furthermore, replacing traditional energy-integrating detectors 
with PCDs in routine imaging applications will intrinsically 
provide spectral information for artifact reduction and post-
processing. Fully exploiting this spectral information will 
enable novel applications of multi-contrast imaging and even 
functional targeting of CT contrast [3, 4]. Practically, a new 
generation of data processing algorithms is required to take full 
advantage of spectral information at current dose levels because 
of the increased noise associated with photon binning and 
multi-material decomposition. 

In this work, we demonstrate a new application of PCCT, 
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spectral perfusion imaging of cancer, as a future alternative to 
contrast-enhanced CT imaging protocols like those used to 
stage head and neck squamous cell carcinoma (HNSCC) in 
humans [5]. Specifically, we present a preclinical experiment 
using a syngeneic transplant oral cavity model of HNSCC 
(MOC2) [6] initiated in C57BL/6J mice by implantation of cells 
into the buccal mucosa. To handle high levels of noise 
associated with PCCT and preclinical imaging, we extend our 
previously proposed iterative reconstruction algorithm from 
spectral [7] and cardiac [8] applications to multi-channel 
perfusion reconstruction. New to this work we employ an 
updated version of our rank-sparse kernel regression (RSKR, 
[7]) algorithm which includes localized noise estimation for 
handling spatial variance and patch-based singular value 
thresholding [9] for improved temporal redundancy.  

II. MATERIALS AND METHODS 

A.  Data Acquisition 
 Our photon counting micro-CT system uses a SANTIS 1604 
detector (DECTRIS Ltd.). The detector is constructed with a 1 
mm thick CdTe sensor, 150-μm isotropic pixels (1035x257), 
and four independent energy thresholds, here set to 20, 25, 34, 
and 50 keV to bracket the K-edge of iodine. The projection data 
set was acquired with a G297 X-ray tube (Varian Medical 
Systems; fs = 0.3/0.8 mm; tungsten rotating anode; filtration: 
0.1 mm Cu; 80 kVp, 2.5 mA, 90 ms exposure / projection). The 
source-to-detector and source-to-object distances were 821 mm 
and 674 mm, respectively. To minimize ring artifacts in our 
reconstructions, we scanned using a helical trajectory with 3 
rotations (45 seconds/rotation) and 1.25 cm of total translation 
during scanning, acquiring a total of 1500 projections per 
threshold. This acquisition protocol was repeated 4 times, 
consecutively, yielding a total of 6000 projections over 540 
seconds. The absorbed radiation dose associated with imaging 
was ~570 mGy. To image perfusion, we injected 0.5 ml of 
ISOVUE-370 (Bracco Diagnostic Inc.) over 10 secs via a tail 
vein catheter using a computer-controlled injector (Nexus 3000; 
Chemyx Inc.), starting 22.5 seconds after beginning the scan. 

The animal scan conducted for this work followed protocols 
approved by the Duke University Institutional Animal Care and 
Use Committee. The animal model was a syngeneic transplant 
oral cavity squamous cell carcinoma model (MOC2) [6] 
initiated in a C57BL/6J mouse by implantation of 30,000 cells 
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into the buccal mucosa (median time to tumor onset: 2.2 
weeks). The model exhibits metastasis to the cervical lymph 
nodes, similar to the natural history of human HNSCC. Imaging 
was performed when caliper measurements of the primary 
tumor fell in the range of 50-75 mm3. 

B.  Reconstruction 
 To handle the channels of photon-counting perfusion data 
(3D volumes with n୶ voxels, n୲ time points, and nୣ energy 
thresholds), we organize the reconstructions into a 3D array: 
 

 𝑋 ≔ ቎
ሾ𝐱௧ୀଵ 𝐱௧ୀଶ … 𝐱௧ୀ୬౪ሿ௘ୀଵ

…
ሾ𝐱௧ୀଵ 𝐱௧ୀଶ … 𝐱௧ୀ୬౪ሿ௘ୀ୬౛

቏,  (1) 

 
where, e.g., 𝐱௧ୀଵ,௘ୀଶ denotes a column vector of the 
reconstruction at perfusion time point 1 and energy threshold 2. 
Each energy threshold slice corresponds to a 2D matrix. 
Following from this notation (array, 𝐴; matrix, A; vector, 𝐚; 
scalar, a; index, a), algebraic reconstruction minimizes the 
reconstruction error relative to log-transformed projection data, 
𝐲, under an L2 norm penalty applied separately to each channel: 
 

𝑋 ൌ argmin
𝑋

1
2 ‖R𝑋 െ 𝐲‖ொଶ ≔ 

 argmin𝑋
ଵ
ଶ∑ ∑ ቂ൫R𝐱௧,௘ െ 𝐲൯୘Q௧,௘൫R𝐱௧,௘ െ 𝐲൯ቃ୬౛

௘ୀଵ
୬౪
௧ୀଵ . (2) 

 
R is the system-specific projection matrix, which is universal 
for all channels when working with co-registered photon 
counting projection data. The weight array 𝑄 is constructed 
from weight matrices, Q௧,௘, the product of diagonal matrices 
indicating the target energy threshold and perfusion phase. 
 We use multi-channel regularization to improve 
reconstruction performance. Specifically, we perform iterative 
reconstruction using the split Bregman optimization framework 
[10], and we employ an extended version of our RSKR 
regularizer to enforce gradient sparsity and data consistency 
between channels [7]. Our iterative reconstruction is governed 
by the following objective function: 
 

 𝑋 ൌ argmin
𝑋

ଵ
ଶ ‖R𝑋 െ 𝐲‖ொଶ ൅ λ∗ଵฮX୬౮୬౪ൈ୬౛ฮ∗ ൅ 

 λୗฮX୬౮୬౪ൈ୬౛ฮ୆୘୚ ൅ λ∗ଶ ∑ ฮP௣൫X୬౮୬౛ൈ୬౪൯ฮ∗
୬౦
௣ୀଵ . (3) 

 
X୬౮୬౪ൈ୬౛denotes the unfolding of the array 𝑋 into a matrix with 
n୶n୲ rows and nୣ columns (X୬౮୬౛ൈ୬౪: n୶nୣ rows, n୲ columns). 
These unfoldings and their corresponding regularization terms 
enable penalization of the global spectral rank (‖. ‖∗, nuclear  
norm; λ∗ଵ), the spectrally joint intensity gradient sparsity (BTV: 
bilateral total variation, [7]; λୗ), and the patch-wise temporal 
rank (λ∗ଶ; n୮ total patches; P௣: patch extraction operator for 
patch 𝑝). Within the split Bregman framework, it is feasible to 
split each regularization term into a separate regularization sub-
step (each with its own set of auxiliary variables, 𝐷 and 𝑉) to 
incrementally solve this objective function. Practically, 
however, the computational cost of the data fidelity updates 
(Fig. 1, step 6; here, evaluated on 48 volumes) and the often 
slow rate of convergence of shrinkage methods (singular value 

thresholding to reduce the nuclear norm, [11]) make this 
approach intractable. 
 To reduce the number of global Bregman iterations (data 
fidelity update steps) required to achieve convergence (here, 3), 
we address all of the regularization terms in a single 
regularization step (step 4). This one step is itself solved by a 
series of inner Bregman iterations (3-4), which perform image-
domain denoising with our RSKR algorithm (steps 4a-4i). 
RSKR jointly minimizes the spectral rank (λ∗ଵ term) and the 
spectral gradient sparsity (λୗ term) by performing joint bilateral 
filtration on singular vectors computed along the energy 
dimension (step 4b). As in our previous implementations of 
RSKR, we use the median absolute deviation (MAD, [12]) to 
estimate the noise level in each channel. These noise estimates 
are used to weight the singular value decomposition such that 
high singular values correspond to singular vectors with 
proportionately high signal-to-noise ratios (steps 4a, 4b). As in 
past work, a similar noise estimation strategy is used to calibrate 
the joint bilateral filter parameters (jBF, [7]; step 4e), reducing 
the number of free parameters which must be determined by the 
user to achieve robust performance. 
 New to this work, we have improved our implementation of 
BF to use local noise estimates (vs. one global noise estimate 
per energy) to deal with spatially variant noise levels in CT data. 
Our GPU-based implementation of jBF now computes the 
MAD of image gradients in 32x32 patches with a stride of 16 
voxels in axial planes. Overlapping estimates are averaged to 
prevent sharp transitions in denoising performance, while the 
noise level is estimated in axial planes, rather than 
volumetrically, to improve computational efficiency. 
 Also new to this work, we perform patch-based singular 
value thresholding (pSVT, [9]) along the time dimension of the 
singular vectors. Notably, pSVT is applied to the singular 
values of a second singular value decomposition performed on 
3ଷ ൈ n୲ patch matrices extracted from L (step 4f). Given a 
vector of these singular values, 𝜺, computed from patch matrix 
𝑝, thresholding is applied to the singular values (indexed by 𝑖; 
evaluated separately per energy) as follows: 
 

 ε௣,௜,௘ᇱ ൌ maxቆε௣,௜,௘ െ 𝜏௜,௘ ൬
ఌ೛,೔,೐
ఌ೛,బ,೐

൰
ఔିଵ

, 0ቇ. (4) 

 
These thresholded singular values, 𝛆ᇱ, are then used to reverse 
the SVD for each patch matrix, and the central voxel for each 
time point is stored as the regularized output. 
 Previously, we have used kernel smoothing to overcome 
inconsistent denoising performance at high contrast edges when 
denoising with jBF [13]. Now, we apply pSVT (𝜈 ൌ 0.7). 
pSVT similarly improves image consistency at edges, but also 
improves consistency along the time dimension and may better 
preserve spatial resolution. pSVT addresses the final cost term 
of the Objective function (Eq. 3; Fig. 1; λ∗ଶ). Like with jBF, 
MAD-based noise estimates are used to calibrate the threshold 
values, 𝜏௜,௘, used during each inner Bregman iteration. 
Specifically, the SVD is performed on zero-mean Gaussian 
noise patch matrices with noise standard deviations matching 
those measured globally in the corresponding energy channel. 
Here, the average singular values from 125 noise realizations 
were used to set the threshold values per energy. 
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C.  Spectral Processing and Analysis 
 We compare three sets of reconstruction results: analytical 
reconstructions of each time point and energy (WFBP 
algorithm, [15]), iterative reconstruction without pSVT (Fig. 1, 
steps 4f and 4g skipped), and iterative reconstruction with 
pSVT (Fig. 1, all steps). Notably, the reference iterative 
reconstruction (no pSVT) is similar to spectral reconstruction 
results we have quantitatively validated in previous work [7] 
(with the exception of localized noise estimation now 
performed during jBF). Following reconstruction, we perform 
non-negative material decomposition using sensitivity matrix 
inversion and a sub-space projection with iodine (red), 
photoelectric (PE, green), and Compton scattering (CS, gray) 
basis functions [3]. We characterize the convergence of our 
iterative reconstructions (Fig. 1, step 6) by measuring the 
relative error after the final outer Bregman iteration for each 

perfusion phase and energy threshold (generically, ‖A𝐱 െ 𝐛‖ଶ/
‖𝐛‖ଶ; A𝐱: variable terms; 𝐛: constant terms). We compare our 

reconstruction results through standard deviation 
measurements, residual images, material decomposition errors 
in reference solutions, and through modulation transfer function 
measurements. 

D.  Computation 
 All reconstruction and denoising operations were performed 
with our custom multi-channel GPU-based reconstruction 
toolkit [16]. For the mouse data set, a total of 6000 projections 
were acquired over 12, 360° rotations. The temporal basis 

functions (rect functions, Q௧,௘) assigned equal weight to every 

projection in each subset of 500 projections, allowing 
reconstruction of 12 non-overlapping perfusion phases 
spanning 45 seconds each. Combined, 12 perfusion time points 
at 4 four energy thresholds were reconstructed (48 total 
volumes) with a volume size of 360x360x384 voxels and 125-
micron, isotropic voxels. For the analytical reconstruction 
results, a ramp filter was used. For algebraic reconstruction 
(Fig. 1, steps 1 and 6) six iterations of the Bi-CGSTAB(2) 
solver were used [14]. Reconstructions were performed on an 
Ubuntu Linux workstation (v18.04) with four NVIDIA 
RTX8000 GPUs, 256 GB of system RAM, and two Intel Xeon 
W-2295 CPUs. Iterative reconstruction of all 48 volumes took 
2.9 hours without pSVT (3 outer, 3 inner Bregman iterations) 
and 11 hours with pSVT (3 outer, 4 inner Bregman iterations). 

III. RESULTS 

 Fig. 2 summarizes the perfusion reconstruction results along 
the energy dimension. Specifically, analytical WFBP, iterative 
reconstruction without pSVT, and iterative reconstruction with 
pSVT results are compared at perfusion phase 6. The final data 
fidelity update step of the outer Bregman iterations (Fig. 1, step 
6) converged to within 4% error with pSVT and to within 3% 
error without pSVT for each individual energy threshold and 
perfusion phase, suggesting robust algorithm convergence. The 
noise standard deviation was measured in a water vial included 
in the scan. As expected, the noise level increases from 123 to 
362 HU with increasing energy threshold (reduced photon 
counts). Our standard iterative reconstruction method (no 
pSVT), which includes data adaptation (Fig. 1, steps 2 and 4a), 
reduces the noise level by 2 to 7 times and equalizes the noise 
standard deviation across energy channels. Even with identical 
reconstruction hyperparameters (Fig. 1, “Input”), adding pSVT 
to the reconstruction further reduced noise by ~45%. Iterative 
reconstruction with and without pSVT yielded similar spatial 
resolution (20 keV energy threshold; 50% cutoff of the MTF: 
~2.5 lp/mm in both cases). 
 Fig. 3 summarizes the reconstruction results along the 
prefusion dimension (“P6”: perfusion phase 6), comparing the 
phase of minimum enhancement (phase 1) with phases of 
intermediate (2) and peak enhancement (6). The prefusion 
results are shown as material decomposition maps to emphasize 
the value of energy information in quantitatively separating soft 
tissue (CS), calcium (PE), and iodine (I). Additional CT images 
demonstrate the value of iterative reconstruction in enforcing 
redundancy between energy channels to counteract noise 
amplification associated with material decomposition and 
analytical reconstruction. Based on material calibration vials 

included in the scan (12 mg/mL I; 1.0 ൈ water for PE, CS), 

material decomposition with and without pSVT yields similar 
mean material decomposition accuracy, but pSVT has lower 
noise (pSVT, no pSVT mean ± standard deviation: 11.67 ± 
0.18, 12.08 ± 0.52 I; 0.68 ± 0.11, 0.68 ± 0.32 PE;  0.93 ± 0.03, 
0.93 ± 0.08 CS). This is in stark contrast to the WFBP results, 
which are less accurate for I and CS, and have an order of 
magnitude larger standard deviations. Yellow arrows in Fig. 3 
highlight an artifact pattern that is removed with the addition of 
pSVT; however, blue arrows point to a cervical lymph node 

 

Fig. 1. The split Bregman method applied for iterative 
reconstruction of photon-counting CT perfusion data. 

Starting from the left column, an Initialization procedure 

estimates the reconstructed data, 𝑋, and the regularization 

parameters, G (here 𝛼 ൌ 0.007, h଴ ൌ 1.5, γ ൌ 0.5, ν ൌ
0.7). Outer Bregman iterations approximately solve the 

Objective function through regularization (step 4, 𝐷), 

residual (5,  𝑉), and data fidelity (6,  𝑋) updates. More 

details on the inner Bregman iterations for regularization 
are provided in the text (steps 4a-4i). Six iterations of the 
Bi-CGSTAB(2) solver (algorithm 3.1 in [14]) are used to 

update 𝑋 at each time point and energy during Initialization 

(step 1) and for each data fidelity update (step 6). 

Additional notation: µ୵ୟ୲ୣ୰,௘, the expected attenuation 
of water at energy threshold 𝑒; ∇, compute high-pass 
only component of the 3D Haar wavelet transform.;  𝑖, 
singular value, vector index ሺnୣ totalሻ;  𝒙:,௘ ൅ 𝒗:,௘ , time 
indices assumed equivalent for noise estimation. 
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metastases where the iodine map magnitude appears reduced 
when pSVT is added to the reconstruction. Further investigation 
is needed to characterize the trade-offs between spatial, 
spectral, and temporal resolution as a function of pSVT 
hyperparameters.  

IV. DISCUSSION AND CONCLUSIONS 
 In this work, we have demonstrated the future of perfusion 
imaging with X-ray CT and PCD technology. Given the 
increases in noise associated with photon binning, data 
acquisition and hardware constraints, and spectral post-
processing, a new class of algorithms will be required which 
take full advantage of the inherent structure in multi-channel 
CT data. We repurpose our existing multi-channel iterative 
reconstruction algorithm for compatibility with time- and 
energy-resolved perfusion data and propose a novel extension 
with pSVT. pSVT removes additional noise by exploiting data 
consistency along the temporal perfusion dimension. 
 The current work has several limitations. The imaging dose 
and contrast agent dose are non-trivial and unsuitable for 
longitudinal studies. Furthermore, the computation time 
associated with batched SVD operations for pSVT is too 
significant for routine use. In previous work [17], we have 
demonstrated that similar challenges can be overcome for 
multi-channel cardiac CT reconstruction using deep learning. 
Extending this approach, we propose to use our current 
reconstruction algorithms and data acquisition protocol to 
generate high quality reference data. We could then artificially 

degrade these data sets and use a supervised learning paradigm 
to learn to map computationally inexpensive analytical 
reconstructions to our high-fidelity iterative reconstructions. 

 
Fig. 3. Coronal CT images and material decomposition results are compared 
between WFBP reconstruction (row 1) and regularized iterative 
reconstruction excluding (“No pSVT”, row 2) and including (“pSVT”, row 
3) pSVT. A yellow circle indicates the location of the primary tumor, while 
a blue circle indicates the location of a metastatic tumor. Results are shown 
for perfusion phases 1, 2, and 6 (“P6”). Arrows are referred to in the text. 
CT window: [0.0,0.80] cm-1. Iodine (red) window: [1.0,6.0] mg/mL. PE 
(green) window: [1.0,15.0] ൈ water. CS (gray) window: [0.0,8.0] ൈ water. 
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Fig. 2. Axial WFBP reconstruction results at perfusion phase 6 (row 1) are 
compared with matching iterative reconstruction results excluding (“No 
pSVT”, row 2) and including (“pSVT”, row 4) the pSVT regularizer. A 
yellow circle indicates the location of the primary tumor. Yellow text 
indicates noise standard deviation values measured in water for each energy 
threshold and reconstruction algorithm (HU; water vial not shown). CT 
window: [0.0,0.80] cm-1. Absolute residual window: [0.0,0.16] cm-1.  
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Undersampled Dynamic Tomography with separated
spatial and temporal regularization

Xiufa Cao, Yinghui Zhang, Ran An, Hongwei Li*

Abstract—Dynamic tomography finds its usage in certain

important applications. The reconstruction problem could be cast

in the Bayes framework as a time series analysis problem, such

that the Kalman filter(KF) could come into play. A series of

drawback of such an approach lies in its high computational

and storage complexity. Dimension reduction Kalman filter (DR-

KF) method has been proposed in the literature to relieve such

a pain. However, our tests show that DR-KF results in heavy

ringing artifacts. To solve this dilemma, in this paper, we propose

to approximate the regularization term involving the precision

matrix with a spatial regularization term plus a temporal

regularization term, such that the space and time complexity

are greatly reduced. Besides, to get the original Kalman filter

into play, we propose a blocked KF for backward smoothing,

i.e. split the reconstructed image slices into small overlapping

blocks, and the KF is applied on each block. The blocked KF

has much smaller computational and storage complexity, and

fits well for parallel computations. Numerical experiments show

that the proposed approach achieves better reconstructions while

calling for much smaller computational resources.

Index Terms—Dynamic X-ray tomography, Kalman filter, di-

mension reduction, ringing artifacts, TV regularization.

I. INTRODUCTION

C
OMPUTED tomography (CT), as a noninvasive method,
is widely used in many applications to reveal the inner

structure of a target. In biomedical applications, however,
the target is usually non-stationary so that the projection
measurements are time-dependent. That is, the target changes
during the scanning, a case commonly referred as dynamic
tomography. Such changes can be periodic (e.g., the beating of
a heart) or aperiodic (e.g., the flow of contrast agent in a blood
vessel), in each case, the reconstruction problem becomes
severe ill-posed. If traditional static CT reconstruction methods
(such as FBP, ART, IART, etc.) are directly applied, the
reconstructions will be degraded seriously (e.g., being blurred
or getting other artifacts), even if with small motions. A
number of approaches have been proposed for dynamic CT
reconstructions. For very slow or periodic movements, e.g.
heart and lung imaging, gating techniques can be used [1], [9].
That is, the scanning is executed at specific time during the
periodic motion, or the acquired projection data are selected
according to the periodicity. For general motions, motion com-
pensation techniques can be used to improve the reconstruction
quality [2], [7], [3], [4], [5]. By motion compensation, prior
information about the underlying dynamic process can be
utilized by the CT reconstruction algorithms. However, this

The authors are with the school of Mathematical Sciences, Capital Normal
University, Beijing, 100048, China.

E-mail: hongwei.li91@cnu.edu.cn.

technique usually assumes simple or known motion, which is
not the case for a wide variety of complex motions.

Dynamic CT reconstruction aims to reconstruct a series of
image slices, while each image slice undergoes very limited
resources, i.e. undersampled scanning. To reduce artifacts
and improve reconstruction quality, many methods have been
proposed in the literature by incorporating various priors. One
of the main approach is to cast the reconstruction problem
under the Bayesian framework. Then, the priors could be
naturally encoded by the prior distribution, and by employing
the Kalman filter, priors concealed between image slices could
also be easily modelled and brought into the reconstruction
process. A serious drawback of this approach is that the
precision matrices, which are used to encode the needed priors,
are usually non-sparse huge ones. Besides, the inversion of
these large-scale matrices are needed during the reconstruction
process, which is not applicable for real applications. To
address this issue, the dimension reduction Kalman filter
(DR-KF) was introduced in [6] to reduce the computational
complexity. This is actually an effective method to serve the
purpose. However, images reconstructed by this method are
often smeared by “ringing” artifacts. In our experiments, even
a small portion of dimension reduction leads to clear sharp
ringing.

To combat the ringing artifacts and reduce the computational
complexities, in this paper, we will introduce a splitting
technique to approximate the priors encoded by the precision
matrices with a spatial prior plus a temporal prior. This approx-
imation helps to greatly reduce the computational complexity
and totally avoid the ringing artifacts. Besides, to further
improve the reconstruction quality, we propose a block-wise
Kalman filter for the backward smoothing pass, which calls for
much less computations and achieves very close performance
compared to the original Kalman filter.

The remainder of this paper is organized as follows. In
Section II, we will briefly introduce the DRKF method
for dynamic X-Ray tomography and analyze its ”ringing”
artifacts. Then, the proposed method shall be described in
details. Numerical experiments are performed in Section III to
validate the proposed method. Finally, we conclude our paper
in Section IV.

II. MATERIALS AND METHODS

A. Dynamic X-Ray Tomography

In dynamic X-ray tomography, the attenuation variable ~x is
a function of the “time” k 2 N . In a discrete setting, ~x(k) is
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a two-dimensional image, which is related to the observation
~yk by the following model

~yk = Ak~xk + ~"k. (1)

In tomography, ~yk is the measurement vector called sinogram,
~xk is the vectorized image, Ak is the measurement matrix
and ~"k represents noise distribution. Thus, in dynamic X-ray
tomography, the aim is to reconstruct a set of images changing
over time.

B. Dimension Reduction Kalman filtering

In Bayesian framework, prior probability distributions are
introduced to bring into prior knowledge. Suppose ~xk ⇠
N(~µk,⌃k), ~"k ⇠ N(0, Rk), then the posterior density can
be written as

p (~xk | ~y1:k) / exp

✓
�1

2

⇣
k~yk �Ak~xkk2Rk

+ k~xk � ~µkk2⌃k

⌘◆
.

In linear Kalman filtering, a linear operator is introduced
to model the state transfer process. The KF is generally
divided into two steps: prediction and update, which could
be described as

~xk = Mk~xk�1 + ~⇠k

~yk = Ak~xk + ~"k
,

where the matrix Mk moves the previous state ~xk�1 to ~xk.
Take the transferred state as a prediction, the complete process
can be written as

p (~xk | ~y1:k) / exp

✓
�1

2
k~yk �Ak~xkk2Rk

+ k~xk � ~xp
kk

2
Cp

k

◆
,

where

~xp
k = Mk~x

est
k�1

Cp
k = MkC

est
k�1M

T
k +Qk

, (2)

~xest
k = ~xp

k + Cest
k AT

kR
�1
k (~yk �Ak~x

p
k)

Cest
k =

⇣
AT

kR
�1
k Ak + (Cp

k)
�1
⌘�1 . (3)

Direct application of the the above procedure is very time
consuming. Suppose the image slices are size of N ⇥ N .
The precision matrix (Cp

k)
�1, which are size of N2 ⇥ N2

dense matrices, are involved in the computations, which is not
affordable even for small images like N = 128. To reduce the
computational complexity, the dimension reduction Kalman
filter is introduced for dynamic tomography in [8]. It starts
by parameterizing the state ~xk = ~µk + Pk,r~↵k, where Pk,r

is constructed by the first r largest singular values of Cp
k

and the corresponding singular vectors. By setting a small r,
the computational complexity shall be sharply reduced since
the matrices involved in the computations are now size of
r2 ⇥ r2. However, the SVD decompositions, which operate
on the original matrices are required for each state updating,
which is still very time consuming. This is solved by assuming
that all variations ~xk = ~µk � ~µk live in the same fixed
subspace, i.e. fixing Pk,r = P0,r , Pr, which can be built by
performing SVD decomposition once on the initial covariance
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Fig. 1. Illustration of ringing artifacts from DR-KF. Slices of phantom3d
reconstruction at time step t = 1, t = 5, t = 15, t = 20.Dimension reduction
(r = 1000) methods with KF (5 angles).

matrix Cp
0 = ⌃. Let ⌃ = USUT , then Pr = UrS

1/2
r , and (2)

and (3) can be rewritten as:

~xp
k = Mk(~x

p
k�1 + Pr~↵

est
k )

Cp
k = (MkPr) 

est
k (MkPr)

T +Qk
,

where

~↵est
k =  est

k (AkPr)
T R�1

k (~yk �Ak~x
p
k)

 est
k =

⇣
(AkPr)

T R�1
k (AkPr) + PT

r (Cp
k)

�1
Pr

⌘�1.

It has been mentioned in [6] that the reconstructed images
from the dimension reduction KF might suffers from “ringing”
artifacts. This is demonstrated in the following experiment.

Let the image slices are size of 128⇥ 128, and assume the
standard prior Gaussian covariance matrix [6], which is then
size of 16384⇥ 16384 with the (i, j)th element defined as

⌃i,j = �2 exp

 
�d (xi, xj)

2

2l2

!
,

where �2 and l are configuration parameters, and d (xi, xj)
denotes the Euclidean distance between pixels xi and xj .

Both observation and model error covariance matrices are
set to �2I and Mk = I,� = 0.1, l = 1.5. The phantom3d
function in MATLAB is employed to construct the dynamic
images with 33 slices. The open-source library ASTRA is
utilized to perform the forward and backward projections.
There are only 5 projection views at each moment. The
reconstruction results from the dimension reduction Kalman
filter (DR-KF) with r = 1000 are shown in Fig.1. As shown
in the last two columns, heavy ringing artifacts presents for the
time-frame t = 15 and 20. At the early stage, the image slices
suffer from severe undersampling artifacts and the ringing
artifacts are buried inside. When the image slices getting better
reconstructed, the ringing artifacts also show up and then
persist in subsequent reconstructions.

To further verify the ringing artifacts, another experiment
is performed to demonstrate the influence of the ratio of
dimension reduction. As shown in Figure 2, by increasing the
dimension parameter r, the ringing artifacts are suppressed.
However, even for r = 12000, which amounts to a reduction
ratio 12000/16384 ⇡ 73%, the ringing artifacts are still
observable. For r = 5000, which amounts to a ratio 3/10,
heavy ringings present. Clearly, such a reduction ratio is far
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(a) r = 1000 (b) r = 5000 (c) r = 8000 (d) r = 12000

Fig. 2. The influence of the ratio of dimension reduction on ringing artifacts.
Phantom3d reconstruction at time step t = 15,� = 0.1, l = 1.5. Dimension
reduction methods with r = 1000, 5000, 8000, 12000, KF(5 angles).
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Fig. 3. The influence of configuration parameters of Gaussian prior on ringing
artifacts. Slices of phantom3d reconstruction at time step t = 1, t = 5t =
15, t = 20. Dimension reduction methods with r = 1000 KF(5 angles).

from satisfactory, since the computational complexity is still
very high.

One may argue that the ringing artifacts could be introduced
by improper choice of the configuration parameters for the
Gaussian prior. So, another experiment is performed with vari-
ous parameter settings. As shown in Figure 3, the parameters �
and l do have some influence on the ringing artifacts. However,
they just have certain influence on the ringing patterns rather
than on the magnitude of the ringings.

C. Our Method

1) Decomposition of the prior: The computational com-
plexity can be attributed to the regularization term

�(~xk � ~xp
k) = k~xk � ~xp

kk
2
Cp

k
(4)

which is used to encode the prior information. The complexity
of the covariance matrix Ck

p results in a complex regularizer.
This motivates us to approximate the above term with sim-
pler, easier handled terms. The function � could always be
decomposed as

�(~xk � ~xp
k) =  (~xk) + �(~xp

k) + %(~xk, ~x
p
k).

The first two terms can be though of being encoding the
priors regarding to ~xk and ~xp

k, respectively, while the last term
expresses the couplings between adjacent image slices. Since
the prior regarding to ~xp

k is not relevant for the reconstruction

of ~xk, the second term could be removed. So, we propose the
following posterior distribution

p (~xk | ~y1:k) / exp

✓
�1

2
k~yk �Ak~xkk2Rk

+  (~xk) + %(~xk, ~x
p
k)

◆
.

The regularization term  (~xk) represents the prior knowledge
regarding to the current ideal image ~xk. This prior is usually
available, e.g. CT images are usually assumed to be piecewise
constant and thus possess sparse gradients. The regularization
term %(~xk, ~x

p
k) models the continuity along the temporal axis.

A simple strategy is to just take ~xp
k as a prior reference image.

So, we are proposing to decompose the regularization term
involving the covariance matrix into a spatial regularization
term plus a temporal regularization term. By choosing these
two regularizers properly, the computations could be greatly
reduced and ringing artifacts could also be completely avoided.

2) The online forward pass: By choosing total variation
regularization for the spatial regularizer, we propose the fol-
lowing model for dynamic tomography reconstruction

~xp
k = Mk~x

est
k�1

~x⇤
k = argmin

~xk

1

2

⇣
k~yk �Ak~xkk2Rk

+ � k~xk � ~xp
kk

2
2 + � |r~xk|

⌘
,

(5)
where the parameter � weights the importance of the prior
image ~xp

k, while � weights the spatial prior. To solve the above
minimization problem, the primal-dual based Chambolle-Pock
(CP) algorithm is employed.

3) Block Kalman Filter: In the Kalman filtering framework,
a backward smoothing procedure is usually applied for offline
reconstructions. When all the projection data have been ac-
quired and all image slices have been reconstructed, then the
Kalman filter could be applied once more reversely starting
from the last image slice. The backward smoothing procedure
could significantly further improve the reconstruction quality.

However, the backward filtering suffers from the same
drawbacks as the forward filtering. To take advantage of
the backward smoothing, we propose two approximations
to reduce the computational complexity. The first one is to
replace the system matrix Ak by identity matrices. This is
reasonable since all the image slices have been reconstructed.
The second one is to decompose the filtering into blocks, i.e.
decomposing the image slices into overlapping blocks and
applying the Kalman filter on each block. The final results
are synthesized from the filtered blocks.

With much less computations, the block Kalman filter could
attain almost the same smoothing results as the non-block
version does. For example, for an image size of 256 ⇥ 256,
we can divide it into 81 overlapping blocks such that each
block is size of 32⇥32. In the block Kalman filtering process,
the covariance matrix size of 65536 ⇥ 65536 is replaced by
81 image blocks size of 1024 ⇥ 1024. Clearly, storage and
computational complexities shall be dropped considerably.

III. NUMERICAL EXPERIMENTS

Similarly, in the phantom3d simulated data, which is size
of 256 ⇥ 256 ⇥ 256, we take 50 consecutive slices in the
vertical direction. The projection data are acquired with 10
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Fig. 4. Different reconstructions of the shepp-logan phantom with the forward
pass(top), the block-KF smoothing(middle), and the reference imagse at time
step t = 1, 10, 30.

TABLE I
PSNR OF DIFFERENT METHODS FOR DIFFERENT FRAMES

Method \Time t = 1 t = 10 t = 30

The forward pass 19.0807 19.2380 20.5397
KF smoothing 17.5414 19.7271 20.7552

Block-KF smoothing 19.4299 19.8850 21.1628

equally distributed scanning angles for each slice. We set
Rk = I,Qk = 0.1 ⇤ I . The experiments are carried out on a
Linux server with two Intel(R) Xeon(R) Gold 6132 CPUs @
2.60GHz and 256G memory. The server is also equipped with
8 Nvidia GeForce RTX 2080 Ti GPU cards, and ASTRA uses
one of them for applying the forward and backward projectors.

The reconstruction results are illustrated in Fig. 4. As shown
in the first row, the ringing artifacts have been completely
avoided in the image slices reconstructed by the proposed
forward pass, i.e. the online reconstruction procedure. The
backward smoothing could help to reduce noise, as shown in
the second row. However, structuring information could also
be wrongly propagated back during the backward smoothing
pass. In fact, we also implemented the non-block version of
the Kalman filtering for the backward smoothing pass, and the
results of block version is a little better than those of the non-
block. This can be told from the quantitative indices listed in
Table I. It should be mentioned that, to process one image,
the block-KF takes 7s for one image, while the non-block KF
takes about 4000s.

IV. CONCLUSION

To reduce the computational complexity of the Kalman fil-
tering approach for dynamic X-ray tomography, we propose to
approximate the regularization term involving the covariance

matrix with two simpler regularization terms, one accounts for
spatial correlation while the other one accounts for temporal
correlations. The resulting method calls for much less storage
and computational complexity while achieves competitive re-
constructions. Besides, a block version of the Kalman filter
is proposed for the backward smoothing procedure, which
achieves similar smoothing behavior compared to the non-
block one while again requires much less computational
resources.

In our numerical experiments, the matrix Mk is always set
as the identity matrix. In fact, we can also use the optical flow
method to compute a better Mk such that the reconstruction
quality could be further improved. This shall be investigated
soon.

In order to further improve the computation speed, we also
plan to use GPU and deep learning methods to approximate
the forward reconstruction pass.

ACKNOWLEDGMENT

Thanks for the support of the National Natural Science
Foundation of China (NSFC) (61971292, 61827809 and
61871275).

REFERENCES

[1] Stephan Achenbach, Tom Giesler, Dieter Ropers, Stefan Ulzheimer, Hans
Derlien, Christoph Schulte, Evelyn Wenkel, Werner Moshage, Werner
Bautz, Werner G Daniel, et al. Detection of coronary artery stenoses by
contrast-enhanced, retrospectively electrocardiographically-gated, multi-
slice spiral computed tomography. Circulation, 103(21):2535–2538, 2001.

[2] Christophe Blondel, Régis Vaillant, Grégoire Malandain, and Nicholas
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Full-Spectrum-Knowledge-Aware Unsupervised
Network for Photon-counting CT Imaging

Danyang Li, Zheng Duan, Dong Zeng, Zhaoying Bian, and Jianhua Ma

Abstract—Deep learning (DL) based methods have been widely
adopted in computed tomography (CT) field. And they also
show a great potential in photon-counting CT (PCCT) imaging
field. They usually require a large quantity of paired data to
train networks. However, it is time-consuming and expensive
to collect such large-scale PCCT dataset. In addition, lots of
energy-integrating detector (EID) data, which is more easily
to be obtained, are not yet included in the DL-based PCCT
reconstruction network training. In this work, to address the issue
of limited PCCT data and take advantage of labeled EID data,
we propose a novel unsupervised full-spectrum-knowledge-aware
DL-based network (FSANet), which contains supervised and
unsupervised networks, to produce high-quality PCCT images.
Specifically, the supervised network is trained based on paired
EID dataset and serves as the prior knowledge to regularize
the unsupervised PCCT network training. Moreover, a data-
fidelity term for characterizing the PCCT image characteristics is
constructed as a self-supervised term. Finally, we train the PCCT
network with the prior knowledge and self-supervised terms
following an unsupervised learning strategy. Numerical studies on
synthesized clinical data were conducted to validate and evaluate
the performance of the presented FSANet method, qualitatively
and quantitatively. The experimental results demonstrate that
presented FSANet method significantly improves the PCCT
image quality in the cased of limited photon counts.

Index Terms—Photon-counting CT, full-spectrum-knowledge-
aware, unsupervised learning.

I. INTRODUCTION

COMPARING with the conventional computed tomog-
raphy (CT), photon-counting CT (PCCT) can obtain

multiple measurements of the scanned object at multi-energy
bins and provide abundant energy-dependent material-specific
information. Due to the energy discrimination capability, PCC-
T can effectively improve contrast-to-noise ratio, increase the
dose efficiency and reduce electronic noise [1], [2].

However, the collected PCCT data is corrupted by serious
quantum noise [3], because the photon counts decrease in
the narrow energy bin. And then, the PCCT image quality
degrades obviously due to the limited photons. To solve this
problem, many statistical iteration reconstruction (SIR) meth-
ods have been proposed in the past decades. The main idea of
the SIR is to construct a reconstruction model with data fidelity
and regularization terms, where the first term incorporates
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Grant U1708261. (Corresponding author: Zhaoying Bian and Jianhua Ma.)
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the statistical property of X-ray photons and the second term
provides the prior information of the desired PCCT images.
For example, Rigie et al. introduced a total nuclear variation
regularization to leverage similar gradient information and
improve the image quality [4]. Kim et al. developed a patch-
based low-rank regularization to maintain the image structures
and reduce noise [5]. Semerci et al. combined a tensor nuclear
norm and a total variation regularization to suppress noise [6].
Zhang et al. proposed to deliver inner spectrum correlation
information and constructed a tensor-based dictionary learning
strategy [7]. Niu et al. considered the self-similarity of the
spectral CT images and proposed a non-local low-rank and
sparse matrix decomposition method [3]. Wu et al. proposed
to encourage the similarity of spectral CT images by utilizing
a cube-based tensor regularization [8]. Recently, Zeng et al.
proposed a full-spectrum-knowledge-aware tensor by impos-
ing the global correlation, piecewise smooth and latent full-
spectrum properties of PCCT images [9]. These methods have
been shown great potential in preserving image details and
suppressing noise. However, there remains some challenges
in practice. First, the SIR methods usually utilize fan-beam
geometry and the computation costs will be a burden for
cone-beam geometry. Second, SIR methods are sensitive for
the hyper-parameters, and appropriate parameters selection is
needed for different clinical applications.

Recently, deep learning (DL) has been widely adopted in CT
imaging field. In spectral CT imaging field, Lu et al. utilized
DL-based method for material decomposition [10]. Fang et al.
proposed to remove ring artifacts for PCCT data by using DL-
based method [11]. Wu et al. employed a DL-based method
for reconstructing PCCT images [12]. It is shown that the
DL-based methods achieved competing results compared with
the SIR methods. However, the current DL-based methods
need a large quantity of paired data (i.e., noisy and high-
quality data) to obtain a desired model by supervised training
strategy. However, collecting large-scale spectral CT data is
time-consuming, and the PCCT data in clinics is hard to be
obtained. In addition, a number of energy-integrating detector
(EID) data, which is easily to be obtained, is not yet included
in training the DL-based method for PCCT imaging.

Therefore, we present an unsupervised DL-based method
in the image domain by utilizing the prior information of the
paired EID dataset (i.e., low-dose images/high-quality ones).
Specifically, we first initialize two denoising networks for EID
and PCCT images, respectively. Then, the supervised network
for conventional CT is trained on a well paired EID data and
serves as the prior knowledge to regularize the unsupervised
PCCT network training. Moreover, a data-fidelity term for
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Self�loss

FSA�loss

Fig. 1. Illustration of the presented FSANet method for PCCT image recovery. The pipeline with black arrows denote the data flow of the PCCT images. The
pipeline with orange arrows denote calculations of loss functions. The supervised and unsupervised networks have the same architecture. It should be noted
that the optimization for the parameters of the unsupervised network follows an unsupervised strategy, and only noisy PCCT images are involved during its
training period.

characterizing the PCCT image characteristics is constructed
as the self-supervised loss. Finally, with the prior knowledge
and self-supervised terms, we can train the network for PCCT
images following an unsupervised learning strategy. We call
the presented DL-based model as full-spectrum-knowledge-
aware DL-based method, shorten as “FSANet”. We evaluated
the presented FSANet and other reconstruction methods on
synthesized clinical data. Experimental results demonstrated
that the presented FSANet outperforms the competing methods
in terms of qualitative and quantitative metrics.

II. METHODS

Considering the spatial and energy dimensions of the spec-
tral data, the PCCT imaging model can be expressed as
follows:

Y = AX ∗ + ε, (1)

where Y = {yn, n ≤ N} and X ∗ = {x∗
n, n ≤ N} are

the measurements and desired PCCT images along the multi-
energy bins, and N is the total number of the energy bins.
A is the linear projection operator for PCCT imaging, and ε
denotes the noise in the projection domain.

The images reconstructed from Y suffer from noise and
artifacts. To improve image quality, DL-based methods are
feeded with the PCCT images and produce the denoised ones.
It be expressed as follows:

X̂ = ∅DL(X ,θθθDL), (2)

where ∅DL represents the network of the DL-based method
with parameters θθθDL. X̂ are the estimated PCCT images by
the network. X =

(
AT A

)−1 ATY are the network inputs
which are directly reconstructed by the filtered back projection
(FBP) algorithm [13]. Followed by the supervised strategy, the
network parameters θθθDL are optimized by minimizing the loss

function between the target images X target and X̂ , and the
loss function can be expressed as follows

θ̂θθDL = argmin
θθθDL

L
(
X̂ ,X target

)
, (3)

where L is the user defined loss function and X target are the
FBP-reconstructed images from the high-dose measurements.

In order to utilize the prior information of the network pre-
trained on paired EID dataset, we present a full-spectrum-
aware (FSA) loss function, as follows:

LFSA (X ) = ‖T (∅ (X ,θθθ))− ∅pre (T (X ) ,θθθpre)‖1 , (4)

where ∅pre denotes a pre-trained network for EID images with
parameters θθθpre. ∅ (·,θθθ) is the network for PCCT images with
parameters θθθ. T (·) is an operator to transform the PCCT
images to the EID images. ‖·‖1 is L1 norm. Moreover, we also
construct a self-supervised loss to encourage the data fidelity
of the PCCT images, as follows:

LSelf (X ) = ‖∅ (X ,θθθ)− X‖1. (5)

In summary, the total loss function of the presented model
is expressed as follows:

L (X ) = LSelf (X ) + αLFSA (X ) , (6)

where α is a hyper-parameter of the loss function. It can be
seen that the presented model engages an unsupervised learn-
ing strategy where only noisy PCCT images is involved in the
training stage. Fig. 1 illustrates the presented FSANet method
for PCCT image recovery. Finally, we utilize Adam [14] to
optimize the parameters in the network.

III. RESULTS

A. Implementation details
The network ∅pre was trained on the paired EID data

collected from conventional CT in local hospital with WGAN
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line1

Fig. 2. Results of the presented and compared methods on Case 1. The
display windows from Bin 1 to 5 are [0.005, 0.008], [0.0028, 0.005], [0.002,
0.004], [0.0015, 0.0035] and [0.0015,0.0028] mm−1, respectively. Zoomed
ROIs indicated by the blue box are displayed for better visualization.

loss [15]. The PCCT images datasets involved in this study
were simulated from EID images by segmenting the soft
and bone tissues. The noisy data was generated by adding
Poisson noise in the projection domain. The X-ray spectrum
with 120 kVp tube voltage and 1.6 mm Al filtration was
generated by SPEKTR toolbox [16]. Five energy bins are
determined by the five thresholds: 25, 50, 60, 70 and 85 keV.
The simulation imaging parameters are listed as follows: 816
parallel X-ray beams and 1160 projection views over 360o are
adopted, and source-to-detector and source-to-center distances
are 1040.0 and 570.0 mm, respectively. The network trained
by supervised strategy, called “Supervised Net”, serves as the
upper-bound of the presented FSANet. Morover, the filtered
back projection (FBP) method with a ramp filter and a tensor-
based dictionary learning regularization (TDL) method are the
compared methods for the presented method.

In experiments, we simulated 3000 cases to established the
whole dataset, and randomly selected 2000, 500 and 500 cases
for training, validation and testing datasets, respectively. In
training period, learning rate is 1e−4, batch size is 6, and
training epoch is 2000. A modified residual network [17] is
selected as the backbone network for the pre-trained and the
presented FSANet networks. Both networks are implemented
in Python with PyTorch package on a NVIDIA Tesla K40c
GPU.

B. Qualitative analysis
Fig. 2 illustrates the visual comparisons of the presented

and compared methods on Case 1. The images at normal
dose are chosen as the ground truth. It can be observed
that FBP algorithm suffers from noise. TDL can effectively
remove the noise-induced artifacts and improve the image
quality, but losses the image resolution. On the contrary, the

line2

Fig. 3. Results of the presented and compared methods on Case 2. The
display windows from Bin 1 to 5 are [0.0015, 0.0025], [0.0009, 0.0018],
[0.0007, 0.0015], [0.0006, 0.0012] and [0.0005, 0.0010] mm−1, respectively.
Zoomed ROIs indicated by the red box are displayed for better visualization.
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Fig. 4. Profiles of the green and orange lines in Bin 1 for Case 1 and 2,
respectively. (a) are the profiles of the results from different methods on Case
1, respectively. (b) are the profiles of the results from different methods on
Case 2, respectively.

presented FSANet produces more remarkable results closing
to the Supervised Net and the ground truth in terms of noise
reduction and structure preservation. Moreover, zoomed in
regions-of-interest (ROIs) by the blue box in Fig. 2 is selected
for better visual inspection. It can be seen that TDL smooths
the structure edges, but the Supervised Net and presented
FSANet methods maintain the image details.

Fig. 3 shows the results of different methods on Case 2.
Similar to Case 1, FBP induces noise to the images, TDL is
prone to produce blurry results, and the presented FSANet
avoids over smoothing and preserves structure details. The
zoomed in ROIs indicated by the red box in Fig. 3 also demon-
strate the advanced performance of the presented FSANet
method. Fig. 4(a) and (b) show the profiles indicated by the
green and orange lines in the Fig. 2 and Fig. 3, respectively.
From the results, we can observe that the presented FSANet
produces the closet results to the ground truth compared with
the FBP and TDL methods.
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C. Quantitative analysis

In this study, peak signal-to-noise (PSNR) and root-mean-
square-error (RMSE) are utilized to quantify the performances
of different methods. Table I lists the quantitative measure-
ments of the results from different methods on the whole test-
ing dataset. From the results, it can be seen that the presented
FSANet achieves better results among all metrics, compared
with FBP and TDL methods. Therefore, the qualitative and
quantitative results demonstrate that the presented FSANet
method achieves superior results to the FBP and TDL methods.

TABLE I
QUANTITATIVE MEASUREMENTS ON THE RECONSTRUCTION RESULTS ON

THE TESTING DATASET FROM THE DIFFERENT METHODS

PSNR (dB) RMSE (×10−5)
FBP 28.36± 2.88 12.5± 0.73

TDL 35.37± 5.70 7.62± 4.324

Supervised Net 38.14± 2.60 3.78± 0.433

GMM-3DTV 37.44± 2.25 4.46± 0.788

IV. DISCUSSION AND CONCLUSION

DL-based methods have been shown promising performance
in conventional CT imaging, and it has also inspired the
application in PCCT imaging. However, most of them are
supervise-based and need a large quantity of paired training
dataset, which is hard to be obtained for PCCT. To address this
intrinsic limitation, in this work, we presented an DL-based
PCCT denoising method with an unsupervised learning strate-
gy, called “FSANet”. Specifically, we first trained a denoising
network on paired EID dataset and served it as a prior for
PCCT images. Then, we constructed this prior network as an
training loss to regularize the PCCT network learning in an
unsupervised manner. Moreover, an self-supervised loss of the
noisy PCCT images is introduced to promote data-fidelity of
the PCCT images. Finally, with the mentioned two loss terms,
we can obtained the presented FSANet method. Simulation
experiments demonstrated the feasibility and effectiveness of
the presented FSANet method. In the future, clinical patient
studies would be involved to further demonstrate the denosing
performance of the presented FSANet method.
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Abstract—Computed tomography (CT) is a non-invasive means 
of localizing a region of interest within an object, which enables 
the investigation of soil distributions and localized flow processes 
within soil pore systems. CT scanning allows for cross-sectional 
successions that provide visibility within the environment of plant 
samples. Knowledge of the characteristics of the soil pore system 
is essential for evaluating various processes that take place 
between root-soil interactions. In this study, we investigate the 
potential application of a high-resolution amorphous selenium (a-
Se) direct conversion detector on complementary metal-oxide-
semiconductor (CMOS) readouts for micro-CT scanning of a soil 
matrix to image the status of aggregation and networks of pore 
spaces within intact soil. The combination of the intrinsic high 
spatial resolution of a-Se and small pixel CMOS readouts provide 
detailed visualization in the soil aggregates of the plant samples. 
The X-ray energy and plant soil thickness were varied during the 
investigation for imaging the root-soil. A 10 μm spatial resolution 
and noise limited performance of 8 photons/pixel at 20 keV were 
achieved. High attenuation of X-rays in thick soil poses challenges 
however fine details are observable in thinner samples and care 
should be taken when choosing soil thickness and container 
material. 
 

Index Terms—amorphous selenium, computed tomography, 
radiation imaging, soil properties.  
 

I. INTRODUCTION 
-ray computed tomography (CT) is implemented to 
characterize and visualize the environment of plant 

samples for the investigation of the physical and hydrological 
properties related to root-soil interactions. The use of CT 
scanning for characterization of the impact of pore spaces 
within a soil matrix has been previously studied [1-3]. These 
studies have demonstrated the advantages of using CT scanning 
for the characterization of soil aggregate properties such as 
volume, surface area, and sphericity enabled by the non-
destructive quantification of soil structures as three dimensional 
(3D) images. Imaging the soil structures, which are described 
as the aggregation or distribution and networks of pore spaces, 
provides visibility into the root-soil interactions that affect the 
pore structure within the rhizosphere. The rhizosphere is the site 
of interaction between the plant root and the soil where water 
and nutrients are absorbed by the roots and where 
photosynthates are distributed [4]. CT scanning presents many 

 
We acknowledge support from the US Department of Energy (DOE), Office of 
Biological and Environmental Research (BER) under Award Number DE-
SC0021975. Detector development was also funded through DOE, Office of 
Science, phase I SBIR program, grant No. DE-SC0019626. 

advantages including the ability to rotate the 3D images and to 
view their cross-sectional slices, making it efficient to locate the 
regions of interest in the rhizosphere of the plant. Visibility 
within the sample and the relatively high spatial resolution of 
CT images combined with positron emission tomography 
(PET) allow for the investigation of the temporal changes 
occurring in the plant, soil, and root tips due to the transport of 
a radiation tracer, such as Carbon-11 (11C) attached to CO2 [4].  

Previous investigations using CT for studying the root-soil 
interactions have highlighted challenges such as [5-10]: 

 (i) scale integration from the micron scale to the ecosystem 
scale of the rhizosphere; and  

(ii) a lack of dynamic observations/measurements of soil 
structural changes in response to disturbances at various 
temporal scales.  

To enable a low cost, high spatial resolution X-ray detector 
towards real-time CT scanning of plants combined with 
dynamic PET imaging, we are investigating replacing the 
indirect conversion scintillator detector with a direct conversion 
photoconductive layer made of amorphous selenium (a-Se). 
Easily processed as a uniform thick layer over large areas, a-Se 
has an atomic number (Z = 34) sufficient for high absorption of 
X-ray imaging (20-100 keV), a k-edge energy of 12.66 keV, 
low dark current, high charge collection efficiency, and high 
inherent spatial resolution [11, 12]. In this study, we investigate 
the impact of using a hybrid a-Se/CMOS coupled to an active 
pixel array for X-ray imaging.  

 

II. METHODS 
A preliminary experiment was conducted at Stanford 

University using the Siemens Artis Zeego [13] with a tube 
voltage range of 40 – 125 kV, a 210 mA current, and 11.5 ms 
pulse width. The X-ray tube within the system is a Megalix Cat 
125/15/40/80 three-focus high-performance X-ray tube 
assembly. The X-ray detector has an indirect conversion layer 
composed of amorphous silicon (a-Si) with a cesium iodide 
(CsI) scintillation material. The detector consists of an area of 
30 × 40 cm2 with a pixel size of 154 μm [14]. The CT projection 
images were collected at 30 images per second, for a total of 
496 projections. 

A sample root-soil system (Fig. 1) was imaged within an 
acrylic container (10 × 10 × 12 cm3; L × W × H). At the time of 
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the imaging, the Calypso beans (Phaseolus vulgaris, cultivar 
‘Calypso’) were grown for three weeks after germination with 
soil moisture ranging from 50% to 80% field capacity. 

 
 

 
 

Fig. 1. A sample of a root-soil system imaged to study soil aggregates.  
 
In comparison to the images from the Artis Zeego CT system, 

the 1-Megapixel (1Mp) X-ray detector can acquire images of 
the plant sample with finer detailed information of the roots and 
soil structure. A performance summary of the detector is listed 
in Table 1 [15]: 

 
Table 1. Summary of the a-Se/CMOS direct conversion X-ray detector 

performance specifications. 
 

 
The test bench for investigating the hybrid a-Se detector 

included a microfocus X-ray source (Microbox, Micro X-ray 
Inc. (MXR), Santa Cruz) and the 1Mp X-ray detector. The 
MXR microfocus X-ray source has a varying focal spot size 
ranging from 5 µm to 10 µm as the source output power changes 
from 7.5 to 15 W. Developed by KA Imaging, the 1Mp X-ray 
detector is an a-Se/CMOS hybrid structure with 1000 × 1000 
pixels (Fig. 2) [16]. The key technology consists of a monolithic 
hybrid X-ray detector built by layering an a-Se film directly 
deposited on each 7.8 μm pixel of the CMOS active pixel 
readout array [15]. This a-Se/CMOS direct X-ray detector 
technology has demonstrated micron scale resolution as well as 
an order of magnitude increase in detection efficiency from 
typical indirect X-ray detectors at energies ranging from 15 keV 
to > 63 keV [16].  

 
 

Fig. 2. Photo of the 1Mp a-Se/CMOS Hybrid Detector with a 7.8 μm pixel 
pitch. The 1Mp detector package and analog daughter board are soldered to the 
test board.   

 
 
The CMOS readout integrated circuit (ROIC) design of the 

1Mp detector has the potential to become scalable in array size, 
using reticle stitching IC fabrication technology, to achieve an 
array greater than 8000 × 8000 = 64 megapixels, with FOV 
greater than 63 × 63 mm2. Due to the limited size of the chip, in 
order to scan a larger sample, repeated scans of the sample will 
be necessary as well as combining the acquisition images as the 
FOV would be limited by the size of the pixel array. 

III. RESULTS 
Figure 3 shows the CT images taken at Stanford University, 

using the Siemens Artis Zeego, at an average energy of 97 kV 
vs 109 kV, 512 × 512 voxel array, and 0.49 vs 0.25 mm voxel 
sizes. The Artis Zeego C-arm was positioned with respect to the 
orientation of the potted plant, using the laser traces to align the 
sample. Due to its design, the C-arm has a non-continuous axis 
of rotation that was accounted for in the reconstruction. 
Parameters that were set for acquisition and reconstruction 
included tube voltage, dose, automatic exposure control (AEC) 
field, VOI (volume of interest) size, reconstruction kernel, and 
slice matrix, while parameters that were automatically selected 
included tube current and pulse width. 

 
 

                              (a)                                             (b) 
 
Fig. 3. Image reconstruction of the Calypso sample with (a) average tube 

voltage of 97 keV and 0.49 voxel size [mm] and (b) average 109 keV and 0.25 
voxel size [mm].  

 
  

Detector features Value 
Pixel size 7.8 µm 
Array size 1000 × 1000 pixels 

Field of view 7.8 mm × 7.8 mm 
Frame rate max 5 fps 

Full well capacity 877 ke- 

RMS noise 180 e- @ 5fps 

Conversion gain 762 e-/ph @ 63 keV, 120 e-/ph @ 20 keV 
5 V/µm 

System conversion 90.6 e-/DN (theoretical) 

MTF (Modulation transfer function) 50% @ 0.5 Nyq. (32 lp/mm) @ 63 keV 
@ 5 V/µm 

Detector field (HV) 4 to > 10 V/µm 
Image Lag 1% to 3 % @ 1s 

The 7th International Conference on Image Formation in X-Ray Computed Tomography

103



 3

Using the 1Mp detector and MXR micro focus X-ray source, 
images were acquired at an energy of 20 kV using a 900 × 900 
pixel array. The microfocus X-ray source emits at a spot size 
that is matched to the detector pixel pitch to minimize 
penumbral blurring. Figure 4 shows an image acquired from 
grass roots with a thickness of 0.5 cm to 0.75 cm at an energy 
of 20 kV with a 1:1 magnification. To improve contrast of the 
roots in the soil, soil-root samples were contained between 
Kapton films to visualize the biomass. At low kV energy, 
significant structural detail in the grass roots can be visualized 
and detected at a 15 μm to 23 μm resolution.  
 
 

 
 

(a) 
 

 
 

(b) 
 
Fig. 4. (a) Image of grass roots in soil with a sample thickness of 0.5 cm to 

0.75 cm. The image was acquired using a 900 × 900 pixel array from the 1Mp 
detector, equivalent to an active area of 7 × 7 mm2. (b) A detail of the grass root 
sample using 2 to 3 pixels, from the detector, provides a resolution of 15 µm to 
23 µm at 1:1 magnification.  

 
 
Further imaging of plant root samples demonstrates 

significant structural detail visible at a 10 μm to 15 μm 
resolution (Fig. 5). However, attenuation in soil substantially 
obscures the low-density biomass structure. As it can be seen 
from Fig. 6, the low-density target made of food-grade 
polypropylene (PP) plastic emulating the low density of the 
biomass materials was obscured by soil material. A 5 mm 
thickness of soil absorbs more than 80% of X-ray photons at 20 
kV. Figure 7 shows the X-ray penetration vs. soil thickness at 
60 kV. It can be seen that 10 mm of soil absorbs 60% of X-ray 
photons at 60 kV.  

IV. DISCUSSION 
Details in the rhizosphere provided by a higher resolution 

image may allow for modelling of representative interacting 
volumes of root hairs and soil particles [17, 18]. The percentage 
of porous area can be calculated from the images shown in 
Fig. 3. A high resolution image can be utilized to determine the 
correlation between where roots continue to grow and the 
porosity of the soil. Compared to the pixel size of 154 μm in the 
Artis Zeego detector, the 7.8 μm pixel size of the a-Se detector 
provides improved resolution which is needed for studying the 
finer structure of microaggregates (with diameters ranging from 
10 μm to 250 μm) and the micropores inside microaggregates. 
More importantly, many crucial functions provided by plant 
roots, microorganisms, and soil aggregates normally operate at 
this finer resolution.  

 

 
 
Fig. 5. Image of a live plant root sample used to study the attenuation of X-

ray signal through soil material. The attenuation in soil substantially obscures 
the low-density biomass structure. The graph shows the gray scale of the 
acquired image versus the distance equivalent to the number of pixels of the 
detector. 

 
 

 
 
 
Fig. 6. Image of soil material obscuring a low-density target (food-grade 

polypropylene (PP) plastic) with a tube voltage of 20 kV. The plastic target was 
used to simulate a low-density biomass target which demonstrated that 5 mm 
of soil absorbs more than 80% of X-ray photons at 20 kV. The graph shows the 
gray scale of the acquired image versus the distance equivalent to the number 
of pixels of the detector.  

200 µm 
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Fig. 7. X-ray attenuation study vs. soil thickness. 10 mm of soil absorbs 60% 

at 60 kV. 
 
 
From initial imaging of plant samples within an acrylic 

container, it was observed that the acrylic container in 
combination with soil is absorbing X-ray at low energies, 
causing limited image quality of the rhizosphere. As previously 
investigated, considering X-ray CT with energy information, 
the X-ray energy distribution can be calculated using a 
mathematical model, such as a response function, to obtain 
reference measurements of the optimal thickness for the X-ray 
path length in an acrylic container [19].  

V. CONCLUSION 
Based on previous investigations related to the study of root-

soil characteristics using X-ray CT scanning [5-10], we have 
investigated the use of a direct conversion CMOS ROIC, the 
1Mp detector, to improve the image quality and resolution of 
the pixel detector currently implemented in the Artis Zeego. 
CMOS direct charge sensors may be capable of improving the 
limitations caused by the ratio between sample size and 
resolution (voxel size), as well as the smaller resolution for 
larger sample sizes [20]. The combination of high spatial 
resolution and high quality image reconstruction may allow for 
improved detail in the image quality of the 3D acquisition of 
the rhizosphere. From this preliminary work, the X-ray source 
emitted at a spot size that is matched to the detector pixel pitch 
to minimize penumbral blurring. A 10 μm spatial resolution and 
noise limited performance of 8 photons/pixel at 20 keV were 
achieved. We believe that microCT of live plants, in situ, would 
require: 

i) A high fluence, high  keV X-ray source that would generate 
images of voids in the soil where biomass in growing   

ii) A form of radio dense metallic dopant to be taken up in 
the root system  

The combined application of PET and CT scanning may 
provide simultaneous spatial and temporal data on root 
morphology and architecture. 
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Abstract—Multi-energy CT conducted by photon-counting 
detectors has a wide range of applications, especially in multiple 
contrast agent imaging. However, multi-energy CT imaging 
suffers from higher statistical noise because of increased energy 
bin numbers. Our team has proposed the dynamic dual-energy 
CT imaging mode and the corresponding iterative imaging 
algorithms to solve this problem. The multi-energy projections 
and reconstructions calculated from the dynamic dual-energy CT 
data are less noisy than the static multi-energy CT, which has 
been verified by sufficient numerical simulations and experiments. 
However, a rigorous mathematical derivation has not been 
conducted to explain why dynamic dual-energy CT is better than 
static multi-energy CT in reducing statistical noise. In this work, 
we drive the noise model of the dynamic dual-energy CT to 
explain the reason. The reason is: compared to the multi-energy 
projections that are directly measured from a static multi-energy 
CT, the multi-energy projections, which are calculated from the 
dynamic dual-energy CT data, have the same expectation, but the 
variance is lower. 
 

Index Terms— spectral CT, multi-energy CT, CT 
reconstruction, photon-counting CT, dynamic dual-energy 
 

I. INTRODUCTION 
HOTON counting CT has made significant progress in both 
technique and clinical application in recent years[1]. 

Compared to energy-integrating CT, photon-counting CT has 
advantages in spatial resolution, radiation dose, equal 
weighting for all photons, etc.  Multi-energy imaging is one of 
the major characteristics of photon counting CT, enabling 
simultaneous imaging of multiple contrast agents and the future 
of functional imaging. However, as the number of energy bins 
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increases, the photon counts in each energy bin decrease, which 
leads to higher statistical noise of the projection data and bad 
quality of the reconstruction images. 

To reconstruct less-noisy multi-energy CT images, we 
proposed the dynamic dual-energy (DDE) CT to reduce the 
statistical noise of the multi-energy CT data in our previous 
works [2-4]. The dual-energy CT data are obtained by applying 
an adjustable energy threshold in the photon-counting detector. 
The reconstruction and decomposition results calculated from 
the DDE CT data are less noisy than the static-energy-threshold 
multi-energy (SME) CT results, which have been verified 
through sufficient numerical simulations and experiments. 
However, why DDE CT outperforms SME CT in reducing 
statistical noise has not been explained in theory. Because DDE 
CT can utilize fewer data to reconstruct less-noisy multi-energy 
CT images is challengeable, giving a mathematical explanation 
is crucial to make DDE CT more acceptable. 

In this work, we analyze DDE CT from the perspective of 
statistics. The mathematical foundation under DDE CT is: the 
variance of a Poisson random variable is larger than the 
variance of a random variable if this variable is calculated from 
a Poisson random variable with a larger expectation. Applying 
this principle to DDE CT, the conclusion is: if the ratios among 
the transmitted photons of different energy bins are accurately 
known, the noise of the multi-energy projections calculated 
from the DDE CT data is less than the noise of the multi-energy 
projections that are directly measured from the SME CT. With 
the convergence analysis of the simulation results, we further 
show that the ratios among the transmitted photons of different 
energy bins can be accurately calculated. In conclusion, we 
explain why DDE CT is better than SME CT in reducing 
statistical noise. 

The structure of this paper is organized as follows. Since 
DDE CT is still a new concept, we first briefly review the DDE 
CT mode and the iterative DDE algorithm for multi-energy CT 
imaging in Section 2. Section 3 introduces the noise model of 
the DDE CT. Section 4 presents the convergence analysis of the 
DDE CT. Section 5 is the conclusion. 

II. REVIEW OF THE DYNAMIC DUAL-ENERGY CT 

A. Dynamic Dual-Energy CT Mode 
The SME CT diagram is shown in Figure 1a, and the DDE 

CT diagram is shown in Figure 1b. In SME CT, there are Nk 
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energy thresholds for Nk-energy CT imaging. However, in DDE 
CT, there are only two energy thresholds. The low-energy 
threshold is unchanged and fixed, while the high-energy 
threshold changes among different preset values. When a 
photon is injected into the detector, it will be counted either in 
the low-energy bin or in the high-energy bin. 

The high-energy thresholds change randomly for different 
detector pixels and different scan views. The preset values for 
the high-energy thresholds are set according to the requirement 
of multi-energy imaging. Nk-energy imaging requires Nk -1 
preset values for the high-energy thresholds. These values are 
the same as the values of energy thresholds in an SME CT that 
aims for the same Nk-energy imaging. 

 
Fig 1. Diagrams of the SME CT (up) and DDE CT (down) [4]. 

B. Iterative Dynamic Dual-Energy CT Algorithm 
In a DDE CT scan, there are two measurements ,low ji  and 

,high ji  for the transmitted photons of the jth ray. Supposing the 
measurements follow a Poisson distribution, the corresponding 
random variables of the measurements ,low jI  and ,high jI  are 
equal to: 
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In the above formula, 0,kI  are the incident photons of the 
kth-energy bin, which is the same for all X-rays. j iN NA u� is 
the system matrix. jN  is the number of X-rays. iN  is the 
number of pixels in a reconstruction image. kX  is the accurate, 
noise-free reconstruction image of the kth energy bin. [ ]k jAX  
represents the line integral of the jth X-ray. Nk is the number of 
total energy bins. Nth,j is the number of preset values for the 
high-energy threshold at the jth ray. 

The iterative DDE CT algorithm for calculating the 
multi-energy projections from the DDE CT data can be 
concluded to the following two steps in one iteration: 

Step 1: Update the multi-energy transmitted photons 
,k ji  using the last updated multi-energy CT results kX  

and the low- and high-energy measurements  ,low ji  and 
,high ji ， . 

Step 2: Update the multi-energy CT images kX  with 
the multi-energy transmitted photons ,k ji . 

For step 1, the multi-energy transmitted photons ,k ji  can be 

calculated according to the following formula: 
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 For step 2, the SIRT [5] algorithm is used for CT 
reconstruction of all energy bins. The initial values for the 
multi-energy CT image kX  are set to the values of the 
mono-energetic CT image, which can be reconstructed from the 
mono-energetic projections , ,low j high ji i� . 

III. THE NOISE MODEL OF DYNAMIC DUAL-ENERGY CT 

A. The Property of Poisson Random Variable 
In this section, we first discuss a property of the Poisson 

random variable. Considering a Poisson random variable X , 
the probability density function for the random variable X  is: 
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!

k keX k
k

O �

                                    (3) 

According to (3), the expectation and variance of the random 
variable X  are equal to: 
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Consider another Poisson random variable Y , where the 
expectation of Y is tO  ( 0 1t� � ). According to (4) and (5), the 
expectation and variance of Y  are: 

E( ) Var( )Y Y tO                                    (6) 
Consider a new random variable Z . Its definition is: 

,    0 1Z tX t � �                                     (7) 
The probability density function for Z is: 
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The expectation and variance of Z  are: 
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Random variables Y  and Z  have the same expectation, while 
the variance of Z  is smaller than the variance of Y . The 
conclusion for the above derivation is: the variance of a Poisson 
random variable ( Y ) is larger than the variance of a random 
variable ( Z ), if this variable ( Z ) is calculated from the 
Poisson random variable with a larger expectation ( X ). 
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B. The Noise Model of Dynamic Dual-Energy CT 
In this section, we drive the noise model of the DDE CT data 

and compare it to the SME CT data. Considering an Nk-energy 
SME CT, the number of transmitted photons in the kth-energy 
bin kI  is a Poisson random variable. The number of transmitted 
photons of all energy bins totalI  is also a Poisson random 
variable, and they satisfy the following relationship: 

1
= kN

total kk
I I

 ¦                                         (11) 

Therefore, the expectations of these random variables satisfy 
the following relationship: 

E[ ] E[ ],  where 0 1  1k k total k k
k

I t I t t � � d  ¦，               (12) 

If the expectation of the number of total transmitted photons is 

0O , according to (6), the expectations and variances for the 
number of transmitted photons in different energy bins are: 

0E[ ] Var[ ]k k kI I t O  �                                 (13) 
Now consider the DDE CT data. In DDE CT, the number of 

transmitted photons of the low-energy bin and the high-energy 
bin lowI  and highI  are Poisson random variables and satisfy the 
following relationships: 
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Because the number of transmitted photons measured in the 
low-energy bin and the high-energy bin in a DDE CT are 
Poisson random variables, according to (13) and (15), their 
expectations and variations are equal to: 
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In DDE CT, the number of transmitted photons of multiple 
energy bins is not obtained from direct measurement but is 
calculated from the low- and high-energy bin data: 
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kI  is still a random variable and represents the number of 
transmitted photons of the kth energy bin. According to (9), (10), 
and (16), the expectation and variance of kI  are: 

0E[ ]k kI t O �                                   (18) 

0

1

0

1

   

V

1

ar[ ]=
,    

th

k

th

k
k N

kk
k

k
k

N

th

tN h k

kk

k N

N k N

tt
t

I
tt

t

O

O

 

 �

­ � �°
°
®
° � �
°

d d

� d
¯

¦

¦

，

              (19) 

Comparing the expectation and variance of the number of 
multi-energy transmitted photons in SME CT and DDE CT, we 
can obtain the following relationship: 

E[ ] E[ ]k kI I                                  (20) 
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For all k, the following inequalities always satisfy: 
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Therefore, we obtain the following conclusion: compared to the 
multi-energy CT transmitted photons kI  that are directly 
measured from an SME CT, the multi-energy transmitted 
photons kI , which are calculated from the DDE CT data, have 
the same expectation, but the variance is lower. 

C. Verification 
To verify the theory proposed in Section 3B, we simulate a 

large amount of data. We calculate the variances of the 
multi-energy CT transmitted photons for these simulation 
results and verify whether the relationship between the 
variances of the SME CT and the DDE CT is consistent with 
the theory. 

A 20 cm diameter water cylinder is scanned in the simulation. 
The number of energy bins is 8. The variance images of the 
third-energy-bin SME CT transmitted photons and the 
third-energy-bin DDE CT transmitted photons are calculated 
from 1000 samples and shown in Figures 2a and 2b, 
respectively. If the proposed theory is correct, the following 
formula should be satisfied: 
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k is the number of energy bins. j is the number of X-rays. The 
ratio image of the third energy bin is shown in Figure 2c. The 
third-energy bin calculation results are shown in Figure 2d. The 
mean value of Figure 2d is 1.0022, which is extremely close to 
1. This result verifies the correctness of the noise model 
proposed in Section 3B. 
 

 
Fig 2. The variance images and calculation results of the third 
energy bin. 2a and 2b are variance images of the SME CT and 

DDE CT, respectively. 2c is the ratio image. 2d is the 
calculation result. The display windows for 2d is [0.5, 1.5]. 
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IV. THE NOISE MODEL OF DYNAMIC DUAL-ENERGY CT 

A. Calculating Accurate tk in the Dynamic Dual-Energy CT 
Section 3 proves that the noise of projection calculated from 

DDE CT is lower than that calculated from SME CT. However, 
there is a premise for this conclusion: the ratios between the 
number of transmitted photons of a specific energy bin and all 
energy bins are accurately known, e.g., kt  is known and 
accurate for any k. In theory, kt  can be accurately calculated 
only if the noise-free transmitted photons of different energy 
bins are known. kt  cannot be calculated directly from the 
original DDE CT data. 

The iterative DDE CT algorithm, which is described in 
Section 2B, is proposed to calculate accurate kt . When the 
algorithm converges, (2) will be rewritten as: 
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, ,k j convergei  is the convergent value for the multi-energy 
transmitted photons calculated from DDE CT and is an 
observation of the random variable defined in (17). Therefore, 
according to the conclusion in Section 3B, , ,k j convergei  has lower 
statistical noise than ,k ji , which is the transmitted photon 
measured from the SME CT. In other words, the multi-energy 
projections calculated from the DDE CT data are less noisy 
than the SME CT if the iterative DDE algorithm converges. 

B. Convergence of the Iterative Dynamic Dual-Energy 
Algorithm 

The convergence of the iterative DDE algorithm is verified 
through simulation. The XCAT thorax phantom [6] is scanned 
in the simulation. The simulation configurations are shown in 
Table 1. 

TABLE I 
CONFIGURATIONS OF THE SIMULATION 

Parameter Value 

Scan Method 2D fan-beam 
Source Voltage 120 kV 

Distance between Source and Detector 100 cm 
Distance between Source and Gantry Center 50 cm 

Views over 360 Degrees 720 
Number of Detectors 1024 

Detector Length 1 m 
Size of Reconstruction Image 512 * 512 

Reconstruction Pixel Size 1 mm * 1 mm 
Number of Energy Bins 8 

Number of Incident Photons for Each Ray 5*106 

 
The noise of the projections is measured in terms of the 

relative error, which is defined as: 
2

2
|| ||RelativeError( ) 100%

|| ||
truth

truth

prj prjprj
prj
�

 u                (25) 

truthprj  is the ground truth of the line integrals of multi-energy 

CT, which can be obtained from the noise-free SME CT. In the 
analysis of the convergence, the relative error is calculated for 
line integrals of three types: the multi-energy line integrals 
measured in SME CT, the multi-energy line integrals calculated 
from DDE CT data, and the convergent values for the 
multi-energy line integrals from DDE CT. If the algorithm 
converges, the second type of relative error will decrease to the 
same value as the third type of relative error. 

The convergence curve is plotted in Figure 3, which shows 
that the algorithm converges. This illustrates that the iterative 
DDE algorithm can accurately calculate tk. Moreover, the 
relative errors of the multi-energy line integrals from the DDE 
CT are much smaller than the relative errors of the multi-energy 
line integrals from the SME CT, which indicates that a 
less-noisy multi-energy projection can be calculated from the 
DDE CT. 

 
Fig 3. The convergence curve. 

V. CONCLUSION 
In this work, we derive the noise model of DDE CT to 

explain why DDE CT can reduce statistical noise better than 
SME CT. Based on this derivation, we further analyze the 
convergence of DDE CT and show that the multi-energy 
projection calculated from DDE CT is less noisy than that 
calculated from SME CT. 

REFERENCES 
[1] M. Danielsson, M. Persson, and M. Sjolin, "Photon-counting x-ray 

detectors for CT," Phys. Med. Biol., vol. 66, no. 3, Feb 7 2021, Art no. 
03tr01, doi: 10.1088/1361-6560/abc5a5. 

[2] L. Li, Z. Chen, W. Cong, and G. Wang, "Spectral CT modeling and 
reconstruction with hybrid detectors in dynamic-threshold-based counting 
and integrating modes," Ieee T Med Imaging, vol. 34, no. 3, pp. 716-728, 
2015. 

[3] Y. D. Yao, L. Li, and Z. Q. Chen, "Dynamic-dual-energy spectral CT for 
improving multi-material decomposition in image-domain," (in English), 
Phys. Med. Biol., Article vol. 64, no. 13, p. 22, Jul 2019, Art no. 135006, doi: 
10.1088/1361-6560/ab196d. 

[4] Y. Yao, L. Li, and Z. Chen, "Iterative dynamic dual-energy CT algorithm in 
reducing statistical noise in multi-energy CT imaging," Physics in Medicine 
& Biology, 2021. [Online]. Available: 
http://iopscience.iop.org/article/10.1088/1361-6560/ac459d. 

[5] J. Gregor and T. Benson, "Computational analysis and improvement of 
SIRT," Ieee T Med Imaging, vol. 27, no. 7, pp. 918-924, Jul 2008, doi: 
10.1109/tmi.2008.923696. 

[6] W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and B. M. W. Tsui, 
"4D XCAT phantom for multimodality imaging research," (in English), 
Medical Physics, Article vol. 37, no. 9, pp. 4902-4915, Sep 2010, doi: 
10.1118/1.3480985. 

 

The 7th International Conference on Image Formation in X-Ray Computed Tomography

109



Cone-Beam X-ray Luminescence Computed Tomography 
Reconstruction Based on Huber Markov Random Field Regularization 

Tianshuai Liu, Junyan Rong, Wenqin Hao, Hongbing Lu 
Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi 710032, 

China 
ABSTRACT 

In recent years, cone-beam X-ray luminescence 
computed tomography (CB-XLCT) has drawn much 
attention with the development of X-ray excited 
nanophosphors. Compared with traditional bio-optical 
imaging modalities such as bioluminescence 
tomography (BLT) and fluorescence molecular 
tomography (FMT), CB-XLCT can effectively improve 
imaging sensitivity and depth because of the reduction 
of background fluorescence and the high penetrability 
of X-rays. However, due to high degree of scattering of 
light through biological tissues, the reconstruction of 
CB-XLCT is inherently ill-conditioned. To solve the 
ill-posed inverse problem, appropriate priors or 
regularizations are needed to facilitate the 
reconstruction. Based on the fact that adjacent pixels 
generally have the same or similar concentration and in 
order to further balance the degree of regional 
smoothness and edge sharpening, a prior information 
model based on Huber Markov Random Field (HuMRF) 
was established to constrain the reconstruction process 
of CB-XLCT. Mice experiments indicate that compared 
with the traditional ART and ADAPTIK method, the 
proposed method could improve the image quality of 
CB-XLCT significantly in terms of target shape, 
localization accuracy and image contrast. 
Keywords: X-ray luminescence computed tomography, 
image reconstruction techniques, Huber Markov 
Random Field, mice experiments 

1. INTRODUCTION 
With the advances of X-ray excitable nanophosphors, 
cone-beam X-ray luminescence computed tomography 
(CB-XLCT) has attracted more attention for its 
promising performance[1]. In CB-XLCT, X-ray 
excitable nanophosphors are used as imaging probes 
and emit visible or near-infrared (NIR) light when 
irradiated by X-rays. The photons excited by X-rays 
arrive at the surface of the imaging object and can be 
measured by sensitive photon detectors. By solving an 
inverse problem using an appropriate imaging model of 
X-ray and photon transport, the three-dimensional (3-D) 
distribution of the nanophosphors in the imaged object 
can be resolved. Compared with traditional bio-optical 
imaging modalities such as bioluminescence 
tomography (BLT) and fluorescence molecular 
tomography (FMT), CB-XLCT can effectively improve 
imaging sensitivity and depth because of the reduction 

of background fluorescence and the high penetrability 
of X-rays[2]. However, due to high degree of scattering 
of light through biological tissues, the reconstruction of 
CB-XLCT is inherently ill-conditioned. In order to 
improve the reconstruction quality of CB-XLCT, the 
priori information is needed to constrain the 
reconstruction process. 

In this study, we propose a reconstruction approach 
based on Huber Markov Random Field (HuMRF) for 
the CB-XLCT reconstruction.  The remainder of this 
paper is organized as follows. In Section 2, the 
proposed method is described in detail. In Section 3, 
the mice experiments design and results are described 
for the performance evaluation of the proposed 
reconstruction approach. Finally, conclusion is given in 
Section 4. 

2. METHODS 
2.1 Forward model of XLCT and Inverse Problem 
based on the proposed GHuMRF algorithm 
Based on the forward model of CB-XLCT[3]: 

measWn = )                            (1) 

In practical application of XLCT, noise of the 
XLCT imaging system needs to be considered, and 
equation (1) becomes: 

y Wxmeas 9 9= ) + = +                       (2) 

where 1 2[ , , , ]T
My y y y=  represents the actual 

fluorescence signals measured on the surface of the 
imaging object， 1 2[ , , , ]T

M9 9 9 9=  is the noise of 
the system,W is the weight matrix, x n=  represents 
the unknown distribution of nanophosphors in the 
imaging object. 

Based on Bayes theory, the maximum a posteriori 
(MAP) estimation of the unknown distribution of 
nanophosphors in the imaging object can be expressed 
as[4]: 

arg max{log ( )} arg max{log ( ) log ( )}MAP
x x

x p x y p y x p x
�

= = +

 (3) 
where ( )p x y  represents the posterior probability 

density function, ( )p y x  represents the conditional 
probability function (measurement model), ( )p x  
represents the priori probability density function (priori 
model). 
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Since the working temperature of the EMCCD 
camera is very low, the measurement model is 
constructed based on a shot-noise model, which 
assumes the independent measurement noise can be 
described by a Gaussian distribution: 

1

21 1( ) exp
( ) yM

y

p y x y Wx
NSN

−/

ª º= − −« »/ ¬ ¼
                                                   

(4) 
where M represents the number of measurement 
points，κ is the unknown hyperparameters related to 
noise variance， y/ is the covariance matrix of the 
fluorescence measurement signal. 

Based on the adjacent pixels generally have the 
same or similar concentration and in order to further 
balance the degree of regional smoothness and edge 
sharpening,  the priori model is constructed based on 
Huber Markov Random Field (HuMRF): 
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，

G  is an adjustable parameter to balance the smoothness 
of the region and the sharpness of the boundary, bj-k is 
the weight coefficients between the jth and kth pixels 
which is inversely proportional to the distance between 
the pixels. 

2.2 Quantitative evaluation 

The quality of reconstructed CB-XLCT images was 
evaluated quantitatively by several indexes including 
the location error (LE), dice similarity coefficient 
(DICE) and contrast-to-noise ratio (CNR) [3]. 

LE evaluates the localization accuracy of the 
reconstructed target, which is defined as the Euclidean 
distance error between the centers of true and 
reconstructed targets: 

2
-LE = r tL L                               (6) 

where Lr and Lt denote the centers of the reconstructed 
and true targets, respectively. 

DICE reflects the similarity of the true and 
reconstructed targets and can be calculated by: 

2 tDICE =
+

r

r t

ROI ROI
ROI ROI

                     (7) 

where ROIt and ROIr denote the regions of true and 
reconstructed targets, respectively, and |�| defines the 
number of voxels in a region. 

CNR is used for quantitative evaluation of noise and 
artifacts in reconstructed images, as shown below: 

2 2 1/2( )
ROI BCK

ROI ROI BCK BCK

CNR
w w

P P
V V

−
=

+
                       (8) 

where ROI and BCK denote the target and background 
regions of the imaged object, ROIw  and BCKw are 
weighting factors determined by the relative volumes of 
the target and background, ROIP and BCKP are the mean 

intensity values of the ROI and BCK, and 2
ROIV  and 

2
BCKV  represent the variances of the ROI and BCK, 

respectively. 
 

3. EXPERIMENTAL DESIGN AND 
RESULTS   

Mice experiments were performed to evaluate the 
performance of the proposed method based on the 
custom-developed CB-XLCT system in our laboratory. 
All experiments were conducted in compliance with the 
provisions of the Animal Ethics Review Committee of 
the Air Force Military Medical University. For 
comparison, two traditional methods, algebra 
reconstruction technique (ART), and adaptive tikhonov 
regularization (ADAPTIK) were also implemented to 
reconstructed the image. 

A female BALB/c nude mice was used in this 
experiment. A small glass tubes (3mm in diameter) 
filled with Y2O3: Eu3+ (60mg/ml) was embedded into 
the abdominal cavity of mice to serve as the nano-probe 
in XLCT imaging. During imaging experiments, the 
mice were fixed on the rotation stage. The voltage and 
current of the X-ray source were set as 50kVp and 1mA, 
respectively. The mice was rotated from 0° to 360° and 
the optical images were obtained every 15° by the 
EMCCD camera. The exposure time of the EMCCD 
camera was set as 2s, with the EM gain set as 260. 

The XLCT tomographic images were reconstructed 
with different algorithms in the mouse experiments, as 
shown in Fig. 1. All the reconstruction results are 
normalized based on their maximum values. Fig. 1.
（c） ,（e） ,（g） show the reconstruction results 
based on ART, ADAPTIK and the proposed methods 
respectively. Fig. 1. (d), (f), (h) are the fusion results of 
XLCT and XCT reconstructed images. It can be seen 
that compared with the traditional ART and ADAPTIK 
method, the proposed method could improve the image 
quality of CB-XLCT significantly in terms of target 
shape, localization accuracy and image contrast. 
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Fig. 1. The tomographic images were reconstructed 

based on ART, ADAPTIK and the proposed methods. 
 

The quality of reconstructed CB-XLCT images is 
given in Table 1. For the Mice experiments, the 
reconstruction results based on the proposed the 
proposed GHuMRF algorithm yield the highest Dice 
and CNR with lowest LE. The results indicate that 
proposed GHuMRF algorithm performs better in target 
location, shape recovery and image contrast, when 
compared to the conventional reconstruction methods 
of ART and ADAPTIK, which further confirm the 
observation in Fig. 1. 
 
Table 1 Quantitative Evaluation on Mice experiments 
reconstructions using different methods 

 LE(mm) DICE CNR 
ART 2.5 0.51 2.63 

ADAPTIK 1.8 0.6 3.5 
GHuMRF 0.9 0.9 5.28 

 
 

4. DISCUSSION AND CONCLUSIONS 
In this study, a reconstruction approach based on 
HuMRF regularization is proposed for the CB-XLCT 
inverse problem. Mice experiments indicate that 
compared with the traditional ART and ADAPTIK 
method, the proposed method could improve the image 
quality of CB-XLCT significantly in terms of target 
shape, localization accuracy and image contrast.  

It should be noted that Both Gaussian noise model 
[5]and Poisson noise model [6] can be used to simulate 
the measurement noise of EMCCD camera. Generally, 
Poisson distribution tends to Gaussian distribution with 
the increase of sample size. In this paper, the Gaussian 

noise model is used to simulate the measurement noise 
of EMCCD camera. In the further in vivo imaging 
research the Poisson noise model can be used to 
construct the measurement model, because the number 
of photons collected by EMCCD camera is relatively 
lower. 

In the mouse experiment, the mice were placed in 
deep anesthesia. When the turntable rotates, it uses a 
low speed of 6°/s while maintaining a uniform rotation 
speed, to minimize the adverse effects of internal organ 
movement in mice during data collection. Moreover, 
the mouse was monitored throughout the data 
acquisition process to ensure that its position would not 
change. Therefore, in this paper, for mouse experiments, 
motion correction was not performed during 
reconstruction. 

It is necessary to accurately segment the organs of 
the imaging object, because of giving corresponding 
optical parameters to different organs is important to 
obtain high-quality reconstructed images. Therefore, a 
more accurate image segmentation algorithm needs to 
be used for organ segmentation in mice  

In this paper, because CT reconstruction requires 
more projections, XCT projection data and optical 
detection signals are collected twice. In future 
experiments, the simultaneous acquisition of XCT 
projection data and optical detection signals can reduce 
the scanning time, radiation dose and the impact of 
organ movement between two scans on the 
reconstruction results. 

In summary, based on Bayes theory, a CB-XLCT 
reconstruction method based on GHuMRF algorithm is 
proposed in this paper. Compared with the traditional 
ART and ADAPTIK method, the GHuMRF algorithm 
add spatial constraints between adjacent pixels during 
reconstruction, which improves the image quality of 
CB-XLCT reconstruction. In the further study, more 
prior information constraints can be added to CB-
XLCT reconstruction based on Bayes theory to 
improve the image quality of CB-XLCT. 
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Abstract—In a cone-beam CT system, the use of bowtie-filter 

may induce artifacts in the reconstructed images. Through a 
Monte-Carlo simulation study, we confirm that the bowtie filter 
causes spatially biased beam energy difference thereby creating 
beam-hardening artifacts. We also note that cupping artifacts in 
conjunction with the object scatter and additional 
beam-hardening may manifest. In this study, we propose a 
dual-domain network for reducing the bowtie-filter induced 
artifacts by addressing the origin of artifacts. In the projection 
domain, the network compensates for the filter induced 
beam-hardening effects. In the image domain, the network 
reduces the cupping artifacts that generally appear in cone-beam 
CT images. Also, transfer learning scheme was adopted in the 
projection domain network to reduce the total training costs and 
to increase utility in the practical cases while maintaining the 
robustness of the dual-domain network. Thus, the pre-trained 
projection domain network using simple elliptical cylinder 
phantoms was utilized. As a result, the proposed network shows 
denoised and enhanced soft-tissue contrast images with much 
reduced image artifacts. For comparison, a single image domain 
U-net was also implemented as an ablation study. The proposed 
dual-domain network outperforms, in terms of soft-tissue contrast 
and residual artifacts, a single domain network that does not 
physically consider the cause of artifacts.  

I. INTRODUCTION 
n a clinical cone-beam CT system, the bowtie-filter is 

often used to homogenize projection data across the 
field-of-view thereby better utilizing detector response 
characteristics and partly to reduce the amount of object scatter. 
However, it can induce eclipse shape artifacts that typically 
have a bright ring and dark shade in the reconstructed image as 
shown in Fig 1. Artifacts from the bowtie-filter may build up in 
various forms depending on the geometric shape of the filter 
and the scanning system conditions. Since the artifacts can 
severely degrade the soft-tissue contrast in CT images, there 
have been studies for reducing these artifacts and for clarifying 
their physical causes [1-3].  

Due to the elliptic shape nature of human anatomy in 
transverse plane, the bowtie-filter gradually thickens towards 
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the outside from the principal ray projection position. Therefore, 
the energy of the incident x-ray from the source can be 
hardened when it passes through the ticker part of the filter. 
This spatially varying spectral incident beam, together with the 
nonlinear detector energy-response characteristics, can cause 
data inconsistencies from the linear imaging model resulting in 
peculiar beam-hardening artifacts such as eclipse artifacts. M. 
Cai et al. [3] introduced a decoupling technique that 
decomposes the artifacts into bowtie filter-induced 
beam-hardening and object-induced cupping artifacts. The 
decoupling scheme is valid from the physical perspectives in 
that the artifacts originated from the bowtie-filter can be 
separated from the object-originated ones. However, the 
suggested method in [3] requires heuristic parameter 
optimization in each case and has to handle the correction 
mismatch in an iterative reconstruction framework that requires 
heavy computational cost. A neural-network-based artifact 
correction method can be an alternative; a single domain 
network (e.g., in image-domain) may not be a suitable 
candidate though since physical factors are hardly incorporated 
in such a network, possibly resulting in residual artifacts and 
structural distortions. In recent studies, a dual-domain network 
has been introduced to partly incorporate physical factor issues 
in the projection domain and shown promising results in metal 
artifacts reduction [4].  

In this study, we propose a dual-domain network for reducing 
the bowtie-filter induced artifacts by addressing the causes of 
artifacts in the respective domains efficiently. In the projection 
domain, the network compensates for the filter induced 
beam-hardening effects. In the image domain, the network 
solves the cupping artifacts that are more associated with the 
imaged object. Also, transfer learning scheme was adopted in 
the projection domain training to   reduce the total training costs 
and to increase utility in the practical cases. 

II. METHOD 

A. Decoupling of Bowtie Artifacts 
Through a Monte-Carlo simulation study, we have confirmed 

that the bowtie filter causes spatially biased beam energy 
distribution and creates an eclipse shape of beam-hardening 
artifacts in the image on top of the object-induced cupping 
artifacts. Figure 1 shows example slice images of the 
reconstructed uniform cylinder phantom. The two cases 
represent different shapes of the bowtie-filters. Overall the 
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reducing bowtie-filter induced artifacts in 
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images are subject to cupping due to the object scatter and 
beam-hardening, and the central ring-shaped blooming is due to 
the bowtie-filter. Thus, we aim at correcting for the 
bowtie-filter artifacts in the projection domain and by doing so 
decoupling the bowtie-filter artifacts from the object related 
ones.  

 

 
 
Fig. 1.  Bowtie filter artifacts under two different bowtie-filter designs. The 
eclipse artifacts occurred in the images that have a bright ring and dark shade 
inside on top of the global cupping. 

B. Dual-domain network with transfer-learning 
The transfer learning can be applied when the size of datasets 

is small but when there exists a pre-trained network that 
performs similar tasks. In our case, the transfer-learning 
scheme was adopted in the projection domain network that 
intend to do the filter-induced beam-hardening correction. This 
is due to the limited availability of patient projection data under 
specific geometric conditions (filter shapes or system 
geometry). Therefore, simple elliptical cylinder phantoms that 
are easy to implement were used to prepare a pretrained 
network. After the projection-domain network, the image 
domain network addresses the remaining cupping artifacts, 
which can be interpreted as bottleneck feature in the transfer 
learning scheme.  
 

C. Cone-beam CT system using Monte-Carlo simulation 
The system geometry was designed according to Nano Focus 

Ray (inc)’s Phion v2.0 CBCT system and we used GPU-based 
Geant4 Monte-Carlo simulation tool [5]. The system uses a 
half-fan scan mode with a half-bowtie filter (aluminum based 
filter). The source to detector distance (SDD) and source to 
object distance (SOD) are 835mm and 480mm, respectively. In 
addition, an array size of 256x240 detector was used for data 
acquisition. The tube voltage was set to be 110kVp. The 
detailed scanning parameters are summarized in TABLE I 

 
TABLE I 

GEOMETRY TABLE 
SDD 835mm 
SOD 480mm 

Detector pitch 1.16x1.16mm 
Detector resolution 256x240 
Thickness of detector 20mm 
Tube voltage 110kVp 

Angular step size 1 degree 
 

D. Projection domain training 
For projection domain training, 6 sets of elliptical cylinder 

water phantoms with its height of 400 mm were prepared with 
different ellipticities. They have a fixed major axis diameter of 
265mm (the value that nearly fulfills the FOV under the given 
geometry) and only the minor axis diameter changes from 
115mm to 241mm, which corresponds to an ellipticity ranging 
from 0.4 to 0.9. The patient shape is assumed to be a kind of 
elliptical cylinder and its ellipticity would range in the targeted 
range above. 360 projections were acquired for each phantom 
over a full rotation and half of them were used for training data 
considering redundant information of the elliptic phantoms 
placed in the isocenter. A total of 1080 projections from six 
phantoms were used for training. The projection data with the 
bowtie filter were used as inputs and the data without the 
bowtie filter were used as labels. We used projection image of 
the bowtie filter alone, i.e., without imaged object, as an 
additional input. The data were divided into 810 pairs for the 
training set and 270 pairs for the validation set for the network 
training.  

One thing we would like to note is that we used a frequency 
splitting technique when preparing the input considering the 
drastic difference of the simple phantoms and the patient data. 
In order to make the input patient data more consistent with the 
elliptic cylinder phantoms, low-frequency information was 
extracted and fed into the network for removing the 
bowtie-filter artifacts which are also low-frequency dominated. 
A Gaussian filter was used for frequency splitting and only the 
low-frequency of data was given as an input to the network. 
After the bowtie-filter network, the high-frequency information 
was added to form the corrected projection data.  

By doing so, beam-hardening correction can be effectively 
done by low-frequency matching high-frequency components 
of the patient projection data are preserved. For the network 
model, residual U-net was used with mean squared error loss. 

 

Raw data

High-frequency

low-frequency Bowtie net Corrected 
sinogram

Object net

Corrected 
image

+

FBP

*Bowtie net: Projection-domain network
*Object net: Image-domain network

:pretrained 
using phantom

Fig. 3.  Total workflow of study. The frequency split technique was applied 
before projection domain training for preventing loss of high-frequency 
information of input. 

 

E. Image domain Training 
For image domain training, 5 clinical patient CT volume data 

from Mayo clinic (AAPM low-dose CT challenge dataset) were 
used. The abdominal part of clinical data was segmented into 
30 different materials with different densities based on HU unit 
to create ground-truth material maps. Then, polychromatic 
forward projection of the maps with known source energy 
spectrum was performed to acquire projection data and they 
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were reconstructed to create ground-truth images for training. 
Also, to create bowtie artifact corrupted patient projection 
image, the bowtie filter inserted Monte-Carlo simulation was 
conducted. These data were passed to the pre-trained 
projection-domain network as explained above and 
reconstructed to use as input data for the image-domain 
network training. The reconstructed volume size is 
256x256x240 for each patient. 

Among total 1200 paired data, 720 pairs of data were used for 
the training set, 240 pairs of data were used for the validation, 
and 240 pairs of data were used for the test. For the network 
model, residual U-net was used with mean square error loss. 

III. RESULTS AND DISCUSSION 

A. Results of projection domain network 
The network was trained to 24k epochs with 5e-6 learning rate 

with Adam optimizer. The validation loss was almost saturated 
over 16k epoch and it converged to 5.50e-5. The network 
parameter weight at the 23kth epoch was used for this study. 
The training loss of that point is 3.03e-6 and the validation loss 
is 5.49e-5. In Fig 4 (a), (b), and (c), the results of validation 
images are shown. The compensation was successfully done 
and also line-profile of projection was almost recovered as label 
data 

Then, the patient projection data are also given to this 
pre-trained network. The beam-hardening due to the 
bowtie-filter was well recovered, and the line profile shows 
such recovery as shown in Fig 4. (d) and (e). Please note that 
there is no ground-truth for the patient projection in this case. 
These results are reconstructed and compared with the original 
image in Fig 5. 

As shown in Fig. 5, the eclipse artifact was clearly removed, 
and only cupping artifact remains. Also, due to the frequency 
split technique, the high-frequency structures are well 
preserved. We believe that removing these eclipse artifacts 
would help the image-domain network remove the remaining 
cupping artifacts. A single image-domain network would have 
to process the compounding artifacts without incorporating 
different physical factors. 

 

B. Results of image domain network 
The network trained to 1.4k epochs with 1e-4 learning rate 

with Adam optimizer. The training loss was 1.58e-7, validation 
loss was 1.76e-7 and test loss was 1.78e-7. To show the 
robustness of our dual-domain network, the results were 
compared with a single image-domain U-net. The compared 
network was trained with the bowtie artifact corrupted patient 
image and label patient image in the image domain. 

 

(a) (b) (c)

(d) (e)
 

Fig. 4.  (a) is input image with line-profile, (b) is output image with line-profile, 
(c) is label image with line-profile. (d) is input image with line-profile of patient 
projection data, (e) is output image with line-profile of patient projection data. 
The network successfully compensates the beam-hardening artifacts and 
recovered the line-profile. The window level is [0.00 3.98] for (a),(b) and (c) 
and [0.00 2.82] for (d) and (e) 
 

(a) (b) (c)

(d) (e) (f)  
Fig. 5.  (a) is original image that corrupted by bowtie artifacts, (b) 

reconstructed output image of projection domain network, (c) subtracted image 
between (a) and (b), second row show another body part results with same 
sequence 
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(d) (e) (f)

(a) (b) (c)

Fig. 6  (a) is output of proposed network, (b) output of single domain U-net, (c) ground-truth image and second row show another body part with same sequence. 
The window level  is [0.017 0.03]
 
In the single image-domain network case, the training was 
performed to 900 epoch and a slight overfitting was detected 
around 500th epoch. Thus, the weight at 470th epoch was used 
for comparison. Meanwhile, 1e-4 learning rate was used and 
the same network model and optimizer used as the proposed 
network. The training loss was 2.05e-7, validation loss was 
2.10e-7 and test loss was 2.12e-7. The compared test results are 
shown in Fig 6. 

In Fig 6, the proposed network clearly removes the remaining 
cupping artifacts. Furthermore, it shows enhanced soft-tissue 
contrast and denoised outputs. It is observed that the output 
images are smoother than the label image. We would like to 
note that this is due to the label image nature where scattering is 
neglected. In the Monte Carlo generated data, scatter would 
naturally come into play and the resulting image would not be 
as sharp as the label image. The compared network outputs also 
have enhanced contrast and denoised properties, however, 
some residual artifacts are still observed where the eclipse 
artifacts originally existed. Moreover, structure distortion was 
also observed in the results of the compared network (It is 
highlighted with red arrow in Fig. 6.) 

For quantitative analysis, mean square error (MSE) loss, root 
mean square error (RMSE), and similarity structure index 
(SSIM) value were evaluated and presented in Table 2. The 
proposed dual-domain network outperforms a single domain 
network that does not physically consider the cause of artifacts. 

 
TABLE Ⅱ 

QUANTITATIVE ANALYSIS 
MSE(loss) Training Validation Test 

Proposed network 1.58e-7 1.76e-7 1.78e-7 
Single domain U-net 2.05e-7 2.10e-7 2.12e-7 

 

RMSE Training Validation Test 
Proposed network 3.97e-4 4.19e-4 4.21e-4 

Single domain U-net 4.52e-7 4.57e-4 4.60e-4 
 

SSIM Training Validation Test 
Proposed network 0.963 0.949 0.967 

Single domain U-net 0.958 0.946 0.961 

IV. CONCLUSION 

In this study, we proposed a dual-domain network to reduce 
bowtie-filter induced image artifacts in cone-beam CT. The 
promises of the dual-domain network has been successfully 
shown. Experimental validation of the proposed method is 
under our research and will be presented in the near future. 
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Organ-Specific vs. Patient Risk-Specific
Tube Current Modulation in Thorax CT Scans

Covering the Female Breast
Laura Klein, Lucia Enzmann, Achim Byl, Chang Liu, Stefan Sawall, Andreas Maier, Joscha Maier, Michael Lell,

and Marc Kachelrieß.

Abstract—An important goal in modern CT imaging is re-

ducing the dose delivered to patients especially to risk-relevant

organs. This work compares the clinically applied dose re-

duction techniques mAs-minimizing tube current modulation

(mAsTCM) and a typical organ-specific TCM (osTCM, here: X-

Care, Siemens Healthcare) with a novel radiation risk-minimizing

tube current modulation (riskTCM) with a focus on the dose

delivered to the female breast. The mAsTCM minimizes the mAs

product as a surrogate parameter for the patient dose but does

not consider the different organs’ risks. In contrast, osTCM

aims to minimize the dose delivered to the female breast by

reducing the tube current for anterior projections. The riskTCM

minimizes the patient risk by minimizing the effective dose to the

patient, which is done by taking accounting for the organ doses.

In this study, the dose reduction effect of the TCM techniques is

compared by simulations based on clinical CT Scans.

Results: riskTCM reduces the effective dose by up to 35% in

comparison to mAsTCM, and by up to 30% in comparison to

osTCM depending on the anatomical region and the patient.

Index Terms—CT, dose reduction, tube current modulation,

chest imaging.

I. INTRODUCTION

S
INCE the invention of the first CT scanner, the scanners
improved greatly and the amount of performed scans

increased from 3 million in the early 1980s to 67 million
in 2006 [1]. As ionizing radiation is used for CT scans and
it is well known that ionizing radiation involves the risk of
damaging the DNA, which can cause cancer, it is critical to
reduce the patient’s risk by decreasing the dose delivered to
the patient but maintaining image quality on the other hand. In
modern CT imaging, there are several dose-saving methods,
for instance, automatic exposure control (AEC) [2], automated
tube potential selection [3], and adaptive dose shields [4]. This
study is focused on the tube current modulation part of AEC
that varies the tube current during gantry rotation and along
the z-direction [5].

A commonly used tube current modulation (TCM) tech-
nique is the mAs-minimizing TCM (mAsTCM) that minimizes
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the mAs product and reaches an mAs reduction of 20�40% for
the scanned body depending on the region that is investigated
[6][7]. The mAs is used as a surrogate value for the patient’s
dose in this method. An issue with the mAsTCM is that
it is based on a physical quantity and does not consider
the radiation sensitivity of different organs. The influence of
ionizing radiation on the human body, and therefore the risk
to induce cancer, is well known. The international commission
on radiological protection (ICRP) provides a guideline of
protection for people against the effects of radiation exposure
and created weighting factors that represent the risk of radi-
ation to induce cancer for single organs[8]. These weighting
factors allow for calculating the effective dose that can be
chosen as a stochastic parameter of the patient’s risk [9].
Since 2007, the radiation sensitivity of the female breast is
stated in the ICRP Publication of 2007 [8] to be higher
than expected. Therefore, several vendors implemented organ-
specific tube current modulation techniques to allow to reduce
the exposure at certain organs. Here, we are interested in
minimizing the dose to the breast and thus osTCM here refers
to a reduction of the tube current in the anterior position. Our
implementation of osTCM mimics the X-Care algorithm by
Siemens Healthcare. It reduces the tube current for the anterior
projections (120° in front of the patient) and increases it for the
remaining projections, as specified in reference [10]. Today’s
osTCM implementations only account for the exposure to a
specific organ and do not consider every organs’ risks. The
radiation-risk minimizing TCM (riskTCM), in contrast, that is
detailed in reference [11] and that was proposed in references
[12][13][14], minimizes the effective dose by considering all
dose-sensitive organs in its cost function.

This work aims at evaluating the dose reduction achievable
with riskTCM in comparison to mAsTCM and osTCM. A
special focus is laid on the evaluation of the dose delivered to
the female breast as this is the organ accounted for by osTCM
in thorax CT scans.

II. MATERIAL AND METHODS

A. Dose per view estimations

To calculate the tube current modulation curves and the
resulting changed effective doses, the effective dose before
TCM needs to be estimated for each view and organ. For this
a previous CT reconstruction is necessary. Since this study is
a simulation study, CT reconstructions are already provided.
In practice, an approach to receive an estimated CT scan of
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a simulation study, CT reconstructions are already provided.
In practice, an approach to receive an estimated CT scan of
a patient is to use a deep-learning model which performs a
reconstruction using the available topograms [15]. The dose
is calculated from the existing CT reconstructions by using
the deep dose estimation (DDE) algorithm that is detailed
in reference [16] and was first proposed in reference [17].
DDE reproduces 3D Monte Carlo dose simulations with a two-
channel input from a CT reconstruction and a first-order dose
estimation. With the calculated dose distribution the effective
dose can be calculated by weighting the dose with the organ-
specific factor that is defined by the ICRP [8] and sum the
weighted dose over all organs:

Deff(↵) =
X

T

Z
d3r wT (r)D(↵, r). (1)

The normalized organ-specific weighting factors wT are listed
in Table I.

TABLE I: Tissue weighting factors as in [8].

Tissue wT
P

wT

Bone-marrow (red), colon, lung, stomach,
breast, remainder tissues

0.12 0.72

Gonads 0.08 0.08
Bladder, oesophagus, liver, thyroid gland 0.04 0.16
Bone surface, brain, salivary glands, skin 0.01 0.04

Total 1.00

Equation (1) is the effective dose normalized to a constant
tube current so this effective dose needs to be weighted by
the tube current curve and integrated over all views:

Deff =

Z
d↵ I(↵)De↵ (↵). (2)

B. Prerequisites
For the simulation study, polychromatic attenuation values

are assumed so this yields a projection value of

q(L) = � ln

Z
dE w(E)e

�
Z

dLµ(r, E)
(3)

= � ln

Z
dE w(E)e�p(L) (E). (4)

This dependency can be written as q = Q(p) and can be
inverted by p = P (q), with P (q) as water precorrection
function. In order to calculate the noise of an CT Image, a
Poisson distribute signal before water precorrection and log is
considered. Therefore the variance and thus also noise of the
signal is proportional to

Ie�q. (5)

It results:

Var q / eq

I
. (6)

The variance of the projection value can now be calculated
propagating the error through the water precorrection function
as

Var p / e(p)

I
(7)

with e(p) as polychromatic exponential function which re-
duces to a simple exponential function for monochromatic
scans.
In order to simulate the TCMs, two surrogates are needed.
First, the average of the projection value over all detector rows
is calculated:

p(↵,�) =
1

B

Z B/2

�B/2
db p(↵,�, b) (8)

In this case, B = 64⇥0.6 mm which is a collimation of about
40 mm.
The second surrogate is the 90th percentile of p(↵,�):

p(↵) = p90%(↵,�). (9)

C. TCM Approaches

1) Minimizing the Tube Current Time Product: The mAs-
minimizing TCM takes into account that for non-circular
regions, for instance, pelvis or shoulders, the attenuation varies
for lateral and anterior/posterior views [6][7]. To calculate the
optimal tube current for minimizing the mAs product a central
ray approximation is considered that uses the projection data
p(↵) and interprets this value as central ray value (� = 0)
which is backprojected into the isocenter of the scanner. The
mAs minimizing can be formulated as cost function

C =

Z
d↵

✓
e(p(↵))

I(↵)
+ �(I(↵)� const)

◆
, (10)

which allows to either keep the noise constant and minimizes
the mAs product or keep the mAs product constant and
minimizes noise.

2) organ–specific TCM: Here, osTCM mimics the X-Care
algorithm [10]. It is an organ-specific tube current modulation
so that especially the female breast could be prevented from
high exposure. The algorithm also reduces the dose exposed
to the thyroid gland and eyes but here we focus on the breast.

To protect the female breast from radiation exposure the
tube current is reduced for anterior projections and for pos-
terior projections it is increased to achieve the same image
quality. The anterior projections are defined as the projections
within an angle of 120° in front of the patient and the posterior
within an angle of 240° on the back of the patient. It should
be noted that osTCM is applied for the complete scan even if
it covers more regions than just the breast.

3) Risk-minimizing TCM averaging case: Equation (10)
can be modified by considering that the effective dose is also
dependent on the projection angle ↵:

C =

Z
d↵(Var p(↵) + �(I(↵)Deff(↵))). (11)

This function could also be minimized by differentiating and
yields

I2riskTCMavg(↵) /
e(p(↵))

Deff(↵)
. (12)

This TCM is called riskTCMavg because it minimizes the
effective dose but performs an averaging of the projection
values for complementary ray directions.
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4) Risk-minimizing TCM optimal case: In the optimal risk-
minimizing TCM the difference of the effective dose of two
complementary rays is considered. Consequently, the variance
can be received by statistical optimal weighting for example
the inverse-variance weighting:

Vopt(r) /
1

I + Ic
(13)

with Ic as complementary tube current. This distinction of
complementary rays leads to major changes in the cost func-
tion because it is no longer possible to use the central ray
approximation. An assumption that can be done in this case
is neglecting the cone-beam nature of the beam and just
assuming a fan beam geometry because the cone angle is
much smaller than the fan beam angle. The image noise can be
described by summation over the square-root of all variances:

Nopt(I) =

Z
dxdy w(r)

sZ
d#

e(p(↵(#, r),�(#, r)))

I(↵(#, r)) + I(↵c(#, r))
.

(14)
The optimization problem can now be formulated as

I = argmin Nopt(I) (15)
withZ

d↵Deff(↵)I(↵) = const. (16)

The constant can be chosen so either the effective dose is
constant or the image noise. As there is no analytical solution
to this optimization problem, the solution has to be found
numerically. Details are given in reference [11].

D. Materials
For the evaluation the reconstructed volumes of seven CT

scans are used. For the simulation of the rawdata the geometry
of a Somatom Definition Flash CT scanner with a collimation
of B = 64⇥0.6 mm is assumed. These CT images are forward
projected with a 2D fan-beam forward projection to obtain
rawdata. To reduce the noise in these rawdata a boxcar filter
of 15 mm width was applied to the forward projected rawdata.
Now, the rawdata can be regarded as being (almost) noise-
free and we can add noise corresponding to the desired TCM
curves. These noisy rawdata are then reconstructed by FBP.
The tube current curves were scaled in a way to either obtain
the same image noise for all TCM algorithms, or to obtain the
same Deff for all TCM approaches. This allows for an easy
comparison of either the resulting effective dose values or the
resulting image noise values.

In the following, four tube current modulations are simu-
lated: mAsTCM, riskTCMopt, osTCM with a low value of
25% and osTCM with a low value of 0%. The resulting
effective dose values are compared to a scan with constant
tube current which is called noTCM.

III. RESULTS AND DISCUSSION

The TCMs can be evaluated for different anatomical re-
gions, e.g. thorax, abdomen and pelvis. In Figure 1, the region
of the breast is shown with an image noise of 50 HU.

(a)

(b)

Fig. 1: a: noTCM, mAsTCM, osTCM 0%, osTCM 25% and
riskTCMopt images with C = 25 HU and W = 400 HU with
an additional segmentation image. The circular density plot is
the TCM curve for the first five images and it is the effective
dose Deff(↵) for the last image. b: TCM curves I(↵) as a
function of angular position. The letters under the abscissa
indicate the anterior, left, posterior and right tube position.

The mAsTCM reduces the effective dose by 8%, riskTC-
Mopt by 31%, osTCM (0%) by 24%, and osTCM (25%) by
19%. This region is circular shaped so mAsTCM results in
a mainly constant tube current. osTCM just accounts for the
radiation sensitivity of the breast and therefore reduces the
tube current for anterior projections and increases it for the
remaining projections. RiskTCMopt reduces the tube current
for anterior projections more than for posterior projections
because of the risk of the breast. Furthermore, the organ
dose to the breast is calculated (highlighted in yellow). For
mAsTCM the dose reduction of the breast is 8%, for risk-
TCMopt 55%, for osTCM (0%) 40%, and for osTCM (25%)
32%. The dose reduction for riskTCMopt is higher than for
osTCM because RiskTCMopt minimizes a cost function with
detailed anatomical knowledge and on the other hand osTCM
assumes the anterior region of the patient independently of the
patient’s anatomy as 120� in front of the patient.
The results for all regions (Thorax, Abdomen, Pelvis) and
patients are shown in table II. For the evaluation only osTCM
with 25% as a low tube current value is shown since this case
is the conventional one. The whole body effective doses are
calculated supplementary and listed in table III.
In the final analysis, also the dose of the breast is calculated
and listed in table IV. In comparison to noTCM reduces
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mAsTCM the effective dose around 2% to 20%, riskTCMopt
around 35% to 65%, and osTCM (25%) around 12% to 39%.

TABLE II: Effective doses for different anatomical regions and
patients of different tube current modulations. The effective
doses are calculated relative to the effective dose with constant
tube current. The image quality is kept constant.

Region Pat. noTCM mAsTCM osTCM (25%) riskTCMopt

Thorax

1 100% 76% 70% 51%
2 100% 89% 86% 71%
3 100% 86% 86% 70%
4 100% 87% 79% 65%
5 100% 89% 88% 71%
6 100% 90% 84% 73%
7 100% 87% 79% 66%
Avg 100% (86± 5)% (82± 6)% (67± 7)%

Abd

1 100% 79% 78% 62%
2 100% 98% 98% 88%
3 100% 93% 91% 78%
4 100% 87% 84% 65%
5 100% 97% 90% 73%
6 100% 98% 94% 63%
7 100% 91% 84% 63%
Avg 100% (92± 7)% (88± 6)% (70± 10)%

Pelvis

1 100% 75% 88% 70%
4 100% 74% 77% 60%
7 100% 72% 82% 64%
Avg 100% (74± 2)% (82± 6)% (65± 5)%

TABLE III: Whole body effective doses with TCMs.

Pat. noTCM mAsTCM osTCM (25%) riskTCMopt
1 100% 78% 78% 62%
2 100% 91% 89% 74%
3 100% 88% 88% 74%
4 100% 85% 81% 64%
5 100% 92% 91% 77%
6 100% 94% 91% 77%
7 100% 87% 83% 66%
Avg 100% (88± 5)% (86± 5)% (71± 6)%

TABLE IV: Organ doses for the breast tissue with TCMs.

Pat. noTCM mAsTCM osTCM (25%) riskTCMopt
1 100% 80% 61% 35%
2 100% 96% 73% 49%
3 100% 93% 69% 37%
4 100% 92% 69% 43%
5 100% 98% 88% 65%
6 100% 93% 71% 47%
7 100% 96% 71% 40%
Avg 100% (93± 6)% (72± 8)% (45± 10)%

IV. CONCLUSION

The risk-minimizing TCM that is evaluated in this work
reduces the risk to a patient by minimizing the effective
dose numerically while maintaining the image quality. The
resulting effective dose of riskTCM is reduced up to 35% in
comparison to mAsTCM and up to 30% in comparison to
osTCM depending on the anatomical region and the patient.
Even by comparing the effect of riskTCM on the effective
dose of the breast with the effect of osTCM, which is a
dose-saving algorithm especially for the breast, riskTCM
reduces the effective dose up to 30% more than osTCM
because riskTCM accounts for the patient’s anatomy.
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Abstract—Image mean and covariance required for a model 

observer are usually calculated by statistical method using image 
samples that are hard to acquire in reality. Although some 
analytical methods are proposed to estimate image covariance 
from a single projection, these methods are of high computational 
cost for large-dimensional images (e.g., 512×512), and images of 
large size are commonly used. Considering the covariance used 
for CHO calculation is the covariance of the channel response, 
whose dimension is much smaller than the image covariance, we 
aim to obtain the small-dimensional channel covariance directly 
from projection. The analytical projection to channel (Prj2CH) 
covariance estimation method is derived from the analytical 
projection to image (Prj2Img) covariance estimation method by 
reducing the dimension of matrices in Prj2Img method. We 
validate the feasibility and utility of the proposed Prj2CH method 
by simulations. For 128×128 reconstruction, the SNR error of 
Prj2CH method is about 1%, which is comparable to the SNR 
variation error of statistical method, demonstrating that the 
channel covariance estimated by the Prj2CH method is 
reasonable. For 512×512 reconstruction, the SNR of the Prj2CH 
method is comparable to that of the statistical method with 350 
samples, which shows that the proposed method can be applied 
for CHO calculation. Meanwhile, the Prj2CH method can be used 
for different systems, objects, and reconstruction algorithms. 
 

Index Terms—Covariance Estimation, Iterative Reconstruction, 
Model Observer, Dimension Reduction 
 

I. INTRODUCTION 
ODEL observers are used to mimic human observers 
despite that they require the knowledge of image mean 

and covariance, which is difficult to achieve in reality. 
Analytical projection to image (Prj2Img) covariance estimation 
methods are proposed to estimate image covariance from a 
single projection for commonly used iterative reconstruction 
algorithms. Iteration-based and fixed-point methods are two 
ways to analytically estimate covariance from projection to 
image. For iteration-based methods, the covariance estimation 
is updated with iteration formula [1]. For fixed-point methods, 
the covariance estimation is derived from the converged point 
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of an objective function [2]. Li et.al. [3] study the difference 
and consistence of these two methods. Meanwhile, analytical 
Prj2Img methods for iterative reconstruction with a quadratic 
regularization is studied by [4], while that with a non-quadratic 
regularization is studied by [5]. Although analytical Prj2Img 
methods can yield reasonable covariance estimations, it is 
computationally expensive for large-dimensional images 
(pixels > 128×128). Usually, images with larger size, e.g., 
512×512, are more preferred. Fessler et.al. [6] give a fast 
variance estimation method for the quadratic penalized 
weighted least square (WLS) algorithm. Fast covariance 
estimation methods have not been studied yet. 
In fact, the covariance used for channelized Hotelling observers 
(CHOs) is the covariance of the channel response [7] that has a 
much smaller dimension than its image covariance matrix. 
Typically, we can use an analytical projection to image to 
channel (Prj2Img2CH) covariance estimation method for CHO 
calculation, which estimates image covariance from a single 
projection by the Prj2Img method first, and then channel 
covariance from the image covariance. However, the high 
computation cost of Prj2Img method still exists in the 
Prj2Img2CH method. Therefore, we propose an analytical 
projection to channel (Prj2CH) covariance estimation method 
for non-quadratic penalized WLS algorithms in this work. 
Rather than calculating the covariance of the channel response 
from the image covariance, we directly estimate the channel 
covariance from a single projection by one step. The 
relationship between the channel and projection covariance is 
derived from the fixed-point method for analytical Prj2Img 
covariance estimation. Moreover, we apply the proposed 
method to a CHO of large-dimensional images evaluation for 
validation. 

II. METHODS 
In this section, we briefly introduce the analytical Prj2Img 

covariance estimation method for non-quadratic penalized 
WLS studied in our previous work [8], then describe the CHO, 
and finally deduce the proposed analytical Prj2CH covariance 
estimation method in detail. 

A. Analytical Prj2Img Covariance Estimation Method 
The cost function ( )) �  of a penalized WLS reconstruction 

can be expressed as: 

 21ˆ arg min ( ) arg min ( )
2

RD= ) = − +
W

μ μ
μ μ Hμ p μ  (1)  

An Analytical Prj2CH Covariance Estimation 
Method for Iterative Reconstruction Methods 
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where 1ˆ Nu�μ  is the linear attenuation image reconstructed 

from its projection 1M u�p . M Nu�H  denotes the system 

matrix and M Mu�W  the noise model with 
exp( )mm mp= −W . ( )R �  is the penalty function and D  the 

penalty parameter. The fixed-point method makes use of 
convergence condition: 

 
ˆ

( )

=

w)
=

w μ μ

μ 0
μ

 (2) 

Plugging Eq. (1) into Eq. (2) and finding its covariance, we 
have: 

 
ˆ( + )Cov( )( + )

Cov( )

T T T

T

D DH WH A μ H WH A

H W p WH
 (3) 

where N Nu�A  is a coefficient matrix approximates ˆ( )R� μ : 

 ˆ ˆ( )R� +μ Aμ c  (4) 
Taylor expansion is a commonly used approximation method 

with 2ˆ ˆ ˆ( ) ( ) +R R� �μ μ μ c , thus the Taylor approximation 
based method (TAM) for covariance estimation is: 

 
( ) ( )2 2ˆ ˆ ˆ+ ( ) Cov( ) + ( )

Cov( )

T T

T

R RD D� �H WH μ μ H WH μ

H W p WH
 (5) 

Besides, considering that the second derivative of ( )R �  may be 
singular or nonexistent, we proposed a linear approximation 
based method (LAM) in our previous work with 

ˆ ˆ ˆ( ) ( )R� =μ L μ μ  that estimates the covariance as: 

 
( ) ( )ˆ ˆ ˆ+ ( ) Cov( ) + ( )

Cov( )

T T

T

D DH WH L μ μ H WH L μ

H W p WH
 (6) 

We adopt the WLS penalized with the total variance 
(TV-WLS) as well as the qth generalized Gaussian Markov 
random field (qGGMRF-WLS) as two representatives in this 
work. 

B. Channelized Hotelling Observer (CHO) 
A CHO is calculated as: 
 1 ˆ ˆ ˆ ˆ[ ( )]T T

c sc bc c cO −= − {S μ μ μ ω μ  (7) 
where O  denotes the decision variable and ω the template of 
CHO. The image of channel response is denoted by a subscript 
c : 
 ˆ ˆc =μ Vμ  (8) 

with C Nu�V  being the channel matrix consists of C  
channel profiles and C N . Meanwhile, the ˆ scμ  and ˆ bcμ  in 
template ω  represent the mean of signal present and signal 
absent images respectively, and the intra-class channel scatter 
matrix ( ) / 2c sc bc= +S K K , where the channel covariance 

T
sc s=K VK V  and T

bc b=K VK V  with ˆcov( )=K μ  being the 
image covariance. For a given threshold t , if the decision 
variable satisfies tO ! , we consider the target image to contain 
the signal; otherwise, we consider it not. Meanwhile, 
signal-to-noise ratio [9] is adopted to measure the performance 
of a CHO: 

 1SNR ( ) ( )T
sc bc c sc bc

−= − −μ μ S μ μ  (9) 

C. Analytical Prj2CH Covariance Estimation Method 
Note that the analytical Prj2Img method in Eq. (3) involves a 

matrix inverse operation which leads to high computational 
cost when the dimension of the reconstructed image is large. As 
described in section Ⅱ.B, the CHO only requires a channel 
covariance of small dimension that C N . Therefore, we 
construct a relationship between the channel covariance 

T
c =K VKV  and its projection covariance: 

ˆ( + )Cov( )( + )
( + ) [ ] ( + )

Cov( )

T T T T

T T T T T T T

T T

D D

D D=

V H WH A μ H WH A V

V H WH A V X VKV X V H WH A V

VH W p WHV

 (10) 

where the transition matrix 1 1( ) ( )T T T− −=X V V V V V V . The 
channel covariance is then calculated as: 
 1 1[ Cov( ) ]( )T T T

c
− −=K Y VH W p WHV Y  (11) 

where [ ( + ) ]T T C CD u= �Y V H WH A V X . According to 
different approximations of A , we have Prj2CH-LAM and 
-TAM methods.  

However, matrix TV V  is not full rank and hence it is 
irreversible, and the transition matrix C Cu�X  becomes 
unknow. Note that X  is theoretically independent of the 
system, phantom, and reconstruction algorithm, and only 
depends on the channel. Given a Prj2Img covariance estimation 
of a small size image, we can calibrate X  by the known cK . 
Thus, we build an optimization problem for calibration: 

2 2

22

1ˆ = arg min Cov( ) +
2 2

T T T
c

J
−

X
X YK Y VH W p WHV X (12) 

We split Eq. (12) into two optimization problems to make it 
easier to get a reasonable solution: 

 
2

2

1ˆ arg min Cov( )
2

T T
c= −

Y
Y YK Y VH W p WHV  (13.1) 

 
2 2

22

1ˆ ˆ= arg min [ ( + ) ]
2 2

T T JD− +
X

X Y V H WH A V X X  (13.2)  

Since X  is an underdetermined matrix, the optimization 
problem in Eq. (13) is locally convergent, and we choose start 
points as: 

 
(0)

(0)

[ ( + ) ][pinv( ) pinv( )]T T TD=

=

Y V H WH A V V V

X I
 

with pinv( )� being the Moore-Penrose generalized inverse 

operation. Plugging the calibrated X̂  into Eq. (11), we can 
finally obtain the channel covariance estimation ˆ

cK  under 
arbitrary conditions. 

III. EXPERIMENTS 
Simulations are carried out for validation. We select Gabor 

channels are selected for the CHO: 

 
2 2 2

0 0

0 0

( , ) exp[ 4ln 2(( ) ( ) ) / ]
• cos[2 (( )cos ( )sin ) ]

s

c

v x y x x y y
f x x y y

Z
S T T E

= − − + −

− + − +
 (14)  

here the parameter configuration of Gabor channels is similar to 
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that in [10], where the channel width 56.48,28.24,14.12sZ = , 
the channel frequency 3 /128,3 / 64,3 / 32cf = , the orientation 

0,2 / 5,4 / 5,6 / 5,8 / 5T S S S S= , and the phase 0, / 2E S= . 
The system geometry of 128 × 128 and 512 × 512 

reconstructed images is listed in Table I. Phantoms are 
generated from the Grand challenge dataset of Mayo clinic. Set 
the number of incident photons 3

0 5 10I = u , we acquire a noisy 
projection from a random 128×128 region of interest (ROI) 
extracted from the dataset. We reconstruct its image by 
qGGMRF-WLS from the noisy projection, and estimate image 
covariance by TAM. With these known conditions, the 
calibrated X̂  is obtained by Eq. (13). The hyper-parameter J  
in Eq. (13.2) is set to be 105 to balance the value between its 
fidelity and regularization. 

TABLE I 
SYSTEM GEOMETRY OF SIMULATIONS 

System Geometry 128×128 512×512 

Source to origin distance (mm) 200 595 
Origin to detector distance (mm) 200 490.6 
Detector pixel size (mm) 0.5 1.2858 
Detector pixel number 240 736 
Image pixel size (mm) 0.3 0.7422 
Image pixel number 128 512 
Rotating angle 2π 2π 

Another 128×128 ROI chosen from the dataset is used to 
validate the calibrated X̂  with 4

0 5 10I = u . Both TV- and 
qGGMRF-WLS algorithms are used for reconstruction, and 
Prj2CH-LAM as well as -TAM are used for channel covariance 
estimation. We adopt an absolute percent error (APE) to 
quantitatively measure the performance of the proposed 
Prj2CH method: 

 SNR SNRAPE 100%
SNR
−

= u  (15) 

here SNR  is calculated according to Eq. (9) where its  cS  is 
estimated by Prj2Img2CH method, i.e., the ground truth. 
Meanwhile, the cS  for SNR  calculation is estimated by 
Prj2CH method. Since we focus on the effect of covariance 
estimation, we take the noise-free image as the image mean in 
Eq. (9). Besides, the coefficient of variation (CV) of statistical 
covariance estimation method is used as a reference: 

 
*

*

SNR

SNR

CV 100%R

R

R u

V
= u  (16) 

where u  and V  are the mean and standard deviation of *SNR . 
The *SNRR  is calculated by the image covariance *K  
estimated statistically from image samples: 

 *

1

1 ˆ ˆ ˆ ˆ( )( )
R

T
R r r

rR =

= − −¦K μ μ μ μ  

with R  being the total number of image samples. Once 
APE CVd , we think the proposed Prj2CH method is feasible. 

In addition, the same validation procedure as that for the 128
×128 ROI is performed for a 512×512 phantom selected in 
the dataset with 6

0 10I = . The SNR in Eq. (9) is also used as the 
measurement for performance evaluation of the Prj2CH 
method. Considering there is no ground truth for Prj2CH 
method with the phantom of 512×512, we use * *SNR SNRR R

u Vr  

as the reference. 

IV. EXPERIMENTAL RESULTS 
Both APE and CV from the phantom of 128×128 pixels are 

listed in Table II. We find that the APE between SNRs of 
Prj2Img2CH and Prj2CH methods is less than 2%, which at 
least comparable to the CV of SNRs statistically calculated by 
300 image samples, indicating that the error of about 1% for the 
Prj2CH method is acceptable. The proposed Prj2CH method is 
feasible for different phantoms and reconstruction algorithms 
with a same system geometry. 

TABLE II 
COMPARISON BETWEEN APE OF SNRS OBTAINED BY ANALYTICAL 

COVARIANCE ESTIMATION METHODS AND CV OF SNRS OBTAINED FROM 
IMAGE SAMPLES IN CASE OF 128×128 
Number  

of samples 
Covariance  
Estimation Method 

100 200 300 400 1 

TV-WLS 

Image 
samples 5.14% 3.14% 1.98% 1.10% / 

LAM / / / / 0.87% 

TAM / / / / 1.71% 

qGGMRF-WLS 

Image 
samples 5.15% 3.24% 1.96% 1.39% / 

LAM / / / / 0.99% 

TAM / / / / 1.09% 

 
Fig. 1 cS  from image samples and analytical Prj2CH methods in case of 512

×512 size phantom. Column 1: cS  calculated by statistical method from 350 

image samples. Column 2 and 3: cS  estimated by analytical Prj2CH-LAM and 
-TAM method from 1 projection and its reconstruction samples.  

Images of cS  are shown in Fig. 1. The estimated cS  by the 
Prj2CH method has similar shape and values to that by 
statistical method. It shows that the channel covariance 
estimation is reasonable for large-dimensional images even 
with different scanning systems. 
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(a) TV-WLS 

 
(b) qGGMRF-WLS 

Fig. 2 SNR in case of 512×512. (a) the results from TV-WLS algorithms, 
and (b) the results from qGGRMF-WLS algorithms. The black solid line 

reprensents *SNRR
u  with error bar *SNRR

V , the red solid line with circle markers 

is the SNR of Prj2CH-LAM from 1 projection, and the orange solid line with 
asterisk markers is the SNR of Prj2CH-TAM from 1 projection. 

As is plotted in Fig. 2, SNRs for Prj2CH method are within 
the variation range of the SNR from 300 image samples in case 
of 512×512. The SNR of Prj2CH method is close to that from 
350 samples, and hence the CHO obtained by Prj2CH method 
has better performance than that obtained from commonly used 
100 samples. 

V. DISCUSSION AND CONCLUSION 
In this work, we propose an analytical method to estimate the 

covariance of channel response in CHO from a single 
projection. We build this analytical projection to channel 
(Prj2CH) covariance estimation method based on the 
fixed-point method that estimates image covariance from 
projection analytically. The proposed Prj2CH method avoids 
large-dimensional matrix inversion operation in the projection 
to image (Prj2Img) covariance estimation method, which 
enables the channel covariance estimation of large-dimensional 
reconstructed images, and further contributes to the calculation 
of CHO. Results show that, for ROI of size 128, the APE of 
Prj2CH method is about 1%, which is acceptable since the CV 
of SNR from 400 samples is also about 1%. Therefore, we think 
the proposed Prj2CH method is feasible for channel covariance 
estimation. For application to images with 512×512, we find 
the proposed Prj2CH method is comparable to the statistical 
method with 350 image samples, and has much better 

performance than the statistical method with commonly used 
100 samples. The proposed Prj2CH method can be applied to 
different scanning systems, objects, and reconstruction 
algorithms, and is also reasonable for CHO applications. 

For our future work, we are to compare the performance of 
the CHO from the proposed Prj2CH method with that the 
human observer. 

ACKNOWLEDGMENT 
This work is supported by National Natural Science 

Foundation of China (Grant No. 62031020 and 61771279). 

REFERENCES 
[1] J. Qi, “A unified noise analysis for iterative image estimation,” Phys. Med. 

Biol., vol. 48, no. 21, pp. 3505–3519, 2003, doi: 
10.1088/0031-9155/48/21/004. 

[2] J. A. Fessler, “Mean and variance of implicitly defined biased estimators 
(such as penalized maximum likelihood): Applications to tomography,” 
Biomed. Imaging V - Proc. 5th IEEE EMBS Int. Summer Sch. Biomed. 
Imaging, SSBI 2002, vol. 5, no. 3, pp. 493–506, 2002, doi: 
10.1109/SSBI.2002.1233984. 

[3] Y. Li, “Noise propagation for iterative penalized-likelihood image 
reconstruction based on Fisher information,” Phys. Med. Biol., vol. 56, no. 
4, pp. 1083–1103, 2011, doi: 10.1088/0031-9155/56/4/013. 

[4] S. M. Schmitt, M. M. Goodsitt, and J. A. Fessler, “Fast variance prediction 
for iteratively reconstructed ct images with locally quadratic 
regularization,” IEEE Trans. Med. Imaging, vol. 36, no. 1, pp. 17–26, 2017, 
doi: 10.1109/TMI.2016.2593259. 

[5] A. A. Sánchez, “Estimation of noise properties for TV-regularized image 
reconstruction in computed tomography,” Phys. Med. Biol., vol. 60, no. 18, 
pp. 7007–7033, 2015, doi: 10.1088/0031-9155/60/18/7007. 

[6] Y. Zhang-O’Connor and J. A. Fessler, “Fast variance predictions for 3D 
cone-beam CT with quadratic regularization,” in Medical Imaging 2007: 
Physics of Medical Imaging, 2007, vol. 6510, p. 65105W, doi: 
10.1117/12.710312. 

[7] X. He and S. Park, “Model observers in medical imaging research,” 
Theranostics, vol. 3, no. 10, pp. 774–786, 2013, doi: 10.7150/thno.5138. 

[8] X. Guo, Y. Xing, and L. Zhang, “Analytical covariance estimation for 
iterative CT reconstruction methods,” in 16th International Meeting on 
Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, 2021, 
pp. 236–241. 

[9] A. Wunderlich and F. Noo, “Image covariance and lesion detectability in 
direct fan-beam x-ray computed tomography,” Phys. Med. Biol., vol. 53, 
no. 10, pp. 2471–2493, 2008, doi: 10.1088/0031-9155/53/10/002. 

[10] S. Leng, L. Yu, Y. Zhang, R. Carter, A. Y. Toledano, and C. H. 
McCollough, “Correlation between model observer and human observer 
performance in CT imaging when lesion location is uncertain,” Med. Phys., 
vol. 40, no. 8, pp. 1–9, 2013, doi: 10.1118/1.4812430. 

 

The 7th International Conference on Image Formation in X-Ray Computed Tomography

125



 

  
Abstract—Although photon counting detectors (PCD) can offer 

numerous benefits for CT imaging, it is difficult to generate 
accurate material decompositions from photon counting (PC) CT 
images due to spectral distortions. In this work, we present a deep 
learning (DL) approach for material decomposition from PCCT. 
To produce training and testing data for this study, we scanned 2 
ex-vivo mice using a PCD scan protocol with a dose of 36 mGy and 
a multi-EID scan protocol with a dose of 296 mGy. PCD images 
were reconstructed using filtered backprojection. EID images 
were reconstructed using an iterative algorithm to reduce noise, 
and decomposed into iodine (I), Compton scattering (CS), and 
photoelectric effect (PE) material maps by a matrix inversion 
approach. We then trained a convolutional neural network with a 
3D U-net structure using PCD images as inputs and multi-EID 
material maps as labels, and evaluated its performance. The 3D U-
net predictions provided substantially lower RMSE compared to 
decomposition from PCD images using a matrix inversion 
approach. Measurements from iodine vials in the test set showed 
that 3D U-net predictions gave mean values within 0.6 mg/mL of 
the mean values from the multi-EID material maps and much 
lower standard deviation than PCD material map measurements. 
Our results show that the trained 3D U-net enables low-noise, 
quantitatively accurate material decomposition from a low dose 
PCD scan. 
 

Index Terms—Material decomposition, photon-counting CT, 
CNN, deep learning 

I. INTRODUCTION 
HOTON counting detectors (PCDs) offer enormous potential 
to improve CT imaging. A PCD counts the incident photons 

and bins them using energy thresholds. Each threshold image 
records only those photons with energy greater than a user-
defined threshold. Therefore, spectral CT with a PCD can offer 
improved dose efficiency and spectral resolution compared to a 
conventional scan with an energy-integrating detector (EID) [1, 
2]. Unfortunately, PCDs also suffer from effects such as K-
escape, charge sharing, and pulse pileup that distort their 
spectral response [1]. These distortions make it difficult to 
perform accurate material decomposition in PCCT. Therefore, 
finding methods for improving material decomposition is 
critical to maximize the benefits of PCCT. 
 This work presents a method for generating low noise and 
accurate material decompositions from PCCT images by 
compensating for distortions with a convolutional neural 
network (CNN). Several recent works have shown great success 
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in using deep learning (DL) for material decomposition from 
EID images as well as PCD images [3-6]. However, our 
approach differs from past work by using material 
decompositions derived from multi-EID CT scans as training 
labels. Our EID scan data is a good source for training labels 
because they are not affected by the spectral distortions 
described earlier and they have low noise due to high x-ray 
dose. The CNN is trained using PCCT images as inputs and 
material maps derived from multi-EID scans of the same 
specimens as labels. The trained network can then be used to 
generate accurate material decomposition maps from PCD 
images without the need to pass corresponding EID scans into 
the network. Our implementation and results based on micro-
CT scans are presented in the following sections. 

II. METHODS 

A. Image Acquisition 
All image data were acquired on our dual-source, micro-CT 

imaging system that has one EID (Dexela 1512 CMOS x-ray 
detector with a CsI scintillator, 75 μm pixel size) and one PCD 
(Dectris Santis 1604, 150 μm pixel size, 4 energy thresholds) 
[7].  For this study, we scanned 2 mice that were injected with 
soft tissue sarcomas and liposomal-based iodine contrast agent. 
For both PCD and EID protocols, we acquired separate ex-vivo 
micro-CT scans for the upper and lower body.  

To perform material decomposition from multi-EID micro-
CT data, we acquired three different EID scans with the 
following parameter settings: i) 80 kVp, 40 mA, 10 
ms/exposure, ii) 50 kVp, 50 mA, 16 ms/exposure, and iii) 40 
kVp, 50 mA, 16 ms/exposure. Each scan used a helical 
trajectory, with 900 projections over 1070 degrees rotation and 
1.25 cm vertical translation.  

For our PCD scan, we used an X-ray tube voltage of 80 kVp, 
current of 2 mA, integration time of 200 ms/exposure, and 
energy thresholds of 25, 34, 50, and 60 keV. Just like the EID 
scans, this helical scan was acquired with 900 projections, 1070 
degrees rotation, and 1.25 cm vertical translation. The estimated 
dose for this PCD scan was 36 mGy, which is much lower than 
the estimated dose of 296 mGy for the 3 EID scans described 
above. 

B. Image Reconstruction 
For the multi-EID micro-CT data, we performed an iterative 
reconstruction using the split Bregman method with the add-

AG070149). We acknowledge the support provided by Drs. Y.M. Mowery, 
Y.Qi and K. Ghaghada for our experiments. 
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residual-back strategy [8] and rank-sparse kernel regression 
regularization (RSKR) [9], solving the following optimization 
problem:  

 X	 = 	 arg	min
!

"
# 	∑ ||	,-$ 	−	/$	||##$ 	+ 	1||	-	||%&'.   

Thus, we solve iteratively for the vectorized, reconstructed data, 
the columns of X, for each energy threshold simultaneously 
(indexed by e). The reconstruction for each threshold minimizes 
the reprojection error (R, system projection matrix) relative to 
the log-transformed projection data acquired at each threshold 
(the columns of Y). To reduce noise in the reconstructed results, 
this data fidelity term is minimized subject to the bilateral total 
variation (BTV) measured within and between energies via 
RSKR. Unlike the multi-EID data, the PCD micro-CT images 
were reconstructed using filtered back projection (FBP) with a 
Ram-Lak filter to explore the potential of our CNN to perform 
denoising and material decomposition simultaneously.  

C.  Material Decomposition 
We performed image-based material decomposition on the EID 
and PCD micro-CT reconstructions using the approach of 
Alvarez and Macovski [10]. We chose to decompose CT 
images into iodine (I), Compton scattering (CS), and 
photoelectric effect (PE) maps.  Thus, we performed a post-
reconstruction spectral decomposition with I, PE and CS as 
bases: X(e) 	= 	&!"'!"(2) 	+	&#$'#$(2) 	+	&%'%(2). 
The matrix inversion spectral decomposition was performed by 
solving the following linear system at each voxel: C	 = 	XM-". 
In this formulation, C is the least-squares solution for the 
concentration of I (mg/mL) and the fractions of PE and CS 
relative to water. M is a matrix of material sensitivities 
(attenuation/mg/mL for iodine) at each energy that was 
computed using vials of water and known concentrations of 
iodine and calcium that were included in the scans. Finally, X is 
the attenuation coefficient of the voxel under consideration at 
energy e. Orthogonal subspace projection was used to prevent 
negative concentrations. PCD micro-CT data was also 
decomposed via matrix inversion for comparison . 

D. Animal Experiments 
We used a transplant model of soft tissue sarcoma that 
resembles human undifferentiated pleomorphic sarcoma. A 
sarcoma cell line was generated from an autochthonous soft 
tissue sarcoma (p53/MCA model) induced in C57BL/6 wild 
type mice by intramuscular injection of adenovirus expressing 
Cas9 endonuclease and sgRNA to Trp53 gene (Adeno-sgp53-
Cas9; Viraquest) followed by intramuscular injection of the  
carcinogen 3-methylcholenthrene (MCA) [11]. Liposomal-
based contrast agents containing iodine (Lip-I) were fabricated 
similar to methods described previously [12]. Two mice with 
sarcomas were intravenously injected with Lip-I (1.32 mg I/kg 
body weight) and shortly after, were euthanized. The mice were 
immersed in formalin for 5 days, then scanned with our PCD 
micro-CT and multi-EID micro-CT. For this preliminary work, 
we used two mice with sarcomas, but more mice will be used 
in the near future. 

E. Network Training and Testing 
 Using the Pytorch library, we implemented a CNN with a 3D 
U-net architecture [13] for material decomposition. The details 
of network architecture and our training scheme are shown in 
Figure 1. Three matching sets of PCD and EID micro-CT scans 
from two mice were used for training and one set from the upper 
body of one mouse was held out for testing. The CNN was 
trained using partially overlapping 3D patches (size 38 x 62 x 
62, stride 26 x 50 x 50) from PCD micro-CT images as input 
and smaller (size 26 x 50 x 50, stride 26 x 50 x 50), non-
overlapping 3D patches of the corresponding I, CS, and PE 
material maps obtained via multi-EID micro-CT as labels. Each 
PCD energy threshold is treated as a separate input channel. 
Since the CNN does not use zero padding for convolutions, it 
crops input patches down to the size of the labels, which 
prevents patch artifacts when the predicted material map 
patches are stitched back into a complete image. The 5 x 5 x 5 
convolutions ensure consistent dimensions of feature maps that 
are being concatenated.  We trained our CNN using a mean 
square error (MSE) loss function with a batch size of 32, Adam 

Figure 1. Diagram of our 3D U-net architecture and training procedure. The number of filters for each convolution operation is shown in the 
diagram. The network is trained using 3D patches of the PCD images as inputs and 3D patches of the multi-EID material maps as labels. 
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optimizer [14] with learning rate of 5 x 10-5, and 500 training 
epochs. Once training was complete, we used the 3D U-net to 
predict I, CS, and PE maps with partially overlapping 3D 
patches of PCD micro-CT images from the test set as inputs.  

F. Performance Evaluation 
We evaluated performance on the test set using both qualitative 
and quantitative methods. The material maps derived from 
multi-EID images via matrix inversion served as a surrogate for 
ground truth. For quantitative comparisons, we measured the 
root mean square error (RMSE) over the whole volume for PCD 
with matrix inversion decomposition and for 3D U-net 
decomposition. In addition, we compared measurements (mean 
and standard deviation) from I and Ca vials in the I and PE maps 
for all 3 decomposition approaches. For PCD with matrix 
inversion-based decomposition, we used the FBP 
reconstruction as the input because this is also what the 3D U-
net takes as an input. 
 Finally, we generated modulation transfer functions (MTF) 
derived from iodine maps for the EID decomposition and the 
3D U-net decomposition to assess how well the CNN preserves 
spatial resolution. 

III. RESULTS 

   The training loss curve (Figure 2) indicates a decrease in error 
over the 500 epochs. An axial slice with decompositions 
provided by the multi-EID data, the PCD micro-CT via matrix 
inversion and the predictions from 3D U-net are shown in 
Figure 3. Although the CNN results are the closest to the multi-
EID, some smoothing is also noticeable. The 3D U-net 
prediction appears superior to the PCD decomposition via 
matrix inversion, which shows higher levels of noise.  
  Figure 4 shows the RMSE of I, CS and PE material maps for 
both the 3D U-net prediction and the standard PCD 
decomposition via matrix inversion. The largest error in the 
standard PCD decomposition is for the I map. Using the trained 
3D U-net reduced the RMSE by 2.597 mg/mL in the I map, 
0.221 in the CS map, and 0.370 in the PE map. Note that the 
expected CS and PE values in water were normalized to 1.0 for 
the EID data. 

Quantitative measurements from I and Ca vials included in 
the test set scans are shown in Figure 5. Compared to multi-EID 
decomposition, the PCD decomposition via matrix inversion 
shows mean measurements that overestimate I concentrations 
and underestimate PE values in the Ca vial. 

The measurements from 3D U-net prediction are more accurate 
since they are much closer to the multi-EID ground truth. The 
mean value from the 3D U-net predicted material map is within 
0.6 mg/mL of the mean value from the multi-EID material map 
for both iodine vials. Measurements from the 3D U-net 
prediction consistently provide better precision as indicated by 
smaller standard deviation than measurements from PCD 
decomposition via matrix inversion. This result is consistent 
with the previous observation of reduced noise from 3D U-net 
decomposition.  

Figure 6 shows an axial slice from the absolute difference 
maps between 3D U-net prediction and multi-EID 
decomposition for each material. These maps indicate that the 
3D U-net predictions tend to have the greatest error at edges and 
in highly enhancing structures such as the bone. The MTFs for 
the multi-EID decompositions and 3D U-net predictions are in 
Figure 7. At 10% MTF, the prediction from 3D U-net has a 
spatial resolution of 257.5 μm, while the multi-EID 
decomposition has a spatial resolution of 231.5 μm. This 
confirms the blurring added by the CNN decomposition, and is 
consistent with the edge errors observed in the absolute 
difference maps from Figure 6. 

Figure 2. Average training MSE loss. There were a total of 500 epochs. 

Figure 3. I, CS, PE, and composite material maps in an axial slice from 
the test set for A) decomposition using matrix inversion from multi-EID 
scans B) decomposition using matrix inversion from the PCD scan and 
C) decomposition via prediction by the 3D U-net. 

Figure 4. RMSE of I, CS, and PE material maps in the test set. RMSE 
values for both PCD decomposition via matrix inversion and 3D U-net 
predicted decomposition are computed relative to the multi-EID 
decomposition via matrix inversion. 
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IV. CONCLUSIONS 
In this work, we implemented a unique approach for DL 
material decomposition from PCD images by using multi-EID 
material maps as training labels. Our results on the test set show 
that a 3D U-net trained with this method can perform material 
decomposition from a PCD scan with greater quantitative 
accuracy and precision than the conventional matrix inversion-
based approach. There are a few limitations that merit further 
discussion. The material maps predicted by the 3D U-net 
produced overly smooth images, resulting in errors at edges. It 
is possible that these errors can be mitigated by implementing a 
more sophisticated loss function than MSE such as gradient 
correlation loss [15]. In addition, like other DL approaches, our 
trained CNN can only be used on PCD images with similar scan 
and reconstruction protocols to the training data. Despite these 
issues, our CNN-based approach is a powerful method for 
compensating for spectral distortion during material 
decomposition and exploiting the improved dose efficiency 
offered by PCCT imaging. 
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Figure 5. Mean and standard deviation of intensity values measured 
in vials of known concentration from multi-EID decomposition, 
PCD decomposition, and 3D U-net predicted material maps. A) 
Measurements in I map from I vials, with the expected 
concentrations shown on the x-axis. B) Measurements in PE map 
from a vial with 50 mg/mL of calcium in water. 

Figure 6. Absolute difference between multi-EID decomposition and 
3D U-net predicted material maps in an example axial slice from the 
test set. 

Figure 7. MTF from multi-EID decomposition and from 3D U-net 
prediction. 
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Abstract— Based on the X-ray physics in computed tomography 

(CT) imaging, the linear attenuation coefficient (LAC) of each 
human tissue is described as a function of the X-ray photon energy. 
Different tissue types (i.e. muscle, fat, bone, and lung tissue) have 
their energy responses and bring more tissue contrast distribution 
information along the energy axis, which we call tissue-energy 
response (TER). In this study, we propose to use TER to generate 
virtual monoenergetic images (VMIs) from conventional CT for 
computer-aided diagnosis (CADx) of lesions. Specifically, for a 
conventional CT image, each tissue fraction can be identified by 
the TER curve at the effective energy of the setting tube voltage. 
Based on this, a series of VMIs can be generated by the tissue 
fractions multiplying the corresponding TER. Moreover, a 
machine learning (ML) model is developed to exploit the energy-
enhanced tissue material features for differentiating malignant 
from benign lesions, which is based on the data-driven deep 
learning (DL)-CNN method. Experimental results demonstrated 
that the DL-CADx models with the proposed method can achieve 
better classification performance than the conventional CT-based 
CADx method from three sets of pathologically proven lesion 
datasets.  

 
Index Terms—CT image analysis, Computer-aided diagnosis, 

Machine learning, Malignant and benign differentiation 

I. INTRODUCTION 
N computed tomography (CT) imaging, different tissue 

types can be represented by the linear attenuation coefficients 
(LACs) [1]. Based on the well-established X-ray physics inside 
the human tissues [2], Fig. 1(a) shows the LACs as a function 
of the X-ray energy for four important human body tissues, i.e., 
bone, muscle, fat, and lung, and water as the reference.  Fig. 1(b) 
shows the difference between these tissues in terms of CT 
values.  Fig. 1(c) is a zoomed version of Fig. 1(b) to emphasize 
the differences among muscle, fat, lung and water. It is clearly 
seen that different tissue types have their energy responses 
along the energy axis, which we call tissue-energy response 
(TER) in this study.  The different TERs shall bring more tissue 
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contrast distribution information in a series of monoenergetic 
images than that of the single image reconstructed from the 
conventional CT, which uses a wide spectrum and could not 
take the response into consideration.  More tissue contrast 
distribution information shall enhance tissue characterization 
and, therefore, improve lesion diagnosis. If the energy-
independent fraction of each tissue can be obtained, a series of 
virtual monoenergetic images (VMIs) is able to be generated by 
the TER curve. Hence, photon-counting CT (PCCT) [3] and 
multiple energy spectral CT (MECT) [4, 5] are recently 
developed to reconstruct the energy-independent fractions with 
multiple energy measurements and then generate a series of 
VMIs. However, they require the use of expensive photon 
counting detection technology and/or sophisticated image 
reconstruction methods. Following the physics behind the TER, 
this study explores an alternative approach to use the TER to 
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Using Tissue-Energy Response to Generate 
Virtual Monoenergetic Images from 

Conventional CT for Computer-aided Diagnosis 
of Lesions 

Shaojie Chang, Yongfeng Gao, Marc J. Pomeroy, Ti Bai, Hao Zhang, and Zhengrong Liang 
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(a) 

 
     (b)                                                           (c) 

Fig. 1:  Tissue energy response curve. (a) Log visualization for linear 
attenuation coefficients curve; (b) HU curve; (c) Zoomed HU curve. 
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generate a series of VMIs from a conventional CT image to 
further extract contrast textures for lesion diagnosis.  An 
assumption is made that the conventional CT image is obtained 
from the effective energy of the energy spectrum used by the 
conventional CT.  For example, if conventional CT operates on 
a 120kVp X-ray tube voltage, the effective photon energy 
would be 75keV. With the identified location in the TER curve, 
a series of VMIs are obtained by the relative factor along the 
energy axis. 

With the above VMIs, a machine learning (ML)-based CADx 
model is proposed to differentiate malignant from benign 
lesions by exploiting the energy-enhanced material features, 
which uses automatically extracted features by deep learning 
(DL) technics. DL-based CADx algorithms, more specifically 
convolutional neural network (CNN), have achieved noticeable 
successes in the differentiation of malignant and benign lesions 
[6-10].  Due to the advanced feature learning power, a multi-
channel 3D CNN-based CADx model is developed in this study 
to help recognize energy-specific features to differentiate 
malignant lesions from benign ones. The final classification 
result will reflect the CADx performance with the explored 
spectral information. 

The remainder of this paper is organized as follows.  Section 
II will describe the proposed computer-aided diagnosis 
framework and the overall workflow. Section III presents the 
experiment design and results.  Discussion and conclusions are 
drawn in Sections IV and V. 

II. METHODS 
An overall illustration of our proposed lesion diagnosis 

pipeline can be found in Fig.2. Fig.2(a) shows the traditional 
diagnosis pipeline, the conventional CT data is directly used in 
the ML-based CADx model. As shown in Fig.2(b), our 
proposed framework is composed of two components: one is 
virtual monoenergetic images (VMIs) generation by the use of 
TER and the other is ML-based CADx model for classification. 
The details of each are described as follows. 
A. CT Image-based Virtual Monoenergetic Images 
Generation by the Use of TER 

In a CT image, a linear attenuation coefficient can be 
represented by 𝑅 types of tissues, e.g. muscle, fat, lung, bone, 
and so on.  The LAC function 𝜇𝑗(𝜀)  at the 𝑗𝑡ℎ  pixel of the 
image is decomposed as: 

𝜇𝑗(𝜀) = ∑ 𝜇𝑟(𝜀)𝑓𝑟𝑗
𝑅
𝑟=1 ,                          (1) 

where 𝜇𝑟(𝜀) denotes linear attenuation coefficient of tissue 𝑟 at 
energy 𝜀, as shown in Fig.1(a). Notation 𝑓𝑟𝑗 is a unitless tissue 
fraction that quantifies the contribution of tissue 𝑟  to 

attenuation in pixel 𝑗. Once the tissue fractions are identified, a 
series of  VMIs can be generated.  
1) Region of interest (ROI) selection 

For lesion diagnosis, an ROI containing the lesion is firstly 
selected from the whole CT image. An example of ROI 
selection from one patient slice for lung nodule diagnosis is 

shown in Fig. 3. 
2) Tissue fractions identification 

Due to the polychromatic X-ray source, a CT ROI image 𝜇𝐸1 
reconstructed by filtered backprojection (FBP) method reflects 
the attenuation  coefficients at the effective energy with the tube 
voltage 𝐸1 kVp as follows, 

𝜇𝑗
𝐸1 = ∑ 𝜇𝑟(𝐸1

𝑒𝑓𝑓)𝑓𝑟𝑗
𝑅
𝑟=1 ,                       (2) 

where 𝐸1
𝑒𝑓𝑓  denotes the effective energy the selected tube 

voltage 𝐸1. To identify the tissue fractions, the CT image is first 
segmented into four tissue types including lung tissue, fat, bone 
and muscle by a threshold method. And then, for each tissue 

region, the tissue fraction 𝑓𝑟𝑗  can be obtained by 
𝜇𝑗

𝐸1

𝜇𝑟(𝐸1
𝑒𝑓𝑓)

. In 

this work, we assumed 𝐸1
𝑒𝑓𝑓 = 75  when a conventional CT 

scan at 𝐸1 = 120  kVp. And 𝜇𝑟(𝐸1
𝑒𝑓𝑓)  can be directly found 

with TER as shown in Fig.1(a). 
3) Virtual monoenergetic CT images generation 

Based on the identified tissue fractions, a series of VMIs at 
selected 𝑛 energies are generated with the corresponding tissue 
LACs as follows.   

𝜇𝑗
𝑣𝑖𝑟𝑡𝑢𝑎𝑙(𝜀) = ∑ 𝜇𝑟(𝜀)𝑓𝑟𝑗𝑟 ,                     (6) 

In this work, 𝑛 = 10, the energy values are used by 5, 8, 10, 12, 
15, 20, 25, 30, 35, 40 and 45 keV as an example. It is because 
that as shown in Fig. 1(c), the HU values of different tissues 
have the maximum differences in this energy range and the 
contrast features could be efficiently enhanced. 

B. Machine Learning (ML)-based CADx 
1) Deep learning (DL)-based CNN model: 

For the DL-based model, a 3D CNN architecture with a 
multi-channel input is developed, which uses each energy 

 
Fig. 3:  An example of ROI selection from the CT image for lung nodule 
diagnosis.  The display window is [0,0.35] cm-1. 

                 
(a)                                                                                                     (b) 

Fig. 2:  Illustration and comparison between traditional and our proposed method for lesion diagnosis. (a) Traditional ML-based CADx pipeline. (b) Our proposed 
ML-based CADx pipeline with the VMIs generated by the use of TER. 
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image as one input channel as shown in Fig. 4. First, four 
convolutional layers are used to extract the features, which are 
then pooled together with a global average pooling (GAP3D) 
layer such that the final features have a global receptive field.  
At last, a fully connected (FC) layer-based classifier is adopted 
to distinguish the malignant and benign lesions. Specifically, 
each convolutional layer consists of three operators: 3D 
convolution (Conv3D), 3D average pooling (Avgpolling3D), 
and rectified linear unit (ReLU).  And the binary cross-entropy 
loss is utilized to train the model. The details of the CNN model 
are listed in Table I. 

Based on the above model, the final classification results will 
show the lesion diagnosis performance with the VMIs 
generated by the TER. 

III. EXPERIMENTS AND RESULTS 

A. Datasets 
In this study, three pathologically proven clinical datasets 

consisting of colon polyp and lung nodules are used to evaluate 
our proposed method. All the patients were recruited to this 
study under informed consent after approval by the Institutional 
Review Board.  Details are presented in Table II. 

1) Dataset 1 
In dataset 1, 59 patients were scanned by a conventional CT 

at 120 kVp with automatic exposure control at the University 
of Wisconsin, USA.  A total of 63 colon polyp masses were 
found and resected by the clinical examination.  The 
pathological reports indicate 31 benign and 32 malignant 
polyps.   
2) Dataset 2 

In dataset 2, 66 patients were scheduled for CT-guided lung 

nodule needle biopsy at 120 kVp with automatic exposure 
control at Stony Brook University Hospital, USA.  With the 
pathological reports, a total of 67 lung nodules with 18 benign 
and 49 malignant were confirmed.  
3) Dataset 3 

In dataset 3, 114 patients were scheduled for CT-guided lung 
nodule needle biopsy with X-ray exposure of clinical dose at 
120 kVp, 100 mAs in Stony Brook University Hospital, USA.  
With the pathological report, a total of 114 lung nodules with 
50 benign and 64 malignant were confirmed.   

B. CNN Training Implementation 
For the input to the CNN-based implementation, we first 

converted each n-energy data with the resolution of 64×64×64 
voxels.  And these converted energy volumetric images were 
fed into the multi-channel 3D CNN as shown in Fig. 4 for 
training.  And the target is the results from the pathological 
reports of the malignant and benign lesions.  The k-fold (k=5) 
cross-validation was implemented to test the robustness and 
avoid data bias. The procedure is as follows.  We firstly shuffled 
the dataset randomly and split it into 5 folds.  For each fold, we 
randomly divided the dataset into training and testing datasets.  
And then we trained a model on the training dataset and 
evaluated it on the testing dataset. Finally, we retained the 
evaluation score for each fold and the average score was 
calculated.  In this study, the CNN model was trained for 100 
epochs with a learning rate of 0.001 and batch size of 8 using 
Adam optimizer [11]. 

C. Classification Performance 

For the DL-based CNN model, the conventional CT and the 
enhanced 10-energy VMI data generated by the use of TER 
were incorporated into our 3D-CNN network, respectively. We 

 
Fig. 4: The 3D CNN architecture of CADx for lesion diagnosis. 

TABLE III:  MEAN AUC VALUES FOR DL-BASED CNN DIAGNOSIS MODEL  
Data  
Input 

Dataset 
1 

Dataset 
2 

Dataset 
3 

Conventional CT (120kVp) 74.20 52.42 59.54 
VMIs with TER 80.71 69.33 71.97 

 

TABLE II:  DATASETS INFORMATION 

Dataset Total 
Number 

Benign 
(0) 

Malignant 
(1) 

Pathological 
Report 

Dataset 1 63 31 32 ✓ 
Dataset 2 67 18 49 ✓ 
Dataset 3 114 50 64 ✓ 

 

TABLE I:  DETAILS OF NETWORK DESIGN 
Layer Type Channels Kernel Size Padding Stride Activation 

1 Conv3D 32 (7,7,7) (1,1,1) (1,1,1) ReLU 
2 Avgpooling3D - (2,2,2) - (2,2,2) - 
3 Conv3D 64 (5,5,5) (1,1,1) (1,1,1) ReLU 
4 Avgpooling3D - (2,2,2) - (2,2,2) - 
5 Conv3D 128 (3,3,3) (1,1,1) (1,1,1) ReLU 
6 Avgpooling3D - (2,2,2) - (2,2,2) - 
7 Conv3D 128 (3,3,3) (1,1,1) (1,1,1) ReLU 
8 Avgpooling3D - (2,2,2) - (2,2,2) - 
9 GAP3D - - - - - 

10 FC 128 - - - - 
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calculated the mean values of AUC scores, which are shown in 
Table III.  For both Dataset 2 and Dataset 3, the lung nodules 
are undifferentiable to be benign or malignant by human experts 
who recommended biopsy on these nodules.  By the reports of 
their biopsies as the ground truth, the CADx with 52.42% / 
59.54% AUC scores performed slightly better than human 
experts, whose score would be random or 50%.  The results 
from the CADx on the VMIs with TER demonstrated that the 
VMIs data with the TER achieve higher mean AUC values than 
the conventional 120 kVp data, which verifies the effectiveness 
of the contrast enhancement brought from the VMIs. The AUC 
values of each dataset can be improved 6.51%, 16.91%&12.55% 
for lesion characterization, respectively. This is powerful proof 
that our proposed CADx model could benefit from the energy 
spectral information in VMIs. 

IV. DISCUSSION 
This study aims at exploring the energy spectral information 

from a conventional CT image by using the TER to generate 
VMIs for lesion diagnosis. The proposed CADx framework 
with the VMIs achieved improved diagnosis performance than 
the traditional CADx pipeline with the conventional CT data. 
As we have demonstrated in this work, the VMIs at different 
energy bins show significant effectiveness for lesion 
characterization. How to choose the energy range and energy 
number of the VMIs to capture the meaningful lesion features 
is still a promising direction. With the analysis from the above, 
this work will also have a great potential in guiding the energy 
selection in PCCT imaging for diagnosis. Meanwhile, to 
compare the PCCT images from the practical measurements 
with the VMIs by the use of TER from the conventional CT 
would be a very interesting research topic in the future. And last 
but not least, clinical evaluations with more disease data sets 
are needed to test the robustness of the proposed method. 

V. CONCLUSIONS 
In conclusion, we proposed to use tissue-energy response to 

generate the virtual monoenergetic images from the 
conventional CT for CADx of lesions. In this framework, each 
tissue contrast distribution along the energy axis is fully 
enhanced, which brings richer information to ML-based CADx. 
Experimental results demonstrated that the VMIs generated 
with the use of TER from the conventional CT applied to the 
ML-based CADx obtain better performance than the traditional 
CADx pipeline in lesion classification. 
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Detruncation of Clinical CT Scans Using a Discrete
Algebraic Reconstruction Technique Prior

Achim Byl, Michael Knaup, Magdalena Rafecas, Christoph Hoeschen, and Marc Kachelrieß

Abstract—Successful image reconstruction in computed to-

mography (CT) relies on the completeness of the projections.

If the patient does not fit in the field of measurement, the

projections are truncated causing cupping artifacts in the image

and a diminished field of view (FOV). In order to restore

the CT values and extend the FOV, the projections have to

be completed, for example via an extrapolation. The discrete

algebraic reconstruction technique (DART) has shown its efficacy

in reconstructing discrete images from insufficient raw data.

In this work, we use DART images as a prior for projection

completion of clinical CT scans. We compare our method to

the conventional adaptive detruncation (ADT) and evaluate the

RMSE inside and outside the FOV along with the Dice score.

I. INTRODUCTION

Image reconstruction in computed tomography (CT) de-
pends heavily on the quality of the available raw data.
However, in many instances the acquisition parameters lead
to raw data that are insufficient for a conventional method
such as filtered back-projection (FBP). Typical problems are
a low number of projections, small angular range, or low
tube current. This work focuses on the issue of truncated
projections, i.e. the case where the patient does not fully fit in
the maximum field of view (FOV) of the scanner. In clinical
practice, truncation most often occurs with obese patients,
patients that are not centered properly on the table, or when
using C-arm systems, which generally feature small FOVs.

Sinogram truncation is twofold problematic. On the one
hand, voxels inside of the FOV suffer from cupping artifacts.
On the other hand, there is a demand of artificially extending
the FOV. Voxels in the extended FOV (eFOV) are of interest
for several algorithms, including metal artifact reduction and
beam hardening correction in CT, and attenuation and scatter
correction in PET [1], [2].

In order to reduce artifacts within the FOV, several data
extrapolation methods have been developed [3]–[5]. These
conventional algorithms are able to restore the CT values
within the FOV to acceptable values, such that the cupping
artifacts are removed. However, voxels in the eFOV are
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typically not reconstructed accurately. Recently, there have
also been deep learning methods developed for the purpose
of extending the FOV, showing promising results [6], [7].

Another method that has shown promise for reconstructing
truncated raw data is the discrete algebraic reconstruction
technique (DART) [8]–[10]. DART is a well-known algorithm
for reconstructing discrete CT volumes, e.g. in the context
of non-destructive testing of homogeneous objects. It was
specifically developed for scans with few projections or limited
angular range [11]–[13]. Utilizing the assumption that the
object consists of very few attenuation coefficients, DART is
capable of image reconstruction with severely limited data.

In this work, we apply DART to clinical CT data to obtain a
prior image for detruncation, i.e. to fill the missing projections.
Although clinical CT volumes are not strictly homogeneous,
a typical CT scan consists only of soft tissue, bone, and air.
In addition, for the purposes of the projection completion, the
patient is often approximated by a single attenuation value
[3]–[5]. Although DART was developed for discrete CT, it
internally computes real valued images, which we use for
detruncation. To evaluate our method, it is compared to the
established adaptive detruncation (ADT) [4].

II. METHODS

We define the detruncation problem as follows. We have
access to truncated parallel beam raw data pt(#, ⇠) with Mt
pixels of size �⇠. Let ⇠t,max = 1

2 (Mt � 1)�⇠, such that the
detector range is �⇠t,max  ⇠  ⇠t,max. In order to reconstruct
an artifact free image, the full detector should have Mf > Mt

pixels, corresponding to ⇠f,max = 1
2 (Mf � 1)�⇠. Thus, the

required extrapolation includes pixels within ⇠t,max < |⇠| 
⇠f,max. In image domain, this expands the original FOV with
radius RM,t = ⇠t,max to the eFOV with radius RM,f = ⇠f,max.
Due to the limitations of the scanner, the eFOV cannot be
larger than the bore size. Figure 1 shows our strategy to fill
the missing projections: First, generate a prior image using
the DART algorithm. Second, forward-project the prior image
and fill in the missing data in the original sinogram using the
prior sinogram.

A. Generating a DART Prior Image
DART employs a combination of discretization and real-

valued algebraic reconstruction [11], [12]. Figure 1 shows the
basic DART scheme on the left. During each DART iteration,
only a subset of pixels is changed, while the rest of the pixels
are set to constant values. In order to determine the fixed
pixels, we first segment the current image estimate into air and
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Fig. 1. Scheme of the proposed DART detruncation. The dashed box
highlights the DART reconstruction, the right side shows the data completion
step.

tissue by thresholding at �500 HU. Then, every pixel that is
fully surrounded by pixels of the same class is fixed and set to
a value of �1000 HU or 100 HU for air or tissue, respectively.
Each pixel is given an additional probability of 65% to be
classified as non-fixed, so that values inside homogeneous
patches can be corrected. Subsequently, we perform five SART
iterations where only the non-fixed pixels are considered [14].
One SART iteration is defined as

fnew = f + �
1

XT 1
XT

✓
p�Xf

X1

◆
, (1)

where f is the current image estimate, fnew is the new estimate,
p are the raw data, � is a relaxation factor, X is the forward-
projection and XT is the back-projection.

Since the fixed pixels contain no noise, all projection noise
will be distributed over the non-fixed pixels. Therefore, the
last step is a smoothing with a Gaussian filter with a standard
deviation of 0.5 pixels. This finishes one iteration and the
algorithm continues with the segmentation step. Since there is
no formal stopping criterion, we set the maximum number of
iterations Niter to 5000. In most cases, a few hundred iterations
were sufficient. To initialize the DART algorithm, we perform
a simple cosine detruncation followed by an FBP. Note that
only the original raw data are used for the DART iterations.

In conventional applications, the DART result will again be
segmented at the end of the algorithm, as a discrete volume
is desired. In this work, DART is used with clinical data.
Therefore, we omit the final thresholding and instead use the
real valued image as the prior image.

B. Projection Completion
In order to acquire a complete sinogram, the information

in the prior image and the original raw data pt have to be
combined. First, forward-project the prior image to obtain
the prior sinogram pDART. Then, the detruncated sinogram pd
incorporates the original data pt wherever possible and pDART
otherwise. Thus, only the outer regions are filled with the prior
sinogram. However, simply copying the pixel values might
cause artifacts at the edge between original and new data.
To amend this, a factor c(#, ⇠) scales the new data to match
the original data at the boundary. This factor is calculated

separately for each projection and side. Finally, the DART-
detruncated image is reconstructed from pd via FBP.

C. CT Data
All data sets were obtained with a SOMATOM Force CT

scanner (Siemens Healthineers, Forchheim, Germany). Images
were acquired at 70 kV, and reconstructed on a 512 ⇥ 512
matrix with 0.6 mm slice thickness and 0.8 mm ⇥ 0.8 mm
pixel size.

We generate full and truncated sinograms by monochro-
matically forward-projecting in parallel beam geometry. The
simulations are performed with N = 256 projections with an
angular range of 0 to 180�. The full sinogram has Mf = 1024
detector pixels with a pixel size of 0.5 mm. We investigate
two levels of truncation with Mt = 682, 372 detector pixels,
which correspond to a relative detector size of 2

3 and 1
3 ,

respectively. Note that our method can easily be adjusted to
other geometries, e.g. fan-beam or cone-beam.

D. Analysis
To quantify how well the algorithm can correct CT values

inside the original FOV, we calculate the root mean squared
error (RMSE) within the FOV with respect to the image
reconstructed from the full detector. The RMSE for an image
f(i, j) with respect to the ground truth image GT is defined
as

RMSE =

vuut 1

NxNy

X

0i,jNx,Ny

(f(i, j)� GT(i, j)). (2)

Furthermore, we compute the RMSE within the eFOV and
Dice score of the whole image to compare the ability of the de-
truncation to restore the CT values and patient outline outside
of the original FOV. For the latter, the images are segmented
into air and soft tissue with a threshold of �500 HU. The Dice
score is defined as

Dice =
2TP

2TP + FP + FN
, (3)

where TP are the true positives, FP the false positives and FN
the false negatives. To compare the DART detruncation with a
conventional method, we also apply the adaptive detruncation
(ADT) [4] to the data.

III. RESULTS

Figure 2 shows the first patient, including detruncation re-
sults from cosine detruncation, ADT, DART, and our method.
In the left column, the scan suffers from light truncation. This
causes minor cupping artifacts at the left and right side of the
patient in the uncorrected FBP reconstruction. All methods
have have successfully removed the cupping and restored
CT values to voxels in the eFOV. After cosine detruncation,
artifacts remain at the edge of the FOV and the tissue in the
eFOV is too dark. In the ADT result, voxels on the right side
are slightly brighter than in the other ground truth. For the
case of strong truncation, displayed in the right column of
Figure 2, there is a considerable difference between ADT and
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TABLE I
RMSE AND DICE VALUES FOR BOTH PATIENTS AND LEVELS OF TRUNCATION. RMSE IS GIVEN FOR THE ORIGINAL AND FOR THE EXTENDED FOV.

Truncated Cosine Detruncation ADT DART Our Method
Mt = 678 Mt = 372 Mt = 678 Mt = 372 M=678 Mt = 372 Mt = 678 Mt = 372 Mt = 678 Mt = 372

Patient 1
RMSEFOV [HU] 82.01 1005.6 28.38 92.56 15.64 38.53 124.25 141.07 9.67 35.57

RMSEeFOV [HU] 145.31 788.32 72.75 275.07 42.20 152.89 108.16 163.23 28.34 35.57

Dice 0.977 0.65 0.991 0.859 0.996 0.968 0.996 0.973 0.999 0.975

Patient 2
RMSEFOV [HU] 97.29 912.14 27.94 114.15 14.83 26.79 150.42 178.30 12.72 45.92
RMSEeFOV [HU] 162.53 699.16 73.03 294.24 42.77 127.81 132.38 194.03 34.47 161.48

Dice 0.9703 0.673 0.988 0.835 0.996 0.965 0.993 0.960 0.999 0.963

our method. While ADT is able to restore CT values inside
the original FOV very well, the tissue outside of the FOV
is too bright and the patient outline does not agree with the
ground truth. In contrast, the DART-detruncated image is very
close to the full-view reconstruction, although fat has been
converted into water at the bottom of the image and some
bone anatomy is incorrect. These findings are supported by
the numerical evaluation in Table I. In all cases, our method
outperforms ADT in terms of RMSE and Dice score. Notably,
the DART prior image has relatively high RMSE values (above
100 HU in all cases) but good Dice scores, indicating high
image noise. Figure 3 shows the projections for the case
of strong truncation. Although the ADT is able to estimate
the projections approximately, the DART prior and DART
detruncation are noticeably smoother and more accurate.

Figure 4 displays the results of the second patient. Again,
both ADT and DART detruncation perform well when the
data are only mildly truncated. As for the first case, the
ADT image features slightly too high CT values on the right
side. The DART prior image and DART-detruncated image
show a dark streak along the edge of the FOV. For strong
truncation, the ADT again yields CT values that are too high
on the left and right side of the FOV and does not provide
a clear patient outline. Still, ADT clearly outperforms the
cosine detruncation. While the DART reconstruction gives
more accurate CT values in general, there are gaps in the soft
tissue of the patient. This artifact is also evident in the RMSE
of the eFOV and the Dice score, which are lower than ADT
for both the DART and DART-detruncated image. In the case
of mild truncation, our method still yields superior numerical
results.

IV. DISCUSSION & CONCLUSION

In this work, we propose a method of CT raw data de-
truncation based on the DART reconstruction. The DART
detruncation was capable of reducing cupping artifacts in the
FOV, as well as restoring CT values in the eFOV, for two levels
of truncation. Compared to the conventional ADT, our method
produced superior visual and numerical results. However, for
patient 2 with strong truncation, some anatomy was incorrectly
reconstructed as air, yielding worse numerical results than
ADT. These artifacts would likely be prevented with a better
initial estimate of the image, along with additional iterations
of DART.

This work uses the original DART algorithm [11], [12] with
a single, manually determined threshold. In the future, a more
refined version of DART, e.g. with automatic parameter opti-
mization or improved performance for noisy projections [13],

Fig. 2. Detruncation results for Patient 1. Left column shows mild truncation
(Mt = 682), right column strong truncation (Mt = 372). Top to bottom:
ground truth, truncated FBP, cosine detruncation, ADT, DART prior image,
DART detruncation. C = 0 HU, W = 1000 HU.

[15], [16] should be preferred, in order to reduce computation
time and image noise.
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Fig. 3. Projections for Patient 1 with strong truncation after detruncation. Top
to bottom: ground truth, truncated FBP, cosine detruncation, ADT, DART prior
image, DART detruncation.
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Deep Learning based Respiratory Surrogate Signal
Extraction

Jean Radig, Pascal Paysan, Stefan Scheib

Abstract—We present a feasibility study on extracting the

respiratory surrogate signal (RSS) from cone-beam computed

tomography (CBCT) projections using a supervised convolutional

neural network (CNN) model. Determining the intrinsic RSS

instead of using an external surrogate signal, provided by optical

tracing hardware such as the Real-time Position Management

(RPM) system, has the advantage that it spares patient setup

time and hence permits faster 4D CBCT acquisition. Another

convenience of such an approach is that it can be applied

retrospectively without special preparation or equipment. For

the implementation, we made use of the MONAI open source

library. Our model is based on a modified version of the MONAI

regressor class. We trained the model using CBCT projections

with the corresponding RSS as recorded by an external marker

block using the RPM system. The model is to deduce the RSS

given the CBCT. Using a specific dataset with CBCT from

anesthetized animals breathing with the help of a mechanical

ventilator, results show a good correlation between the actual

and predicted RSS. Unlike the Amsterdam Shroud algorithm,

our method shows promising results to predict the normalized

amplitude of the breathing signal. Further work could extend the

model to permit RSS prediction for its online use in radiation

therapy or detection of sudden motion deteriorating CBCT image

quality. To conclude, we have made a first step towards proving

the concept which consists in using a deep learning model to

extract the RSS out of acquired CBCT projection images. The

approach is promising but requires more work for robustness,

i.e. for sufficient accuracy both in the frequency and normalized

amplitude extraction.

Index Terms—CBCT, respiratory phase, respiratory ampli-

tude, convolutional neural network, MONAI

I. INTRODUCTION

I
N medical imaging as well as in radiation therapy, patient
motion is a challenge that needs to be dealt with. Knowing

the internal and external motions of the patient permits taking
them into consideration for image reconstruction and treatment
planning. Of interest is for example the patient’s chest motion,
as it gives a proxy for the respiratory motion. Obtaining the
patient’s chest motion can be done by recording the position
of a marker block, a device positioned onto the patient’s chest.
The position is recorded by optical tracing such as the Real-
Time Position Management (RPM) system. The technique
requires additional installation time, which we would like to
avoid. To this end, we will focus on extracting the patient’s
chest motion, called for generality the respiratory surrogate
signal (RSS), intrinsically from the patient’s x-ray projections.
In the following, we will focus on CBCT projection images.
Selecting projections for the same bin of the RSS periodically

J. Radig, P. Paysan, and S. Scheib are employees of Varian, a Siemens
Healthineers company, Taefernstrasse 7, 5405 Daettwil, Switzerland

at different angles around the patient permits their use for 4D
CBCT reconstruction. The 4D CBCT can then be used e.g.
for radiotherapy planning, patient setup, motion analyses, and
treatment beam gating. Hence the reliable intrinsic determina-
tion of the RSS would permit efficient 4D CBCT acquisition
and clinical use. Various methods to obtain the RSS directly
from the CBCT projections have been proposed such as the
Amsterdam Shroud (AS) algorithm [1], a Fourier transform-
phase based method [2], intensity-based determination [3],
a center-of-mass based [4] method, and the LPCA method
[5], [6]. A comparison of the methods has been presented in
[7]. Even methods using AI to segment the diaphragm [8]
for tumor tracking and breathing phase extraction have been
proposed. We compare the presently proposed method against
our in-house Amsterdam Shroud implementation which shows
good accuracy against recorded RSS from the RPM system but
lacks the ability to recover any kind of motion amplitude and
makes certain assumptions about expected frequencies. In this
work, we would like to investigate if intrinsic RSS extraction
could be obtained by using a 3D-CNN model. Such a method
would be both fast and easy to use. As a first approach, we
modified the MONAI regressor class to serve our purpose.
MONAI [9] is an open-source framework for artificial intel-
ligence in medical applications. We use supervised learning
by giving both the complete CBCT projection images and the
RSS as recorded by the RPM system to the training loop. The
model learns to minimize the difference between the predicted
RSS and the one as recorded by the RPM system, which we
will denote as the ”actual” RSS. In the evaluation loop, we
would like to get the predicted RSS solely from the CBCT
(Fig. 1).

In the following, we present the framework and the archi-
tecture of our model. We then show some preliminary results
and finally conclude by discussing further development and
use of the work.

II. FRAMEWORK, ARCHITECTURE, AND DATA

O
UR CNN model is based on a modified version of the
open-source MONAI regressor class implemented in the

PyTorch Lightning framework. Given the CBCT raw data,
we define the input of dimensions (batch, channels, number
of projections, projection dimension along y, projection di-
mension along x) which in our case, using (by factor 2,4)
down-sampled projections, read (1, 1, number of projections
[variable in function of the dataset], 384, 256). We operate
successive convolutions to collapse the x, y dimensions and
preserve the dimension corresponding to the number of pro-
jections. Accordingly, the actual RSS for each projection is
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(a) Scheme of the training loop

(b) Scheme of the evaluation loop

Fig. 1: Scheme of both the training and the evaluation loops

Fig. 2: Successive dimension reductions via 9 convolutions
are shown for the projection dimensions. The number of
projections stays the same throughout the process, only the
dimensions in y and x are altered. The channels per convolu-
tion are evolving as (2, 4, 8, 16, 32, 64, 32, 16, 1). The final
dimension (number of projections) is reflecting the dimension
of the recorded RSS.

recorded during CBCT acquisition and given as input. The
network consists of 9 convolutions with kernel size (3, 3, 3),
padding (1, 0, 0), and strides (1, 2, 2). We set the number of
channels for the 9 convolutions to (2, 4, 8, 16, 32, 64, 32, 16,
1).

We replaced the fully connected layer of the MONAI
regressor model with a convolution layer to preserve the
temporal relation between projections and the corresponding
breathing amplitude. Additionally, this leads to a favorable
reduction of the number of trainable parameters to 41,9 million
for our current model.

To train the model we used as a first instance the CBCT
Animal Motion Imaging Study (CAMIS) dataset. In this set,
CBCT were taken from animals under general anesthesia using
mechanical ventilation and under enforced breath-hold. This

results in very regular RSS for the ventilated scans. The
amount of data at our disposal was: 21 data sets comprising
about 2000 projections and 20 breath-hold scans with about
900 projections each. In order to increase the variation in the
training set, we divided the full CBCT scans into batches
of subsets of projections. The data points (both RSS and
projections) were normalized between 0 and 1 according to
the 2% percentile of the complete set. To compensate for
systematic baseline drifts in the actual RSS, we applied linear
regression to correct for the estimated slope and offset. Doing
so we lose information about the absolute breathing amplitude,
which is anyhow strongly dependent on the placement of the
marker block but preserves the normalized amplitude.

III. RESULTS

W
E trained our model using the animal dataset. To train
the model, we subdivided some of the CBCT into

batches containing 128 projections along with the correspond-
ing 128 points from the recorded RSS (Figure 3a). In this way,
we increased the variance with respect to the angular range of
the projections and phase shift of the RSS. After having trained
the model, we evaluate it on complete sets of CBCT projection
images separated from the training data (Figure 3b, Figure
3d). Note that the model can be applied to CBCT projection
image data sets containing any arbitrary number of projections.
In addition to the validation loss, we were also interested in
the correlation between actual and predicted data points. To
visualize the correlation we used scatter plots of the actual
versus the predicted RSS. The closer the points to the identity
line, the greater the correlation, (Figure 3c, Figure 3e). The
Pearson correlation coefficient

p =
cov(y, ŷ)

std(y) std(ŷ)

between the actual y and the predicted ŷ RSS was applied as
quantitative metric to compare results.

In a second training, we included batches of the enforced
breath-hold CBCTs in the training set. We evaluated against
the same data, i.e. on complete sets of 4D CBCT acquisitions
of mechanically ventilated animals. The idea was to bring
more variance into the training set and see in which way it
would affect the evaluation performance (Table I).

Additionally, the model trained using breath-hold data was
tested on enforced breath-hold CBCTs (Figure 4).

In order to perform a fair comparison with our in-house
implementation of the Amsterdam Shroud (AS) algorithm, we
base the comparison on the retrospectively calculated phase
of the signals. The phase calculation is an in-house algorithm
that finds the local maxima (end inhale) of the full signal
and assigns the phases accordingly. The reason to compare
phases is that the AS algorithm is not able to recover the
amplitude of the signal (Figure 5a) but provides sufficient
accurate peaks for the phase (Figure 5b) calculation. The
retrospective calculated phase of the RPM signal serves as
a ground truth referred to as the ”actual” phase. As presented
in (Table II) the proposed method slightly outperforms the
AS method in terms of Pearson Correlation for most cases.
We examined the cases and found a slight phase shift of the
extracted signal that needs further attention.
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(a) Example of training data. The actual RSS in black and the
predicted RSS in violet, over which we optimize.

(b) Best evaluation data (w.r.t. the absolute difference between actual
and predicted RSS) using a full CBCT projection image data set from
the animal dataset.

(c) Correlation between actual and predicted RSS value as derived
from the best evaluation data above.

(d) Worst evaluation data (w.r.t. the absolute difference between actual
and predicted RSS) using a full CBCT projection image from the
animal dataset.

(e) Correlation between actual and predicted RSS value as derived
from the worst evaluation data above.

Fig. 3: a) An example for the training data. b-e) best and worst-
case data evaluation and corresponding correlation plots.

TABLE I: Comparison of our model trained on two different
sets. One set only contains ”free breathing” animal data while
the other also contains ”breath-hold” animal data.

Patient Free Breathing Model Free Breathing / Breath-
Hold Model

Pearson correlation coeffi-
cient

Pearson correlation coeffi-
cient

A04 0.967 0.977

A05 0.943 0.950

A06 0.967 0.973

A07 0.948 0.953

A08 0.977 0.976
A09 0.944 0.959

A10 0.981 0.978
Average 0.961 0.966

Validation loss Validation loss
A04 0.004 0.018
A05 0.013 0.012

A06 0.009 0.012
A07 0.013 0.007

A08 0.005 0.009
A09 0.011 0.018
A10 0.009 0.010
Average 0.009 0.012

Fig. 4: Model evaluated on breath-hold data.

IV. DISCUSSION

F
ROM Figure 3b and 3d we readily see that evaluating
data from the animal dataset, i.e. on data with similar

variance in phase, frequency, and amplitude yields acceptable
results. In particular, the phase and frequency are matched
accurately. We still observe variance concerning the matching
of the amplitude. A good fitting on the normalized data will
provide a good absolute amplitude fitting given we apply the
inverse of the normalization process back. In both the best and
worst cases the correlation between the actual and predicted
RSS is linear, which comes to underline the good accuracy
with respect to the frequency matching.

Looking in more detail at the performance of the model
trained on free-breathing data versus the model trained on free-
breathing plus breath-hold data (Table I), we remark that both
give very similar results, the former having the advantage in
the evaluation loss but the latter the one in the correlation
between actual and predicted RSS. From these few data, it
is not clear whether bringing variance in the training set has
consistently a negative impact on evaluation, but this should
nonetheless be looked after.

An advantage of our model as trained on breath-hold data
(and free-breathing data), is that it systematically manages
to correctly discern between breath-hold and free-breathing
data (Figure 4). Here the proposed method is able to predict
breath-hold signals, unlike the AS method which shows a
strong bias towards finding a breathing rate in the expected
range. The motivation is that this opens new applications such
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(a) Comparison of RPM with the extracted breathing signals applying
the AS and the proposed method. It can be seen that AS method fails
to recover the amplitude.

(b) Retrospectively calculated phases show good agreement for all
methods. In this case, only the AS method misses one breathing cycle
around projection number 200.

Fig. 5: Comparison of the Amsterdam Shroud algorithm and
our proposed model. The actual is given by the recorded RSS.

TABLE II: Pearson correlation coefficient of retrospectively
calculated phases. Shown is the actual phase calculated based
on the RPM signal versus the Amsterdam Shroud (AS) result
and the result of the proposed method.

Patient Pearson Correlation Pearson Correlation
Actual vs. AS Phase Actual vs. Proposed Phase

A04 0.899 0.953

A05 0.929 0.935

A06 0.948 0.882
A07 0.886 0.944

A08 0.867 0.967

A09 0.948 0.875
A10 0.896 0.960

Average 0.910 0.931

as monitoring of breath-hold compliance, automatic image
quality estimation, or reconstruction method determination.

In Figure 5 and Table II are shown comparisons of results
obtained using our model against results obtained from the
Amsterdam shroud algorithm. We remark that the amplitude
(Figure 5a), the phase shift (Figure 5b), and the correlation be-
tween actual and predicted RSS (Table 5) are better evaluated
by our model.

The results need to be put in contrast with the goal we want
to achieve. Evaluating the model trained on the animal dataset
on human patient data would not yield concluding results with
respect to frequency or amplitude fit. We would need to train
our model on a large amount of patient data with a large
variance in the RSS to be able to conclude the robustness
of the model on patients.

Along with training with a more diverse and human patient-
oriented dataset, we could also modify the network. Augmen-
tation techniques (e.g. noise or virtual frame rate changes by
skipping projections) can be applied to further increase the
variance in the training set.

V. CONCLUSION

W
E presented our preliminary work concerning the au-
tomated extraction of the RSS given a full CBCT

projection image data set via the use of a CNN model. We
trained and tested our model on an animal (dog) dataset and
obtained encouraging results w.r.t. phase, frequency, and nor-
malized amplitude extraction. Concluding on the robustness of
the presented method would require training and evaluation of
a large amount of patient data. Along selecting a more diverse
dataset to train our model we could change its architecture as
well to allow for more precision in the amplitude extraction.
The following steps would include the use of the predicted
RSS for the reconstruction of 4D CBCT.
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Abstract— Wide-coverage detector CT and ultra-high-

resolution (UHR) detector CT are two important features for 
current cardiac imaging modalities. The former one enables the 
scanner to finish a whole heart image scan in one bed position; the 
latter one gives superior resolution in fine structures such as 
stenoses, calcifications, implemented stents, and small vessel 
boundaries. However, no commercially available scanner has both 
these features in one scanner as of today. Herein, we propose to 
use existing UHR-CT data to train a super resolution (SR) neural 
network and apply the network in a wide-coverage detector CT 
system.  The purpose of the network is to enhance the system 
resolution performance and reduce the noise while maintaining its 
wide-coverage feature without additional hardware changes. 
Thirteen UHR-CT patient datasets and their simulated-normal-
resolution pairs were used for training a 3D residual-block U-Net. 
The modulation transfer function (MTF) measured from Catphan 
phantom scans showed the proposed super-resolution aided deep 
learning-based reconstruction (SR-DLR) improved the MTF 
resolution by relative ~30% and ~10% as compared to filtered-
back projection and model-based iterative reconstruction 
approaches. In real patient cases, the SR-DLR images show better 
noise texture and enhanced spatial resolution along with better 
aortic valve, stent, calcification, and soft tissue features as 
compared to other reconstruction approaches. 
 

Index Terms— super resolution, wide coverage detector, ultra-
high resolution (UHR) CT, cardiac imaging 

I. INTRODUCTION 
IDE-coverage detector CT, such as the 16-cm coverage 
area of the Canon Aquilion ONE system, improves the 

ability to obtain high-quality images for routine cardiac and 
chest scans. It takes only one rotation to acquire a whole heart 
scan with less dose and great z-axis uniformity [1, 2]. 
Moreover, the superior time resolution from single bed position 
scans reduces possibility for motion artifact due to patient 
movement. Ultra-high resolution (UHR) CT, on the other hand, 
equipped with a finer size detector and smaller x-ray focal spot 
source, provides diagnostic images with two times the spatial 
resolution compared to current standard resolution CT (0.25 vs. 
0.50 mm detector size at isocenter, Canon Aquilion Precision 
system for example). Several studies have shown 
improvements in tumor classification and staging [3, 4].  

Ideally, a wide-coverage detector UHR-CT scanner is an 
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advanced solution for cardiac imaging which offers better dose 
efficiency, spatial resolution and motion control at the same 
time. However, to the best of our knowledge, this ideal 
hardware system is currently not commercially available. Such 
a scanner may also have issues with image reconstruction, data 
transfer and processing times, or the inevitably higher cost. 
Therefore, an alternative approach for wide-coverage detector 
UHR-CT imaging is desirable. 

Super-resolution (SR) technology aims at recovering high-
resolution information from low-resolution images. Recent 
research has showed that deep convolution neural network-
based (DCNN-based) SR approaches produce superior image 
quality along with processing speeds that compare with 
conventional methods [5, 6]. Nevertheless, none of references 
have shown the performance advantages of combining both 
wide-coverage and UHR-CT imaging on real clinical cases. In 
this work, we propose a super-resolution aided deep-learning 
based reconstruction (SR-DLR) framework for achieving near 
UHR image quality on a wide coverage detector CT system; 
with both UHR and wide coverage features without hardware 
modifications.  

II. METHOD 
The proposed super-resolution DCNN directly uses the high-

resolution CT images acquired on our UHR CT scanner as the 
training target. In order to simulate lower resolution CT images 
for network training input, we perform data-domain 
downsampling and then the downsampled data are 
reconstructed to obtain the lower resolution or normal 
resolution (NR) input. Note that we do not recommend direct 
image-domain downsampling as it may introduce spatial 
interpolation artifacts and create potentially unrealistic CT 
images. Multiple dose levels from low to high are also 
considered in the simulations which allow the network to learn 
not only the resolution enhancement but also noise reduction in 
particular when the input dose is low. The optimized network is 
then applied on the real wide-coverage CT data for achieving 
the wide-coverage UHR CT-like image. The detailed workflow 
for training data preparation and network inference is shown in 
Figure 1. Currently the proposed DCNN is an image-domain 
super-resolution network but extension to data-domain super 
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resolution is straightforward and will be investigated in our 
future work.  

 

 
 
Figure 1 Training and inference processing flow of proposed DCNN enabled 
wide-coverage SR-DLR imaging. 

A. Data Description 
Thirteen high quality cardiac patient cases acquired from a 

UHR-CT system were used as the learning target. The 
acquisition energy and dose varied from 120 ~ 140 kVp and 150 
~ 190 mAs. Different reconstruction field of views and doses 
were applied and simulated for enriching data diversity. All 
target image dimensions reconstructed with model-based 
iterative reconstruction (MBIR) method were 1024x1024 pixels 
by 0.25 mm thickness.  The acquired high-resolution data were 
first converted to the pre-log count domain, and then 2x2 data 
binning was applied to mimic the NR data. For more realistic 
data, additional white noise can be added at this step to 
compensate for the electronic noise. All simulated NR data 
were reconstructed with filtered-back projection (FBP) and 
standard ramp filter in the dimensions of 1024x1024 pixels and 
0.25mm reconstruction pitch. The reconstructed SR-DLR 
images are compared with FBP and MBIR images. For 
quantitative comparison, the Catphan-600 phantom with 
different modules were used to evaluate the resolution 
improvement in terms of MTF (modulation transfer function) 
and line pairs (lp/cm) analysis. One true UHR-CT patient data 
(140kVp, 164mAs, 150mm FOV, 0.25mm reconstruction 
pitch) also used for comparison as shown in Figure 4. NR 
simulation process as stated in previous publication [7]. 
Another three real normal resolution (NR-CT) patient scans 
(see Table 1) were reconstructed to test the image quality 
through visual inspection. All images in result section 
reconstructed in default 512x512 pixels (SR-DLR in 
1024x1024 pixels) with 240-mm field of view and 0.25 mm 
reconstruction pitch. 
 
Table 1 Dose information for three representative patient cases   

 
 

B. Network Architecture, Training and Implementation 

The SR-DLR network adopts the U-NET structure with 
residual 3D convolutional blocks as basic building units, which 
enables deep structure without gradient vanishing and 
maintains proper receptive field for capturing large spatial 
features in the image (see Figure 2) [8, 9]. In network training 
we used small patches of size 32x128x128. Data argumentation 
such as patch flipping were also performed during the training. 
The training was mainly conducted using the TensorFlow-
Keras (ver. 2.3) framework with Nvidia Titan RTX GPUs for 
acceleration. We chose the ADAM optimizer and the mean 
absolute error loss function. A total 200 epochs were run for 
effective convergence. 
 

 
 
Figure 2 The proposed SR-DLR network which includes a 3D-UNET 
structure with residual blocks. The number beside the convolutional layer 
represents the number of filters.    

III. RESULTS  

A. Quantitative Evaluation 
SR-DLR imaging shows superior 200mm FOV MTF 

performance as compared to FBP and MBIR reconstruction 
among all three materials. For low-contrast polystyrene (~-
30HU), SR-DLR improves 10%-MTF to 1.04 lp/mm compares 
to 0.77 in FBP and 0.80 in MBIR. For mid-contrast Delrin 
(~330HU), 10%-MTF in SR-DLR is 1.15 lp/mm compares to 
0.86 in FBP and 0.91 in MBIR. For high-contrast Teflon 
(~900HU), 10%-MTF in SR-DLR is 1.24 lp/mm compares to 
0.86 in FBP and 1.11 in MBIR. (see Figure 3). 

 
Figure 3 Modulation transfer function measurement as a function of line pair 
per millimeter with three different representative materials (polystyrene, Delrin 
and Teflon) in standard CATPHAN phantom (CTP404 module). Three 
different reconstruction methods (FBP in blue, MBIR in orange and proposed 
SR-DLR in green) listed from 0 to 1.25 lp/mm for comparison. 

B. Comparison with True UHR-CT Images 

Figure 4 compares the SR-DLR image to the closest-ground-
truth image (e.g. true UHR-CT MBIR image) so that the 
resolution performance can be examined. The simulated-NR 
SR-DLR phantom image has better bar resolution compared to 
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the FBP image (~9 lp/cm vs. ~8 lp/cm). The image contrast as 
well as the bar intensity of SR-DLR is also closer to the ground 
truth image compared to the FBP reconstruction. The simulated 
NR SR-DLR patient image shows better resolution in stent and 
higher contrast in soft tissue compares to the FBP image. No 
artificial feature created when we compare NR SR-DLR to the 
true UHR-CT patient image.      

 
 
Figure 4 Resolution phantom module (CTP528 module) and patient examples. 
Upper row: two reconstruction methods with normal resolution (NR) data to 
the true UHR-CT MBIR image. The 9 lp/cm contrast bars are zoomed in the 
bottom-right small image. Window level and width: 1000 and 3000 HU. Lower 
row: two simulated NR data for FBP and SR-DLR reconstructions to the true 
UHR-CT MBIR patient image. Window level and width: 350 and 1500 HU  

 
 
Figure 5 Three representative patient cases (case A: aortic valve; case B: stent; 
case C: calcium) with three different reconstruction methods. Window level and 
width for case A and C: 300 and 800 HU; for case B: 350 and 1500 HU. 

C. Compare SR-DLR Image to Other Reconstructions  
In Figure 5, we are able to see the noise and resolution 

differences when comparing SR-DLR images to FBP and 

MBIR reconstructions. Patient (A) images shows that the SR-
DLR image has better resolution for the aortic valve and better 
contrast of small vessels. Patient (B) images further show 
cleaner microstructure of the implanted stent. Patient case (C) 
shows the SR-DLR image has sharper calcification contrast and 
boundaries compared to other two reconstruction methods. In 
addition, SR-DLR has lowest noise and sharpest soft tissue 
boundaries among these three methods.  

IV. CONCLUSIONS 
Testing on quantitative phantom data and clinical patient data 

shows that SR-DLR is a promising approach for enhancing 
resolution and suppressing noise. In summary, the proposed 
method has advantages over prior approaches: compared to 
current wide-coverage detector CT imaging, the proposed 
method improves resolution and noise performance; this 
improvement is gained from the UHR-CT trained network with 
finer reconstructed pixel sizes. Compared to UHR-CT system 
imaging, this method has wider-detector coverage data as the 
input, which benefits dose efficiency, image uniformity, and 
motion management. The larger acquisition detector pixel size 
from wide-coverage CT also benefits noise performance. 
Compared to a hypothetical wide-coverage UHR-CT system, 
the SR-DLR method has substantially lower cost and much less 
image processing complexity from both hardware and software 
perspectives. 
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Preliminary study on image reconstruction for
limited-angular-range dual-energy CT using

two-orthogonal, overlapping arcs
Buxin Chen, Zheng Zhang, Dan Xia, Emil Y. Sidky, and Xiaochuan Pan

Abstract—Dual-energy CT (DECT) of limited-angular ranges
(LARs) collects data from angular ranges smaller than ⇡ for
low- and high-kVp scans, and thus may potentially be exploited
for reducing scanning time and radiation dose and for avoiding
collision between the imaged object and the moving gantry of
the scanner. Image artifacts resulting from beam hardening
(BH) and limited-angular range (LAR) can be suppressed by
using the data-domain decomposition and the directional-total-
variation (DTV) algorithm for image reconstruction. In this work,
we investigate two-orthogonal-arc (TOA) scanning configuration
with overlapping arcs for collecting LAR DECT data, in an effort
to reduce LAR artifacts and improve quantitative accuracy of
estimated physical quantities. The TOA configuration consists
of two arcs, of equal LAR, whose centers are positioned 90�

apart, and is designed to reduce the ill-conditionedness of the
imaging system matrix. The data are decomposed into basis
sinograms, from which basis images are reconstructed using the
DTV algorithm. Visual inspection of the monochromatic images
and quantitative estimation of the effective atomic numbers
suggest that the TOA configuration, as compared to the single-
arc (SA) configuration of the same total angular range, can help
reduce remaining LAR artifacts and bias in the estimated atomic
number relative to the reference values from the full-angular-
range data of 360�.

Index Terms—dual-energy CT, limited-angular range, two-
orthogonal arc, directional total variation

I. INTRODUCTION

Current dual-energy CT (DECT) typically collect data, of
either low- or high-kVp spectrum, in a full-scan, or at least
short-scan, rotation [1], [2]. Images are then reconstructed
often by use of conventional algorithms, such as FBP, from
kVp sinogram directly or decomposed basis sinogram. One-
step algorithms have also been investigated for reconstructing
basis images directly from full-scan data [3]. DECT of limited-
angular ranges (LARs) [4], [5] collects data from angular
ranges smaller than ⇡ for low- and high-kVp scans, and
thus may be potentially useful for reducing scanning time
and radiation dose and for avoiding collision between the
imaged object and the moving gantry of the scanner. In LAR
DECT, LAR artifacts in images are usually more dominant
than other ones, such as beam hardening (BH), and are thus
subject to more focus and effort in artifacts correction [6], [7].
Simultaneous correction of LAR and BH artifacts may help
reduce image artifacts and improve quantitative accuracy in

B. Chen, Z. Zhang, E. Y. Sidky, and D. Xia are with the Department of
Radiology, The University of Chicago, Chicago, IL 60637, USA.

X. Pan is with the Departments of Radiology & Radiation and Cellular
Oncology, The University of Chicago, Chicago, IL 60637, USA.

LAR DECT, especially for extremely small angular ranges. In
this work, we aim to improve simultaneous correction for LAR
and BH artifacts, and thus quantitative reconstruction accuracy,
by investigating the two-orthogonal-arc (TOA) configuration
for DECT with overlapping rays, which can help alleviate the
ill-conditionedness in the system matrix.

Numerical studies are carried out with a suitcase phantom
containing different materials. LAR scanning configurations
are set up with overlapping rays from low- and high-kVp
scans, i.e., the scanning arcs of the low- and high-kVp
scans are identical. For either kVp scan, the scanning arcs
consist of two LAR arcs, whose centers are separated by
90�. Data are first decomposed into basis sinograms, and
basis images are then reconstructed by use of the directional-
total-variation (DTV) algorithm. This primal-dual algorithm
has been developed for solving a DTV-constrained, data-`2-
minimization problem [4], [6]. Basis images are combined
into monochromatic images for visual assessment, and then
used for computing effective atomic numbers of different
materials in the phantom. Results are compared with those
from the single-arc (SA) configuration with the same total
angular ranges.

II. MATERIALS AND METHODS

A. Two-orthogonal-arc configuration

A 2D circular fan-beam geometry is considered, as shown
in Fig. 1, while the approach can readily be extended to
non-circular fan-beam geometry and to circular/non-circular
3D cone-beam geometry. The source-to-rotation and source-
to-detector distances are 100 cm and 150 cm, respectively,
while the linear detector is 32 cm in length with 512 bins.
The scanning arcs of low- and high-kVp spectra are identical,
thus generating overlapping rays suitable for data-domain
decomposition. With the TOA configuration, for each of the
low- and high-kVp scan, there are two scanning arcs, separated
by 90� from center to center, covering LARs of ↵x and ↵y

(it is assumed that the two arcs are symmetric relative to the
x and y axes in the image array, respectively). Given a total
angular range ↵⌧ = ↵x + ↵y , there are many different ways
of distributing between ↵x and ↵y . In this work, we focus
on the case with equal range, ↵⌧/2, i.e., ↵x = ↵y = ↵⌧/2,
because studies have suggested that TOA with equal-range arcs
might perform better than other distributions [8]. Data are also
collected using a SA configuration with ↵y = ↵⌧ and ↵x = 0.
A set of total angular ranges is studied with 14�  ↵⌧  180�,
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Fig. 1: The TOA scanning configuration with overlapping LAR
arcs of low- and high-kVp spectra, for collecting dual-energy
data from a suitcase phantom, containing different materials
including C, Al, Ca, water, ANFO, teflon, and PVC, shown
as ROIs 0-6 respectively.

with a fixed angular interval of 0.25� per view. In this study,
we focus on the three smallest LARs of ↵⌧ = 20�, and 30�,
which are the most challenging. The TOA configuration for
LAR DECT can be readily implemented with existing DECT
technologies, such as dual-source DECT, sandwiched detector,
fast-kVp-switching X-ray tubes, and also sequential scans.

B. Dual-energy data

A digital suitcase phantom is used containing different
materials that are challenging to be differentiated and identified
with conventional CT, including circular and elliptical ROIs
filled with water, ammonium nitrate and fuel oil (ANFO),
teflon, and PVC, as well as three bar-shaped ROIs of single-
element materials, C, Al, and Ca. The discrete phantom is set
up on an 175 ⇥ 256 image array with 0.7-mm square pixels,
while each pixel is labeled with a material type and thus
associated with the material’s linear attenuation coefficients
from the NIST database. Dual-energy data are generated using
a non-linear data model incorporating the spectral integral,
such as Eq. (1) in Ref. [6], with simulated low- and high-kVp
spectra at 80 kVp and 140 kVp using the TASMIC model [9].
Both noiseless and noisy data are generated, with Poisson
noise added to the noiseless data, corresponding to 4.5⇥ 105

and 6.75⇥ 105 noise equivalent quanta (NEQ) per ray in the
air scan for ↵⌧ = 30� and 20�, respectively, such that the total
NEQ is constant for different LARs.

Once data, namely, low- and high-kVp sinograms, are
generated, they are decomposed into basis sinograms for BH
correction using a well recognized data-domain decomposition
method [10]. An interaction-based basis decomposition is
used, where photoelectric effect (PE) and Compton scattering
(KN) are the two bases with 1/E3 and the Klein-Nishina
formula as their spectral responses. The low- and high-kVp

spectra are assumed to be known exactly, therefore minimizing
the impact of spectrum mismatch in BH correction.

C. Image reconstruction
With decomposed basis sinogram, lPE and lKN for pho-

toelectric effect and Compton scattering, the reconstructions
of basis images, bPE and bKN, can be formulated into two
separate convex optimization problems as

b?
k = argmin

bk

1

2
k lk �Abk k22

s.t. ||Dxbk||1  tkx, ||Dybk||1  tky,
(1)

where k = PE or KN; A is the discrete X-ray transform
(DXT) of the TOA configuration; and ||Dxbk||1 and ||Dybk||1
are `1 norms of the image partial derivatives along the x
and y axes, respectively, also referred to as the image’s
DTVs. The separate DTV constraints along the image array’s
orthogonal directions have been shown to reduce effectively
the directional artifacts in CT images reconstructed from LAR
data. The two convex optimization problems in Eq. (1) for the
two bases are solved by the DTV algorithm [4], which is based
on a general primal-dual algorithm [11].

D. Evaluation
From basis images reconstructed, monochromatic images

are formed as a linear combination of basis images and
visually assessed for artifact reduction. Further, the effective
atomic number, z, can be estimated from the interaction-based
basis images, due to different orders of z-dependence for the
photoelectric effect and Compton scattering interactions [1],
[12]. In particular, a linear relationship in the log-log domain
can be assumed between z and the ratio of the basis image
values, where the slope and intercept can be fitted using the
single-element materials in the phantom with known z values.

III. RESULTS

We show in Fig. 2 monochromatic images at 40 keV from
noiseless LAR data collected over SAs of ↵⌧ = 20� and
30�, and over TOAs of equal total angular ranges. No visual
LAR artifacts can be observed in the images. Quantitatively,
the monochromatic images from the TOA scan are closer to
the reference image from full-scan range data of 360� than
those from the SA scan in terms of the normalized root-mean-
square-error (nRMSE) (nRMSE = 4.88⇥10�5 and 1.05⇥10�4

for 30� and 20� over SA, respectively, and 5.29⇥�6 and
6.76⇥ 10�6 over TOA.)

We show the same results with noisy data in Fig. 3.
Horizontal shading artifacts can be observed in the images
from data collected over SAs of the extremely small LARs
under investigation. The circular and elliptical disks are dis-
torted, and the horizontal edges of the suitcases are difficult
to recover, since they are mostly parallel to the SAs and
are characterized as “invisible boundaries” [13]. In images
from data collected over TOAs, there is no significant shape
distortion to the circular and elliptical disks, while the edges
of the suitcase are recovered.
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SA, ↵⌧ = 30� SA, ↵⌧ = 20� TOA, ↵⌧ = 30� TOA, ↵⌧ = 20�

Fig. 2: Monochromatic images (top row) of the suitcase phantom at 40 keV obtained from noiseless data over SAs (columns
1 & 2) of ↵⌧ = 30� and 20�, and TOAs (columns 3 & 4) of the same total angular range by use of the DTV algorithm, along
with their respective zoomed-in views (bottom row). The zoomed-in regions are enclosed by the rectangular boxes including
ROIs 3 and 5, as depicted in the top-left image. Display window: [0.1, 0.65] cm�1.

SA, ↵⌧ = 30� SA, ↵⌧ = 20� TOA, ↵⌧ = 30� TOA, ↵⌧ = 20�

Fig. 3: Monochromatic images (top row) of the suitcase phantom at 40 keV obtained from noisy data over SAs (columns 1
& 2) of ↵⌧ = 30� and 20�, and TOAs (columns 3 & 4) of the same total angular range by use of the DTV algorithm, along
with their respective zoomed-in views (bottom row). The zoomed-in regions are enclosed by the rectangular boxes including
ROIs 3 and 5, as depicted in the top-left image in Fig. 2. Display window: [0.1, 0.65] cm�1.

From basis images of PE and KN, we can estimate the
effective atomic numbers by assuming a linear relationship in
the log-log domain between z and the ratio of the basis image
values. The coefficients can be calibrated using single-element
materials with known z number, such as C, Al, and Ca in the
phantom. We show in Tables I and II the estimated z numbers
of ROIs 3 (water) and 5 (teflon), respectively, from both
noiseless and noisy data over SAs and TOAs. The reference
values, 7.49 and 8.50, are calculated from the noiseless data
collected over the full-scan range of 360�. It can be observed
that the TOA configuration can help reduce the bias in the
quantitative estimation of effective atomic number, relative to
the reference values, as compared to the SA configuration.

IV. CONCLUSION

In this work, we have proposed and investigated the two-
orthogonal-arc scanning configuration with overlapping arcs,
in combination with the DTV algorithm, for improving artifact
correction and quantitative accuracy in DECT with LAR data.

TABLE I: Estimated atomic number of ROI 3 (water) from
noiseless and noisy data collected over SA and TOA of the
same total angular coverage of 30� and 20�. The reference
value from full-scan 360� noiseless data is 7.49.

↵⌧ = 30� ↵⌧ = 20�

noiseless SA 7.49 7.49
TOA 7.49 7.49

noisy SA 7.97 7.36
TOA 7.50 7.38

Numerical studies were carried out with a digital suitcase
phantom, from which dual-energy data, with both SA and
TOA configurations of the same total angular range, were
generated using a non-linear data model. With overlapping
arcs of low- and high-kVp scans, the kVp sinograms were
decomposed into interaction-based basis sinograms by use
of a data-domain decomposition method for BH correction.

The 7th International Conference on Image Formation in X-Ray Computed Tomography

147



4

TABLE II: Estimated atomic number of ROI 5 (teflon) from
noiseless and noisy data collected over SA and TOA of the
same total angular coverage of 30� and 20�. The reference
value from full-scan 360� noiseless data is 8.50.

↵⌧ = 30� ↵⌧ = 20�

noiseless SA 8.50 8.50
TOA 8.50 8.48

noisy SA 9.31 9.04
TOA 8.46 8.48

Basis images were then reconstructed from the basis sinograms
by use of the DTV algorithm. Monochromatic images at
40 keV were combined for visual inspection and effective
atomic numbers were estimated. Results suggest that the TOA
configuration, as compared to the SA configuration of the same
total angular range as low as 20�, can effectively reduce the
remaining artifacts in monochromatic images obtained with
the DTV algorithm, and also yield accurate estimation of
effective atomic numbers relative to the reference values from
the full-angular-range data of 360�.

Results of estimated effective atomic numbers for other
ROIs and additional results with more LARs will be reported
at the conference. Further investigation will focus on adding
other physical factors, such as scatter, and using phantoms
with different anatomies and structures.
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Correcting spurious signal using an automated Deep Learning based reconstruction workflow 

  
Abstract—A technique for the automated training of deep-

learning based tomographic reconstruction networks is shown and 
benchmarked using sintered ceramic and Ceramic Matrix 
Composite samples. Networks were trained to remove both image 
noise and sparse sampling artefacts, and the relative signature of 
both of these effects is discussed. Images reconstructed with deep 
learning show a significant reduction in both noise and artefact 
levels, even with up to 10 times fewer projections than in the 
original data. This technique has the potentially of greatly 
improving image quality and throughput, particularly for 
challenging high resolution imaging applications. 
 

Index Terms— Computed Tomography, Image Reconstruction, 
Deep Learning, AutoML.  

I. INTRODUCTION 
NE of the principal challenges for high resolution X-ray 
tomography for materials analysis are those arising from 

the presence of spurious reconstructed X-ray signal. While 
these are often termed as “noise”, both in the technical X-ray 
and application community, in reality the spurious signal arises 
from a range of sources, principal among them being true 
Poisson (or “shot”) noise, and sampling artefacts arising from 
an insufficient number of projections. This is particularly 
problematic in high (submicron) resolution imaging as the 
relatively limited flux available for laboratory source high 
resolution X-ray sources, coupled with the constraints placed 
on detector design means that image exposure times and 
consequently total acquisition time are typically long (in the 
order of tens of minutes to hours). While such a long acquisition 
time may be acceptable for certain scientific applications, many 
applications (such as in situ scanning, with a requirement for 
high absolute temporal resolution, or semiconductor failure 
analysis, with a requirement for rapid time-to-result) require 
faster acquisition times. To achieve this, users will often either 
reduce exposure time or total projection number, in turn 
degrading reconstructed image quality. Other applications 
require are extremely noise sensitive (such as distinguishing 
materials of extremely similar effective attenuation), while 
others are subject to extremely challenging experimental design 
(such as high resolution interior tomography), meaning high 
quality image acquisition may take many hours and be 
impractical. 
 The field of study broadly known as “AI” or “machine 
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learning” has broadly revolutionized fields from stock market 
analysis to weather prediction, however their application to X-
ray imaging, particularly high-resolution X-ray imaging for 
materials characterization is still in its infancy. This is largely 
because the range of samples, geometries and conditions that 
samples are imaged in, coupled with the particular constraints 
provided when imaging with high resolution X-ray sources, 
mean that it is extremely challenging to generalize single deep 
learning models (whether for classification or image recovery) 
across all samples. As expertise in deep learning applications 
and the details of their integration with sample workflows is 
extremely limited, this poses a significant barrier to adoption 
for deep learning based reconstruction and/or image recovery 
techniques. This has led to a range of application specific point 
solutions for image improvement, segmentation  or analysis  
[1], [2], [3], however the development of high quality general 
purpose solutions have historically been a significant challenge. 

In this work we use a commercially available reconstruction 
product (Zeiss DeepRecon, available from Carl Zeiss XRM, 
Dublin, CA) which offers a completely automated workflow for 
training new reconstruction networks from tomographic X-ray 
datasets [4]. The automation of network training circumvents to 
a great degree the issue associated with network 
generalizability, as it provides a robust procedure for new 
networks to be generated when a novel sample or system 
condition is encountered. This technique is benchmarked its 
performance across a range of a range of representative 
materials samples. This includes a synthetic rock sample which 
was used to separate the relative impact on image quality of 
sampling artefacts and true (random) image noise due to signal 
detection statistics, showing that high quality image recovery 
can only be achieved if both are considered. Samples showing 
the limitations of such an automated technique are also 
discussed. 

II. METHODS 
Spurious signal in the volumetric domain can occur from a 

range of sources, including X-ray scatter (particularly when it 
is differentiated through a sample), poorly handled spectral 
effects, X-ray reflections and photon starvation. Particularly 
prominent in high resolution X-ray imaging for materials 
analysis is the combination of pure Poisson (“shot”) noise 
(associated with the inherent randomness of X-ray detection) 
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and the sampling artefacts (associated with imperfect data 
sampling in the frequency domain). It should be noted that step-
and-shoot acquisition mode at high resolution imaging creates 
constraints particularly likely to exacerbate the presence of 
sampling artefacts in the reconstructed volume during practical 
user-led imaging scenarios. For example, the desire to minimize 
sample-motion blur artefacts, coupled with lengthy detector 
readout times, can lead to long projection-to-projection sample 
stage rotation time overheads. This can limit the effectiveness 
of trading off projection number with per-projection exposure 
time. The desire to reduce total acquisition time & dose 
remains, however, often leading users to reduce projection 
number and thereby introduce sampling artefacts.  

For the purposes of this study, we consider the reconstructed 
image function as D as a combination of a true object structure 
function S, a noise function N and an artefact function A in the 
three spatial dimensions x, y, z: 

 
It should be noted that while in theory the noise function N 

can be viewed as theoretically spatially white in the projection 
domain, it may lose significant contribution of high frequency 
information during the back projection process. The artefact 
function A at a position x, y, z is function of the structure 
elsewhere in the volume (denoted by x’, y’, z’). As both N and 
A must be removed for high quality image recovery, 
autocorrelative denoising techniques (e.g. [5]) which assume a 
spatial white signature in the spurious signal to be removed 
perform poorly. While modifications of this technique have 
been proposed (e.g. [6]) the extreme correlation present in the 
structure of spurious tomographic signal still makes such an 
approach ineffective.  

In DeepRecon workflow image recovery networks were 
trained using a modification of noise-to-noise [7] techniques, 
with loss functions, network structures and data augmentation 
tailored to 3D tomography, modified to ensure rapid 
convergence and high performance even with early training 
stopping. Network structures were adapted from the UNet 
architecture [8]. Images used for training were constructed such 
that noise and sampling artefacts were uncorrelated between 
input and target sets. This forces the networks to learn to 
remove both the noise component (N) and the artefact 
component (A) from spurious reconstructed signal. Data was 
dynamically augmented for variations in intensity and 
orientation during training, improving model robustness. 

Image training is performed in a Python-based TensorFlow 
environment, after which network weights were transferred into 
an .onnx format and inference performed using NVIDIA 
TensorRT runtime. An already trained model can also be 
applied to any other structurally similar sample if the 
acquisition conditions still match the conditions for which the 
model has been trained for. A range of experimental samples 
were characterized, comparing the results from traditional 
reconstruction (Feldkamp-Davis-Kress (FDK) reconstruction 
[9]) with those reconstructed using Deep learning based image 
recovery. All image data has been acquired using a Zeiss Xradia 
Versa 620 X-ray Microscope (Carl Zeiss XRM, Dublin, CA). 

First a synthetic rock (sintered ceramic) sample is imaged 

twice, once when only the noise function is uncorrelated 
between the training and target images, and once when both 
noise and artefact functions are uncorrelated. As the structure 
function is the same between datasets, this allows for the noise 
and artefact functions to be independently identified. The 
sample was imaged with only 801 projections, leading to an 
extremely high level of spurious image signal. While this is not 
a representative application dataset, it is extremely informative 
when investigating the difference between the noise function N 
and the artefact function A. 

A more typical sample application of a ceramic-matrix-
composite (CMC) was then imaged using a 3,001 projection 
baseline acquisition. A series of volumes were reconstructed by 
sub-sampling the complete projection set by a range of 
sampling factors (1X, 4X, 8X, 10X), specifically training 
reconstruction networks for each sampling factor. The results 
are then analyzed visually and quantitatively to assess relative 
performance at various subsampling scales. 

III. RESULTS AND DISCUSSIONS 
Images of the reconstructed volume from the sintered 

ceramic sample are shown in figure 1. The traditional filtered 
backprojection reconstruction is shown in 1A, the result of 
removing noise and artefact or only the noise fields are shown 
in 1B, the noise field and the artifact field are shown in one C, 
and the loss convergence curve is shown in 1D. The combined 
noise & artefact fields can be found by either looking at a region 
of the image known to be free of internal structure, or by 
looking at the difference between the reconstructed images with 
these fields removed (using Deep Learning) and the traditional 
reconstruction. They can be individually differentiated by 
looking at the result of a reconstruction network trained to 
remove only true noise and one trained to remove both noise 
and sampling artefacts. 

 
Figure 1: Deep Learning based image recovery on a sintered 

ceramic (synthetic rock) sample. 
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The image reconstructed using traditional reconstruction 
techniques is extremely high in spurious signal. We can see that 
removing only the noise field (1B) results in an image which 
still has a high level of residual spurious signal. The noise and 
artefact fields (1C) show a strong contrast in structural 
autocorrelation. The noise field is normally distributed and 
spatially white (pixelwise random), whereas the artefact field 
shows a strong larger wavelength structure. A detailed 
frequency domain analysis of the noise and artefact structure is 
shown in figure 2. The true noise field is extremely white – 
there is very little bias across the spectrum to different energies. 
This is in contrast to the entire spurious signal (noise and 
artefact) field, which shows a significant bias to lower 
frequencies. The autocorrelated nature of the artefact field 
shows why denoising techniques designed based upon the 
assumption of non-correlated (spatially white) noise struggle 
when applied to tomographic data.  

 
Figure 2: Artefact and noise analysis for sintered ceramic 

sample, contrasting the full spurious artefact signal with true 
noise. 

Results from the ceramic matrix composite are shown below 
in figure 3. FDK reconstructions are shown for both the full 
projection set (3001 projections) and a 1:10 subsampled 
projection set (301 projections), and the deep learning 
recovered data using 301 projections is shown in comparison. 
The scale (standard deviation) of the total spurious signal for 
each subsampling fraction (1, 4, 8 and 10).  

 

 
Figure 3: Ceramic matrix composite results. Small features are 

highlighted in red and blue color. 
 

It should be noted that for many practical applications often 
noise and artefact trade-off against each-other in total scan time, 
at least to a certain extent, as they correspond to projection 
number and exposure time per projection. This means that other 
considerations (scanning overheads, photon starvation effects 
or data storage requirements) can govern user experimental 
design decisions.  

As apparent acquisition time decreases the spurious signal 
level progressively increases when the data is reconstructed 
using FDK, whereas the increase is much more limited when 
data is reconstructed using deep learning. This is achieved 
without losing distinct small features, such as the small pore 
highlighted in red, or the interface between composite fibers, 
highlighted in blue.   

The precise structure of the artefact field is highly dependent 
on the details of the sample structure (it is this structure that is 
causing the field as a byproduct of back-projection), and can be 
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variable throughout the sample. The frequency domain 
signature of isotropic poorly sampled structures should be 
expected to be equally isotropic as their spatial dimension 
structure. As anisotropy increases, we would expect these 
artefact structures to similarly increase in anisotropy, stretching 
into streaks in extreme cases. This variability with and across 
samples highlights the importance of sample specific network 
training to learn to remove the artefact structure specific to that 
sample. 

The relatively isotropic sample structure of the synthetic rock 
sample (figure 1) leads to a comparatively uniform noise and 
artefact field (figure 2). This is contrasted with the CMC sample 
which has a much more anisotropic structure, with an aspect 
ratio of 2:1 to 3:1. An analysis of the spatial and frequency 
domain signature of the noise and artefact field from the CMC 
301 projection dataset reconstructed with FDK is shown in 
figure 4.  

 
Figure 4: Spatial and frequency domain analysis of noise and 

artefact field  
 The frequency spectrum of the synthetic rock noise and 

artefact field is approximately isotropic – the x dimension and 
y dimension spectrum show approximately the same profile. In 
the CMC dataset, the frequency spectrum from three regions of 
the spurious signal field all show strongly anisotropic frequency 
domain signatures. The direction of anisotropy is spatially 
variable throughout the sample, with region 2 showing a strong 
structure in the x dimension, and region 3 showing strong 
structure in the dimension, and region 3 showing strong 
structure in the y dimension. The variation in field structure 
between samples highlights the importance of training deep 
learning networks to target the noise and artefact structures 
specific to a sample / dataset. The spatial variability of 
anisotropy orientation indicates some of the challenges 
traditional techniques face when addressing these issues – any 
approach needs to be able to handle spatially variable effects 
and cannot be universal.  

Measurements of the scale of spurious signal field were 
acquired for each region of interest in the CMC sample (table 
1). Datasets reconstructed using deep learning neural network 
successfully reduced the scale of the spurious signal field 
without removing small features of interest (as shown in figure 
3). 

 

  
FDK 

(3001) 
FDK 
(301) 

Deep learning 
recon (301) 

Region 1 0.028 0.180 0.014 
Region 2 0.030 0.141 0.012 
Region 3 0.021 0.167 0.014 

Table 1: Measurements of the scale of the spurious signal 
field for a 3,001 projection dataset reconstructed using FDK, 

and a 301 projection dataset reconstructed using FDK and 
deep learning 

IV.   CONCLUSIONS 
A new technique for the automated training of tomographic 

reconstruction networks is presented and benchmarked across 
multiple samples, including a synthetic rock and a ceramic 
matrix composite (CMC) sample. Its performance is discussed 
in relation to its ability to remove both noise from the 
randomness inherent in the X-ray detection process and 
sampling artefacts produced by a limited projection number. 
The relative impact and signature of these two effects is 
discussed, and differentiated on a synthetic rock sample. High 
quality image recovery is only achieved if both sampling 
artefacts and noise are considered. 

The performance of the deep learning based reconstruction is 
then tested on a CMC sample, showing high quality image 
reconstruction (mitigating the noise and artefact levels in the 
reconstructed volume while maintaining small features of 
interest) with a data sampling ratio up to 10:1 relative to a 
baseline acquisition. Such a technology could have broad 
application in the fields of high resolution materials 
characterization where high spatial resolutions are required 
without sacrificing acquisition time. 
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Combining Deep Learning and Adaptive Sparse
Modeling for Low-dose CT Reconstruction

Ling Chen, Zhishen Huang, Yong Long*, Saiprasad Ravishankar

Abstract—Traditional model-based image reconstruction
(MBIR) methods combine forward and noise models with simple
object priors. Recent application of deep learning methods for
image reconstruction provides a successful data-driven approach
to addressing the challenges when reconstructing images with
measurement undersampling or various types of noise. In this
work, we propose a hybrid supervised-unsupervised learning
framework for X-ray computed tomography (CT) image
reconstruction. The proposed learning formulation leverages
both sparsity or unsupervised learning-based priors and neural
network reconstructors to simulate a fixed-point iteration
process. Each proposed trained block consists of a deterministic
MBIR solver and a neural network. The information flows in
parallel through these two reconstructors and is then optimally
combined, and multiple such blocks are cascaded to form a
reconstruction pipeline. We demonstrate the efficacy of this
learned hybrid model for low-dose CT image reconstruction
with limited training data, where we use the NIH AAPM Mayo
Clinic Low Dose CT Grand Challenge dataset for training and
testing. In our experiments, we study combinations of supervised
deep network reconstructors and sparse representations-based
(unsupervised) learned or analytical priors. Our results
demonstrate the promising performance of the proposed
framework compared to recent reconstruction methods.

Index Terms—Low-dose X-ray CT, image reconstruction, deep
learning, transform learning, optimal combination.

I. INTRODUCTION

X -ray computed tomography (CT) is widely used in in-
dustrial and clinical applications. It is highly valuable

to reduce patients’ exposure to X-ray radiation during scans
by reducing the dosage. However, this creates challenges for
image reconstruction. The conventional CT image reconstruc-
tion methods include analytical methods and model-based
iterative reconstruction (MBIR) methods [1]. The performance
of analytical methods such as the filtered back-projection
(FBP) [2] degrades due to the greater influence of noise
in the low X-ray dose setting. MBIR methods aim to ad-
dress such performance degradation in the low-dose X-ray
computed tomography (LDCT) setting. MBIR methods often
use penalized weighted least squares (PWLS) reconstruction
formulations involving simple priors for the underlying object
such as edge-preserving (EP) regularization that assumes the
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image is approximately sparse in the gradient domain. More
recent dictionary learning-based methods [3] provide improved
image reconstruction quality compared to nonadaptive MBIR
schemes, but involve expensive computations for sparse encod-
ing. Recent PWLS methods with regularizers involving learned
sparsifying transforms (PWLS-ST [4]) or a union of learned
transforms (PWLS-ULTRA [5]) combine both computational
efficiency (cheap sparse coding in transform domain) and the
representation power of learned models (transforms).

Data-driven (deep) learning approaches have also demon-
strated success for LDCT image reconstruction (see [6] for a
review). FBPConvNet [7] is a convolutional neural network
(CNN) scheme that refines the quality of FBP reconstructed
(corrupted) CT images to match target or ground truth images.
Another approach WavResNet [8] learns a set of filters that
are used in constructing the encoder and decoder of the
convolutional framelet denoiser to refine crude LDCT images.
However, deep learning methods often require large training
sets for effective learning and generalization. Methods based
on sparsifying transform learning typically require small train-
ing sets and have been shown to generalize reasonably to new
data [5]. Hence, Ye et al. [9] proposed a unified supervised-
unsupervised (referred to here as Serial SUPER) learning
framework for LDCT image reconstruction that combined
supervised deep learning and unsupervised transform learning
(ULTRA) regularization for robust reconstruction. The frame-
work alternates between a neural network-based denoising step
and optimizing a cost function with data-fidelity, deep network
and learned transform terms.

In this work, we propose an alternative repeated parallel
combination of deep network reconstructions and transform
learning-based reconstructions (dubbed Parallel SUPER) for
improved LDCT image reconstruction. We show that the
adaptive transform sparsity-based image features complement
deep network learned features in every layer with appropriate
weights to provide better reconstructions than either the deep
network or transform learning-based baselines themselves. The
proposed parallel SUPER method also outperforms the recent
Serial SUPER scheme in our experiments.

II. PARALLEL SUPER MODEL AND THE ALGORITHM

The proposed parallel SUPER reconstruction model is
shown in Fig. 1. Each layer of parallel SUPER is comprised
of a neural network and a PWLS based LDCT solver with
sparsity-promoting data-adaptive regularizers. The images in
the pipeline flow in parallel through these two components in
a layer and are combined together (with adapted weight). The
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Fig. 1: Overall structure of the proposed Parallel SUPER framework.

framework consists of multiple such parallel SUPER layers to
ensure empirical reconstruction convergence. In this work, we
have used the FBPConvNet model in the supervised module
and PWLS-ULTRA as the unsupervised reconstruction module
with a pre-learned union of transforms. However, specific
deployed modules in the parallel SUPER framework can be
replaced with other parametric models or MBIR methods.

A. Supervised Module

The supervised modules are trained sequentially. We set the
loss function during training to be the root-mean-squared error
(RMSE) to enforce alignment between the refined images and
ground truth images. In the l-th parallel SUPER layer, the
optimization problem for training the neural network is:

min
✓(l)

NX

n=1

kG✓(l)(ex(l�1)
n )� x?

nk22, (1)

where G✓(l)(·) denotes the neural network mapping in the l-
th layer with parameters ✓(l), ex(l�1)

n is the n-th input image
from (l � 1)-th layer, x?

n is the corresponding regular-dose
(reference) image or the training label. Note that the neural
networks in different layers have different parameters.

B. Unsupervised Module

For the unsupervised module of each layer, we solve the
following MBIR problem to reconstruct an image x 2 RNp

from the corresponding noisy sinogram data y 2 RNd :

min
x�0

J(x,y) :=
1

2
ky �Axk2W

| {z }
:=L(Ax,y)

+�R(x), (2)

where W = diag{wi} 2 RNd⇥Nd is a diagonal weighting
matrix with the diagonal elements wi being the estimated
inverse variance of yi, A 2 RNd⇥Np is the system matrix of
the CT scan, L(Ax,y) is the data-fidelity term, penalty R(x)
is a (learning-based) regularizer, and the parameter � > 0
controls the noise and resolution trade-off.

In this work, we use the PWLS-ULTRA method to recon-
struct an image x from noisy sinogram data y (measurements)
with a union of pre-learned transforms {⌦k}Kk=1. The image
reconstruction is done through the following nonconvex opti-
mization problem:

bx(l)(y) = argmin
x

⇢
1

2
ky �Axk2W+

min
Ck,zj

KX

k=1

X

j2Ck

✓
k⌦kPjx� zjk22 + �2kzjk0

◆�
,

(3)

where bx(l)(y) is the reconstructed image by the unsupervised
solver in the l-th layer, the operator Pj 2 Rl⇥Np extracts the j-
th patch of l voxels of image x as Pjx, zj is the corresponding
sparse encoding of the image patch under a matched transform,
and Ck denotes the indices of patches grouped into the k-
th cluster with transform ⌦k. Minimization over Ck indicates
the computation of the cluster assignment of each patch. The
regularizer R includes an encoding error term and an `0
sparsity penalty counting the number of non-zero entries with
weight �2. The sparse encoding and clustering are computed
simultaneously. We apply the alternating minimization method
from [5] (with inner iterations for updating x) on the above
optimization problem. The algorithm also uses a different
(potentially better) initialization in each parallel SUPER layer,
which may benefit solving the involved nonconvex optimiza-
tion problem.

C. Parallel SUPER Model

The main idea of the Parallel SUPER framework is to com-
bine the supervised neural networks and iterative model-based
reconstruction solvers in each layer. Define M(ex(l�1),y;�)
as an iterative MBIR solver with initial solution ex(l�1),
noisy sinogram data y and hyperparameter setting � to solve
optimization problem (2). In the l-th layer, the parallel SUPER
model is formulated as:

ex(l) = � ·G✓(l)(ex(l�1)) + (1� �) · bx(l)(y)

s.t.

(
bx(l)(y) = M(ex(l�1),y;�),

✓(l) = min✓(l)

PN
n=1 kG✓(l)(ex(l�1)

n )� x?
nk22,

(P0)

where � is the nonnegative weight parameter for the neural
network output in each layer and it is selected and fixed in
all layers. Each parallel super layer can be thought of as a
weighted average between a supervised denoised image and
a reconstructed low-dose image from the unsupervised solver.
Repeating multiple parallel SUPER layers simulates a fixed-
point iteration to generate an ultimate reconstructed image.

The Parallel SUPER training algorithm based on (P0) is
shown in Algorithm 1. The Parallel SUPER reconstruction
algorithm is the same except that it uses the learned network
weights in each layer.

III. EXPERIMENTS

A. Experiment Setup

In our experiments, we use the Mayo Clinics dataset estab-
lished for “the 2016 NIH-AAPM-Mayo Clinic Low Dose CT
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Algorithm 1 Parallel SUPER Training Alogorithm
Input: N pairs of reconstructed low-dose images and corresponding regular-
dose reference images {(ex(0)

n ,x?
n)}Nn=1, low-dose sinograms {yn}, weights

Wn, 8 n, number of parallel SUPER layers L, weight of the supervised
module �,
Output: supervised module parameters {✓(l)}Ll=1.

for l = 0, 1, 2, . . . , L do
(1) Update bx(l)

n (yn): using ex(l�1)
n as initial image, use the PWLS-

ULTRA method with Wn [5] to obtain each bx(l)
n (yn).

(2) Update ✓(l): with N paired images {(ex(l�1)
n ,x⇤

n)}Nn=1, train the
supervised model by solving problem (1) to obtain ✓(l).
(3) Generate the output of l-th layer ex(l)

n : use formula in (P0) to
obtain the output ex(l)

n 8 n.
end for

Grand Challenge” [10]. We choose 520 images from 6 of 10
patients in the dataset, among which 500 slices are used for
training and 20 slices are used for validation. We randomly
select 20 images from the remaining 4 patients for testing.
We project the regular dose CT images x? to sinograms y
by adding Poisson and additive Gaussian noise to them as
follows:

yi = � log
⇣
I�1
0 max

�
Poisson{I0e�[Ax?]i}+N{0, �2}, ✏

�⌘
,

where the original number of incident photons per ray is I0 =
104, the Gaussian noise variance is �2 = 25, and ✏ [11] is
a small positive number to avoid negative measurement data
when taking the logarithm.

We use the Michigan Image Reconstruction Toolbox to
construct fan-beam CT geometry with 736 detectors ⇥ 1152
regularly spaced projection views, and a no-scatter mono-
energetic source. The width of each detector column is
1.2858 mm, the source to detector distance is 1085.6 mm,
and the source to rotation center distance is 595 mm. We
reconstruct images of size 512⇥512 with the pixel size being
0.69 mm ⇥ 0.69 mm.

B. Parameter Settings

In the parallel SUPER model, we use FBPConvNet as the
supervised module and PWLS-ULTRA as the unsupervised
module. It takes about 10 hours for training the model for
10 layers in a GTX Titan GPU graphics processor. We train
models for different values of the parameter � (to then select
an optimal value), including 0.1, 0.3, 0.5, 0.7, and 0.9. During
the training of the supervised method, we ran 4 epochs (kept
small to reduce overfitting risks) of the stochastic gradient
descent (SGD) optimizer for the FBPConvNet module in
each parallel SUPER layer. The training hyperparameters of
FBPConvNet are set as follows: the learning rate decreases
logarithmically from 0.001 to 0.0001; the batchsize is 1; and
the momentum parameter is 0.99. The filters are initialized
in the various networks during training with i.i.d. random
Gaussian entries with zero mean and variance 0.005. For the
unsupervised module, we have trained a union of 5 sparsifying
transforms using 12 slices of regular-dose CT images (which
are included in the 500 training slices). Then, we use the pre-
learned union of 5 sparsifying transforms to reconstruct images
with 5 outer iterations and 5 inner iterations of PWLS-ULTRA.

In the training and reconstruction with ULTRA, we set the
parameters � = 5⇥103 and � = 20. PWLS-EP reconstruction
is used as the initialization ex(0) of the input of network in the
first layer.

We compare the proposed parallel SUPER model with the
unsupervised method (PWLS-EP), standalone supervised mod-
ule (FBPConvNet), standalone unsupervised module (PWLS-
ULTRA), and the serial SUPER model. PWLS-EP is a pe-
nalized weighted-least squares reconstruction method with
edge-preserving hyperbola regularization. For the unsuper-
vised method (PWLS-EP), we set the parameters � = 20
and � = 215 and run 100 iterations to obtain convergent
results. In the training of the standalone supervised module
(FBPConvNet), we run 100 epochs of training to sufficiently
learn the image features with low overfitting risks. In the
standalone unsupervised module (PWLS-ULTRA), we use the
pre-learned union of 5 sparsifying transforms to reconstruct
images. We set the parameters � = 104 and � = 25, and
run 1000 alternations with 5 inner iterations to ensure good
performance. In the serial SUPER model, we run 4 epochs of
training when learning the supervised modules (FBPConvNet),
and we use the pre-learned union of 5 sparsifying transforms
and set the parameters � = 5⇥103, � = 20 and µ = 5⇥105 to
reconstruct images with 20 alternations and 5 inner iterations
for the unsupervised module (PWLS-ULTRA).

C. Results
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 = 0.1
 = 0.3
 = 0.5
 = 0.7
 = 0.9

Fig. 2: RMSE (over 20 test slices) comparison with different
choices of parameters.

To compare the performance quantitatively, we compute
the RMSE in Hounsfield units (HU) and structural sim-
ilarity index measure (SSIM) [12] for the reconstructed
images. For a reconstructed image bx, RMSE is defined
as

qPNp

j=1(bxj � x?
j )

2/Np, where x?
j denotes the reference

regular-dose image intensity at the j-th pixel location and Np

is the number of pixels.
We train the parallel SUPER framework with different

choices of the parameter � including 0.1, 0.3, 0.5, 0.7 and 0.9
to obtain the best choice. Fig. 2 shows the evolution of RMSE
over layers for 20 validation slices with different � choices.
We can see that we obtain the best RMSE when � = 0.3.

We have conducted experiments on 20 test slices (slice
20, slice 50, slice 100, slice 150 and slice 200 of patient
L067, L143, L192, L310) of the Mayo Clinic data. Table
I shows the averaged image quality of 20 test images with
different methods. From Table I, we observe that Parallel
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RMSE:35.4HU

PWLS-ULTRA

RMSE:33.3HU

FBPConvNet

RMSE:29.9HU

Serial SUPER

RMSE:26.9HU

Parallel SUPER

RMSE:0HU

Reference

RMSE:34.6HU

PWLS-ULTRA

RMSE:32.6HU

FBPConvNet

RMSE:26.5HU

Serial SUPER

RMSE:23.4HU

Parallel SUPER

RMSE:0HU

Reference

Fig. 3: Reconstruction of slice 50 from patient L067 and reconstruction of slice 150 from patient L310 using various
methods. The display window is [800, 1200] HU.

SUPER significantly improves the image quality compared
with the standalone methods. It also achieves 1.8 HU bet-
ter average RMSE compared with Serial SUPER while its
SSIM is comparable with Serial SUPER. Fig. 3 shows the
reconstructions of L067 (slice 50) and L310 (slice 150) using
PWLS-ULTRA, FBPConvNet, serial SUPER (FBPConvNet +
PWLS-ULTRA), and parallel SUPER (FBPConvNet + PWLS-
ULTRA), along with the references (ground truth). The Paral-
lel SUPER scheme achieved the lowest RMSE and the zoom-
in areas show that Parallel SUPER can reconstruct image
details better.

TABLE I: The mean RMSE and SSIM values for 20 test
images with PWLS-EP, PWLS-ULTRA, FBPConvNet, Serial

SUPER, and the proposed Parallel SUPER.

PWLS-EP PWLS-ULTRA FBPConvNet

RMSE 41.4 32.4 29.2

SSIM 0.673 0.716 0.688

Serial SUPER Parallel SUPER

RMSE 25.0 23.2

SSIM 0.748 0.751

IV. CONCLUSIONS

This paper proposes the parallel SUPER framework combin-
ing supervised deep learning methods and unsupervised meth-
ods for low-dose CT reconstruction. We have experimented
on a setting with the supervised model FBPConvNet and the
unsupervised model PWLS-ULTRA. This framework demon-
strates better reconstruction accuracy and faster convergence
compared to individual involved modules as well as the recent
serial SUPER framework.
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Dual-Energy Head Cone-Beam CT Using a
Dual-Layer Flat-Panel Detector: Physics-Based

Material Decomposition
Zhilei Wang, Hao Zhou, Shan Gu, Hewei Gao⇤

Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Abstract—Flat panel detector (FPD) based cone-beam com-

puted tomography (CT) has made tremendous progress these

days, with many new medical and industrial applications keeping

emerging from diagnostic imaging and image guidance for radio-

therapy and interventional surgery. However, current cone-beam

CT (CBCT) is still suboptimal for head scan whose requirement

for image quality is extremely strict. Recently, the dual-layer flat

panel detector technology is under development and is promising

to further advance CBCT from qualitative anatomic imaging to

quantitative dual-energy CT. Its potential of enabling head CBCT

applications has yet been investigated.The relatively moderate

energy separation from the dual-layer FPD and the overall

low signal level especially for the bottom layer detector, raise

significant challenges in performing high quality dual-energy

material decomposition.

In this work, we propose a physics based material decomposition

algorithm that attempts to fully use the detected X-ray signals

and prior-knowledge behind head CBCT using dual-layer FPD.

Specifically, projection data from the two layers of detector are

first adaptively combined to generate conventional CT images

with reduced noise. A physics model based dual-layer multi-

material spectral correction (dMMSC) is then developed to make

the combined image reconstruction beam-hardening free. After

a regular projection-domain material decomposition (MD) being

conducted, the corresponding beam-hardening free projections

from the dMMSC will be taken as a guidance to further enhance

the dual-layer MD performance, leading to significantly improved

robustness of MD and suppressed low-signal artifact in our

preliminary results.

Index Terms—head cone-beam CT, material decomposition,

dual energy imaging, dual-layer flat panel detector

I. INTRODUCTION

F
PD-based CBCT has many advantages, such as low cost,
high spatial resolution, and 3D imaging in single rotation

that greatly improves the utilization of x-ray photons and
reduce the radiation dose to patients. However, the overall
image quality of CBCT can be easily compromised by beam
hardening, scatter, and cone-beam artifacts [1], impeding its
further application in diagnostic imaging such as head scan
which has strict requirements on the imaging performance [2].
The emergence of dual-layer flat-panel detector technology can
enable dual-energy imaging without changing the conventional
scanning protocol, providing extra means of improving CBCT
image quality, with potentially material-specific information

* Author to whom correspondence should be addressed. Email address:
hwgao@tsinghua.edu.cn

[3] [4]. However, besides X-ray scattering that is beyond the
scope of this study, dual-layer flat panel detector based dual-
energy CBCT has its own challenges due to its relatively
moderate energy separation and the overall low signal level
especially for the bottom layer detector. In this work, we
attempt to explore the feasibility of having dual-energy head
CBCT using a dual-layer FPD, and to develop a physics model
guided material decomposition that fully uses the detected
X-ray signals and the physics knowledge behind head CT
imaging.

II. METHOD

A. Data acquisition from a dual-layer flat panel detector
prototype

With a dual-layer FPD, dual-energy data can be acquired
simultaneously. As illustrated in fig. 1, a higher energy spec-
trum is obtained from the bottom layer which is essentially
filtered by the top layer detector. Mathematically, low- and
high-energy projections can be expressed as

PL = � ln

 R
S(E)e�

R
µ(E)dl⌘T (E)dER

S(E)⌘T (E)dE

!

PH =� ln

 R
S(E)e�

P
µi(E)Die�

R
µ(E)dl⌘B(E)dER

S(E)e�
P

µi(E)Di⌘B(E)dE

!
,

(1)
where, S(E) denotes the incident spectrum of source;
⌘T (E) / (1�e�µT (E)DT )E and ⌘B(E) / (1�e�µB(E)DB )E
denote the detector responses of top layer and bottom layer,
respectively;e�

P
µi(E)Di denotes the attenuation of top-layer

X-ray

550 um CsI scintilator

550 um CsI scintilator

Top a-Si panel

Bottom a-Si panel

Panel support / electronics readout / bottom cover

1 mm foam protection layer

Detector cover

Fig. 1. Left: The detailed structure of a prototype dual-layer FPD used in
our study.Right: the normalized effective spectrum for top and bottom layer
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material and possible inter-layer filter; S(E) · ⌘T (E) and
S(E)e�

P
µi(E)Di · ⌘B(E) therefore indicate the overall de-

tective spectra of low- and high-energy scan, respectively.

B. Reconstruction from combined dual-layer projections

On a dual-layer flat panel detector, the top layer is more
likely to absorb low-energy x-ray photons, while relatively
more high-energy x-ray photons are absorbed in the bottom
layer. Naturally, by weighting two layers of projection data
properly, noise reduction in the corresponding reconstruction
will be achieved as more signals (x-ray photons) will be
utilized. An optimal weight factor ! can be determined by
minimizing the noise on reconstructed images from combined
dual-layer projections as below.

Pt = !PL + (1� !)PH (2)

C. Physics model-guided material decomposition

A high-level diagram of our proposed method can be
found in Fig. 2. First, conventional head CT images with
decreased noise are reconstructed from adaptively combined
dual-layer projection data, followed by a dual-layer multi-
material spectral correction (dMMSC) to generate beam hard-
ening free images [5]. After a regular projection-domain
material decomposition (MD) using dual-layer detector data
that is usually quite sensitive to low-signal x-ray photon and
energy separation, the dMMSC corrected projections are used
as a physics-model based guidance to further enhance the dual-
layer MD performance.

MD

dMMSC

𝑃𝐻

𝑀𝑤𝑎𝑡𝑒𝑟

𝑀𝑏𝑜𝑛𝑒

𝑃𝑑𝑀𝑀𝑆𝐶

𝑃𝐿

SC

𝑃𝑉𝑀
𝑒𝑓𝑓

𝑃𝑉𝑀
ℎ𝑖𝑔ℎ

෨𝑃𝑉𝑀
𝑒𝑓𝑓

෩𝑀𝑤𝑎𝑡𝑒𝑟

෩𝑀𝑏𝑜𝑛𝑒

HE
Image

Combined 
Image

Water
Image

LE 
Image

Bone 
Image

VM
Image

𝑃𝑐𝑜𝑚𝑏

SC

Fig. 2. An illustration of physics-based material decomposition. In our
approach, a beam-hardening free projection generated by dual-layer multi-
material spectral correction that is based on a physics model of the bone
in head is taken as a guidance to improve the material decomposition
performance from dual-layer detector.

1) First-pass projection-domain material decomposition:
For the dual-layer FPD, since the acquired low- and high-
energy projections (PL, PH ) are quite consistent both spatially
and temporarily, it is better to perform a material decom-
position in the projection domain so that beam hardening
can be better eliminated. For a head scan using a dual-layer
FPD, water and bone can be chosen as the basis materials. In

this study, we employed a five-order polynomial fitting [6] to
generate the basis material projections.

M1 =
X

ij

aijP
i

L
P j

H

M2 =
X

ij

bijP
i

L
P j

H

(3)

After image reconstruction from the basis material projections,
two basis material CT images will be created. By weighting
the two basis material images using their attenuation coeffi-
cients at a specific energy, a virtual monoenergetic (VM) im-
age at that energy can be generated. Theoretically, the virtual
monoenergetic images should be free from beam hardening
artifacts. However, due to the sensitivity of MD to noise and
energy separation, streaks can be easily observed in the VM
images which significant degrade the dual-energy performance
from the dual-layer FPD.

2) Dual-layer multi-material spectral correction: As we
know, due to the significant bony structures in human head,
a water correction is not enough to remove beam hard-
ening artifact in head CT images. In the literature, multi-
material spectral correction has been developed as a poster-
reconstruction method for conventional CT scan to estimate
and correct for bone’s beam hardening impact. In this work, we
extend this kind of method to dual-layer projection data, which
consists of the following steps. First, an initial reconstruction
after water correction is conducted to estimate the distribution
of bony structures that can be easily segmented out from
soft tissues. Then, projection of bony structures Pb can be
computed using forward projection. With the help of the bone
projection, a multi-material spectra-corrected projection that is
beam-hardening free can be computed as

PdMMSC = Pt + f(Pt, Pb), (4)

where, f(Pt, Pb) represents the bone-induced beam-hardening
error and can be modeled and calculated in advance by
simulations or measurements.

3) material decomposition enhancement using dMMSC: In
order to improve the dual-energy performance from the dual-
layer FPD, beam hardening free projections after dMMSC is
adopted as a guidance to minimize the material decomposition
errors and generate a high-quality head image. An optimal
hybrid VM projections can be generated using an adaptive
fusion of projection with dMMSC and VM projection at an
efficient energy as

P̃ eff

VM
= �P eff

VM
+ (1� �)PdMMSC , (5)

where, PdMMSC and P eff

VM
denote the spectra-corrected pro-

jection and VM projection, respectively. In practice, the adap-
tive weighting factor � might be simplified based on the X-ray
signal level.

� =

8
>><

>>:

0 I < Il
(I � Il)

Ih � Il
Il  I  Ih

1 I > Ih

(6)
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Where, I denotes the intensity measured by top layer detector,
Il and Ih are the low and high thresholds, respectively. Basis
material projections can also be re-fined by using the hybrid
VM projection at optimal keV and a VM projection generated
at higher keV (Phigh

VM
).

✓
M̃water

M̃bone

◆
=

✓
µwater(Eeff ) µbone(Eeff )
µwater(Ehigh) µbone(Ehigh)

◆�1 ✓
P̃ eff

VM

Phigh

VM

◆

(7)
If needed, iterations can be done by using the re-fined decom-
position as the initial decomposed results.

III. RESULTS

A. Experimental system set up

Our study is based on a benchtop CBCT system equiped
with a prototype dual-layer FPD in our lab.The prototype
dual layer FPD (Varex imaging, Salt Lake City, UT, USA)
consists of two amorphous silicon (a-Si) panels with pixel
size of 150 µm, both deposited with a 550 µm-thick CsI
scintillator, with no additional intermediate filter placed in
between [Fig. 3].The source-to-axis distance was set to 750mm
and the source-to-detector distance to 1184 mm. In our study,
720 projections over 360 degree were collected at 30 fps in
a 3×3 binning mode. The X-ray source (Varex Imaging G-
242, Salt Lake City, UT, USA) at 120 kV, 64 mA and 5 ms of
pulse width. In our current study, a narrowed X-ray collimation
was implemented to get rid of X-ray scatter’s impact which is
another big challenge to CBCT spectral imaging but is under a
separate investigation. In our study, a 120 kV X-ray source is
used. The estimated effective spectrum for the top and bottom
layer is shown in Fig. 1 and the average energy separation
between low- and high-energy spectra can reach a level of 17
keV without object in the beam.

B. Combined reconstruction from dual-energy projections

By combining the dual layer projection data using different
weighting factor, an optimal weighting factor can be deter-
mined empirically by measuring the standard deviations of
selected ROIs. As shown in Fig. 4, the measurements of
signal to noise ratio (SNR) on reconstructed images from
top-layer, bottom-layer and combined data are shown beside

1184 𝑚𝑚

750 𝑚𝑚

x-ray source
Dual-layer FPD

Object

Fig. 3. The benchtop CBCT system using DL FPD.

the selected ROIs. Our preliminary results suggest that the
standard deviation can be reduced by roughly 10% when
compared with that of the top layer alone.

SNR: 114.17

SNR: 130.13

SNR: 63.23 SNR: 131.57

SNR: 64.21 SNR: 143.65

LE HE L&HE

LE HE L&HE

𝑆𝑒
𝑐𝑡
𝑖𝑜
𝑛
1

𝑆𝑒
𝑐𝑡
𝑖𝑜
𝑛
2

LE HE L&HE

SNR: 101.57 SNR: 58.42 SNR: 112.72

𝑆𝑒
𝑐𝑡
𝑖𝑜
𝑛
3

Fig. 4. Reconstruction from low- and high-energy projections and our
proposed weighted combination of the projections. Display window: [-100,
100] HU (Hounsfield Units).

14.01 ± 5.81

9.45 ± 5.33

4.62 ± 4.93

997 ± 146

1006 ± 133

𝑚𝑒𝑎𝑛 ± std:mg/ml𝑚𝑒𝑎𝑛 ± std: mg/ml

1004 ± 140

987 ± 163

LE HE

VMWater Iodine

Fig. 5. Results of a multi-energy phantom on the DE-CBCT, including
material decomposition and VM images. Display Windows for water and
iodine images are [500, 1500] and [3, 14] mg/ml respectively; Display
windows for LE, HE and VM images: [-100, 100] HU; Display windows
for zoomed-in ROIs marked by blue and orange squares are [425, 525] and
[290, 350] HU, respectively.

C. Quantitative evaluations on material decomposition
To quantitatively assess the dual-energy CT imaging per-

formance, Fig. 5 shows reconstructed DE-CBCT images 0f
a multi-energy phantom, decomposed results and the vir-
tual monoenergetic (VM) image at 60 keV. According to
our preliminary results, the estimated material densities are
14.01±5.81 mg/ml, 9.45±5.33 mg/ml and 4.62±4.93 mg/ml
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for 15 mg/ml, 10mg/ml and 5mg/ml iodine, respectively. The
decomposition errors are roughly 6% compared to ground
truth, which may result from the spectral nonuniformity in the
X-ray beam or detector response. The VM image generated
from the combination of decomposed water and iodine has
fewer artifacts and an improved contrast-to-noise ratio when
compared with the regular single-energy image.

The results of basis material decomposition of a head
phantom are shown in Fig. 6. The VM images at 63 keV was
generated and it is seen that most beam hardening artifacts
caused by the bony objects are removed. However, in some
locations strong streak artifacts occur badly in the CT images,
which can be well suppressed by using our proposed approach.
Firstly, we use the spectra-corrected projection at 63 keV as
a guidance of VM projection at the same keV to generate an
improved VM projection which is combined with generated
VM image at 90 keV to refine the water and bone image. By
using our physics based material decomposition, we can see
that most streak artifacts can be removed in the basis material
images and VM images.

W𝑎𝑡𝑒𝑟 𝐵𝑜𝑛𝑒 𝑉𝑀

S𝑒
c𝑡
𝑖𝑜
𝑛
3

𝑆𝑒
𝑐𝑡
𝑖𝑜
𝑛
1

1 2

3

4

Fig. 6. Results of first-pass material decomposition (1st and 3rd rows) and
physics model-guided material decomposition (2nd and 4th rows) at two head
phantom sections. Display windows for the water, bone and VM images are
[-500, 2000] mg/ml, [0, 2000] mg/ml, [-150, 150] HU, respectively.

To quantitatively evaluate the results of our proposed
method, we select some regions of interest (ROIs) and measure
the averaged CT numbers and their standard deviations. The
measurements are summed in the TABLE I. We can see
that the improved VM images by our proposed method show

better image quality with more uniform CT values and smaller
standard deviations.

TABLE I
MEASUREMENTS OF QUANTITATIVE ANALYSIS

MEAN(HU) STD(HU)

ROI1
combined recon 19.0 10.28

first-pass VM image 35.6 13.5
improved VM image 31.4 9.2

ROI2
combined recon 14.6 9.5

first-pass VM image 34.4 13.8
improved VM image 26.3 9.2

ROI3
combined recon 81.6 16.9

first-pass VM image 123.5 59.4
improved VM image 74.4 13.6

ROI4
combined recon 92.8 12.7

first-pass VM image 22.5 37.8
improved VM image 69.1 13.8

IV. CONCLUSION
In this work, we proposed a physics model guided material

decomposition algorithm that is suitable for head CBCT using
dual-layer FPD. Preliminary results using narrowed X-ray
collimation on our benchtop dual-layer CBCT system showed
its effectiveness of improving image quality in terms of SNR,
CNR and low-signal artifact suppression.
Further investigations of our method include more rigorous
and broader performance evaluations. Correlated scatter cor-
rection for dual-layer FPD is also under development, which
will be utilized together with our proposed pMD algorithm
here to fully assess the cone-beam CT spectral imaging
capability in the near future.
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X-ray Dissectography Enables Stereotography
Chuang Niu and Ge Wang

Abstract—X-ray imaging is the most popular medical imaging
technology. While x-ray radiography is rather cost-effective,
tissue structures are superimposed along the x-ray paths. On
the other hand, computed tomography (CT) reconstructs internal
structures but CT increases radiation dose, is complicated and
expensive. Here we propose ”x-ray dissectography” to extract
a target organ digitally from few radiographic projections for
stereographic and tomographic analysis in the deep learning
framework. As an exemplary embodiment, we propose a general
X-ray dissectography network, a dedicated X-ray stereotography
network, and the X-ray imaging systems to implement these
functionalities. Our experiments show that x-ray stereography
can be achieved of an isolated organ such as the lungs in
this case, suggesting the feasibility of transforming conventional
radiographic reading to the stereographic examination of the
isolated organ, which potentially allows higher sensitivity and
specificity, and even tomographic visualization of the target. With
further improvements, x-ray dissectography promises to be a
new x-ray imaging modality for CT-grade diagnosis at radiation
dose and system cost comparable to that of radiographic or
tomosynthetic imaging.

Index Terms—X-ray radiography, digital tomosynthesis, com-
puted tomography, x-ray dissectography, x-ray stereography,
artificial intelligence, deep learning

I. INTRODUCTION

X-ray imaging is the first and still most popular modern
medical imaging approach, which is performed by various
kinds of systems. In the low-end, x-ray radiography takes a
two-dimensional projective image through a patient, which is
called a radiogram or radiograph. In the high end, many x-
ray projections are first collected and then reconstructed into
tomographic images transversely or volumetrically. Between
these two extremes, digital tomosynthesis takes a limited num-
ber of projections over a relatively short scanning trajectory
and infers three-dimensional features inside a patient. These
x-ray imaging modes have their strengths and weaknesses.
X-ray radiography is cost-effective but it produces a single
projection, and has multiple oranges and tissues superimposed
along x-ray paths, compromising the diagnostic performance.
On the other hand, x-ray CT unravels structures overlapped
in the projection domain into tomographic images in a 3D
coordinate system but CT uses a much higher radiation dose, is
complicated and expensive. Digital tomosynthesis is a balance
between x-ray radiography and CT in terms of the number of
needed projections, the information in resultant images, and
the cost to build and operate the imaging system.

Reducing radiation dose and improving imaging quality
and speed are the main tasks for the development of x-ray
imaging technologies. As x-ray radiography has the lowest

C. Niu and G. wang are with Department of Biomedical Engineering, Cen-
ter for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, NY USA, 12180. E-mail: niuc@rpi.edu; wangg6@rpi.edu.

radiation dose, the fastest imaging speed, and the lowest price,
researchers have been focusing on improving the radiogram
quality. Currently, there are mainly two ways for this pur-
pose: 1) suppressing interfered structures [1], [2], [3], [4] or
enhancing related structures [5], [1], and 2) generating 3D
volumes [6], [7], [8]. It is well known that superimposed
anatomical organs in 2D radiographs significantly complicate
signal detection, such as for diagnosis of lung diseases. In
early studies [9], [10] model-based methods were developed
to suppress ribs in chest radiographs, some of which require
manually annotated bone masks. In recent years, deep learning
methods [1], [2], [3], [4] were proposed for suppression of ribs
by leveraging 3D CT prior. Instead of suppressing the ribs
in CXR images, Gozes and Greenspan proposed to enhance
lung structures by extracting the extracted lungs first and then
adding the result back with a scaling factor [5]. Generating
a 3D volume from a single or a few radiographs is another
way to improve radiography. Ying et al. proposed X2CT
that generates a 3D CT volume from a pair of orthogonal
radiographs using a CycleGAN framework [6]. Recently, some
methods [7], [8] proposed to generate a 3D volume from single
or few radiograhps.

Among the above-surveyed methods, those methods that
are for suppressing/enhancing specific structures are mainly
intended to improve the performance of classification [1], [2],
[3], [4] and detection [5] from a single radiograph without
providing 3D information. On the other hand, although the
rest of the existing methods that map 2D radiograms to 3D CT
volumes achieved remarkable results, they cannot reconstruct
structures accurately and reliably, since their clinical utilities
have not been demonstrated so far. Particularly, it can be seen
that almost all the above methods depend on the GAN frame-
work and/or unpaired learning for 2D/3D image generation.
A major potential problem is that GAN-based models tend
to generate fake structures, which is a major concern in the
medical imaging field.

In this study, we propose x-ray dissectography (XDT) in
general and specialize it for x-ray stereotography to improve
image quality and diagnostic performance. The essential idea
is that we digitally extract a target organ from the origi-
nal radiograph or radiogram which contains superimposed
organs via deep learning, facilitating both visual inspection
and quantitative analysis. Considering that radiograhs from
different views contain complementary information, we de-
sign a physics-based XDT network to extract the multi-view
features and transform them into a 3D space. In this way,
the target organ can be synergistically analyzed in isolation
from different projection angles. As a special yet important
application of our XDT approach, we propose X-ray stereogra-
phy that allows a reader immersively perceive the target organ
from two dissected radiographs in 3D, synergizing machine
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Fig. 1. X-ray dissectography network (XDT-Net).

intelligence and human intelligence, similar to what CT does.
Biologically, stereo perception is based on binocular vision for
the brain to reconstruct a 3D scene, and can be applied to see
through dissected radiograms and form a 3D rendering in a
radiologist in mind. In this work, we design an X-ray imaging
system dedicated to this scenario. Different from our daily
visual information processing, which senses surroundings with
reflected light signals, radiograms are projective through an
object to allow 3D concept of x-ray semi-transparent features.

To avoid fake structures, we optimize XDT neural networks
in a supervised 2D-to-2D learning paradigm without using a
GAN-like model. To obtain a 2D radiograph of a target organ
without surrounding tissues, we can manually or automatically
segment the organ in the associated CT volume first and then
compute the ground-truth radiograph through projecting the
dissected organ according to the system parameters. In other
words, radiographs and CT images are obtained from the
same patient and the same imaging system to avoid unpaired
learning. We utilize a cutting-edge simulation platform, such
as the popular academic [11] and industrial [?] simulators,
for training XDT networks. These simulators can take either
a clinical CT volume or a digital 3D phantom to compute a
conventional x-ray radiograph, and then extracts a target organ
digitally to produce the ground-truth radiograph of the organ.
Our initial experimental results have shown that XDT indeed
separates the lungs with faithful texture and structures, and we
can perceive the extracted lungs via stereoscopic viewing with
a pair of 3D glasses. Potentially, this approach can improve the
diagnostic performance in lung cancer screening, COVID-19
follow-up, and other applications.

II. METHODOLOGY

A. General Workflow of X-ray Dissectography

X-ray dissectography (XDT) is dedicated to transform a
conventional radiogram x =

PB
i=1 yi + yt to a projection

image yt, where yt is a projection of only a target organ,
and

PB
i=1 yi represents the superimposed image of the B

anatomical components involved in the conventional radio-
gram. In fact, it is an extremely ill-posed problem as we can
only observe the radiograph x, and impossible to obtain any
analytic solution in a general setting. Fortunately, a specific
organ in the human body has a fixed relative location, a strong
prior on material composition, and similar patterns (such as
shapes, textures, and other properties). Given this kind of
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Fig. 2. X-ray stereoraphic imaging network (XST-Net).

knowledge, a radiologist can identify different organs in the
conventional radiogram. However, the superimposed organs
challenge the human in visual inspection for the target one.
Considering the great progresses in deep imaging [12], [13],
[14], deep neural networks (DNNs) is used to learn such priors
and extract purified radiographs as if x-rays go only through
the target organ. Such DNNs can be trained with an individual
or a specific population for quantitative accuracy and clinical
utilities.

In this study, we propose a physics-based XDT network
(XDT-Net) for separating a target organ from more than one
views, as shown in Fig. 1. Note that various organs may
be separated using this framework in different combinations,
depending on specific applications. The XDT-Net consists
of the three modules: 1) a back-projection module, 2) a
3D fusion module, and 3) a projection module. The back-
projection module maps 2D radiographs to 3D features, like
a tomographic back-projection process. It consists of k 2D
convolutional neural networks (CNNs) followed by reshape
operators, where k is the number of input views, each CNN
is applied to a specific view, and different CNNs have the
same architecture but trainable parameters may be optimized
differently. The fusion module integrates the information from
all views in the 3D feature space. It first aligns the 3D features
of different views by rotation according to their projection
angles, and then combines them by a 3D CNN. The projection
module predicts each radiograph containing only the target
organ. It first squeezes each 3D feature volume to a 2D feature
map along a given angle, and then the 2D CNN takes the
2D features from both the squeeze operator and the back-
projection module to predict the radiograph of the target organ.

B. Specific Embodiment for X-ray Stereography

We perceive the world in 3D thanks to binocular vision.
Given binocular disparity, the human brain is capable of
sensing the depth in the scene. Inspired by this amazing fact,
here we investigate X-ray stereography (XST) with two radio-
grams of an isolated organ. When inspecting the human body
with x-rays, organs with large linear attenuation coefficients
will overwhelm the ones with small attenuation coefficients
in radiograms. As a result, it is difficult to discern subtle
changes in internal organs due to the superimposition of mul-
tiple organs, significantly compromising stereopsis. With our
proposed XDT-Net and XST-Net, we can integrate machine
intelligence for target organ dissection and human intelligence
for stereographic perception so that a radiologist can perceive
a target organ in 3D with details much more vivid than in 2D,
potentially improving diagnostic performance.
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Fig. 3. X-ray imaging system configuration to facilitate radiographic, stere-
ographic and tomographic analysis on a digitally isolated organ or tissue.

To enable XST of a specific organ, we adapt the XDT-Net
to the XST-Net as shown in Fig 2. The XST-Net also consists
of the same three modules: the backprojection module, the 3D
fusion module, and the projection module. Each module of the
XST-Net shares the same network architecture as that of the
XDT-Net but needs to be adapted for stereo viewing. First, the
backprojection module of the XST-Net takes two radiographs
as inputs, which are two images into our eyes. Second, in
reference to the view angles of two eyes, the 3D fusion module
uses a different rotation center to align 3D features from two
branches appropriately. Our proposed XST imaging system
is described in Subsection II-C. Third, the projection module
translates the merged 3D feature first and then squeezes it
to 2D feature maps according to the human reader’s viewing
angles. Finally, two dissected radiographs are respectively sent
to the left and right eyes through a pair of 3D glasses for
stereoscopy.

C. Design on X-ray Dissectography and Stereography

We assume that radiographs from sufficiently many different
angles can be obtained in the network training stage such
that image volumes can be reconstructed. The traditional
cone-beam CT system, as shown in Fig. 3 (a), serves this
purpose. Then, many pairs of conventional radiographs and
the counterparts of the target-only radiographs can be obtained
from a reconstructed CT volume and a segmented organ in
the reconstructed CT volume respectively. In the testing stage,
the same XDT system only needs to generate few radio-
graphs at any angles for the trained XDT-Net to extract the
corresponding radiograms of the target organ alone, without
surround tissues, for much-improved visual inspection and
quantitative analysis. To achieve x-ray stereopsis, we design
an XST imaging system, as shown in Fig. 3 (b) and (c), where
each source is regarded as an eye while the projection through
the body is recorded on the opposite detector. In a simple
setting, we directly take two radiograms from the XDT system
so that the distance between eyes is d, as shown in Fig. 3 (b). In
this case, the center X-rays from the source positions intersect
at the object center. For the adaption to different applications
and readers, we further design an adjustable XST system in
Fig. 3 (c). There are two parameters of the system to control
the offset between the two eyes and the viewing angle from
a pre-specified principal direction. In Fig. 3 (c), red and blue
dots denote the left and right eyes, the red and blue plates
are the corresponding detectors, and green cross is viewed
as the object center. The distance between two eyes is d, the

View 1

View 2

Input Segmentation Dissection Ground Truth

Fig. 4. XDT testing results from two new orthogonal views of the same
patient.

distance between the source and the object center is r, and the
angle between center X-ray and the pre-specified reference
direction is ↵ for both eyes. Thus, the intersection point of
two center X-rays is translated from the object center along
the vertical direction. The distance offset � can be computed
as � = d

2 tan(↵) �
p
r2 � (d/2)2, which is used to adjust the

rotation center for XST-Net as introduced in Subsection II-B.
In practice, the XST system for inspecting different organs

may require different geometric parameters. Both XDT and
XST systems can be implemented in various ways such as
with robotic arms [15] so that the geometric parameters can
be easily set to match a reader’s preference.

III. EXPERIMENTAL RESULTS

A. XDT and XST Simulation

Here we used a clinical CT dataset, denoted as CT-lung, and
simulated radiograms in cone-beam geometry. Specifically, 50
reconstructed CT volume of patients were selected, including
10 patients from [16] and 40 patients from [17]. The data
from [16] provide the 3D lung masks. Hence, we can simulate
the paired radiograms with and without lung masks [18].
Note that before performing the cone-beam projection, the
patient bed in the CT volume was first masked out in a semi-
automatic manner. Since the lung masks provided in [17]
are not consistent with those provided in [16], we trained a
semantic segmentation UNet with the annotated data in [16]
to identify the body region for removal of the patient bed
and segment the lung region slice-by-slice for the data in
[17] consistently. When 2D radiograms were synthesized, we
rotated the patient CT volume from 0� to 180�, where the
angle of 0� is the frontal view. Totally, we obtained 9,000
pairs of radiograms, and the image size is 320⇥ 320.

B. XDT Results

We first evaluated the effectiveness of the proposed XDT-
Net on the CT-lung dataset. In the current experiments, we
focused on simultaneously dissecting two radiograms at or-
thogonal angles. To be more specific, the region of interest
was first segmented from 2D radiograms before forwarding to
the XDT-Net. In this way, the task of XDT-Net is purified
to improve dissection results. For this purpose, we trained
a segmentation model to identify the region of interest. The
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Fig. 5. XST testing results from two new stereo views of the same patient.
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Fig. 6. XST image pair and rendering for stereo-viewing.

target mask for training this segmentation model can be easily
obtained by thresholding the radiogram of isolated lungs,
where the threshold was empirically set to 0.01 in the unit
of linear attenuation coefficient.

The testing results are shown in Fig. 4, where radiographs
of the same patient were collected from different angles. From
the first to the fourth columns are the input radiograms, the
segmentation results, the dissection results, and the ground-
truth respectively. The first and the second rows present two or-
thogonal projections respectively. The visual inspection shows
that the dissected radiograms are very close to the ground-truth
in terms of detailed structures despite being slightly smoother.
The blurring effect may be due to noise reduction [19].
Compared to normal radiograms, the dissected radiograms
remove irrelevant surrounding structures, highlight the target
organ, and potentially improve the diagnosis performance.

C. XST Results

Then, we evaluated the feasibility of the proposed XST-
Net for X-ray stereoscopic imaging on the CT-lung dataset.
We first evaluated the joint dissection results from two stereo
radiograms collected at two new angles of the same patient
and then generalized the stereo-imaging technology to differ-
ent patients. Our representative results are shown in Fig. 5,
showing XST-Net achieves very promising results for stereo
views. In addition, we have found that the dissection networks
are quite robust to segmentation results, geometric parameters,
and image noise. Finally, we generated 3D perception by
overlapping the left-eye and right-eye images in red and blue
channels and then viewing both through a pair of red/cyan

glasses. Fig. 6 shows stereo images and two 3D images
adjusted with different geometric parameters, as discussed in
Subsection II-C. Readers can enjoy watching the 3D lungs
through red/cyan glasses (you may need some visual adapta-
tion to see the 3D scene).

IV. CONCLUSION

In conclusion, we have proposed the x-ray dissectography
(XDT) and x-ray stereography (XST) systems and methods for
improving the utilities of conventional X-ray radiography and
digital tomosynthesis. The proposed XDT and XST can dissect
a target organ type from X-ray radiograms with deep learning.
The experimental results clearly demonstrate the feasibility
and potential utility of the proposed imaging technology. In
the future, we will continue improving the network model and
producing clinically relevant results systematically. Hopefully,
the proposed XDT and XST techniques empowered by arti-
ficial intelligence may open a new door for traditional X-ray
radiography to have new impacts on healthcare.
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Abstract— Purpose: to investigate image quality of the ultra-

high-resolution (UHR) mode of a dual-source photon-counting 
CT scanner in visualizing mixed (soft and hard) coronary artery 
plaques.  
Materials and methods: We scanned a custom-made phantom 
with 10 mixed plaques of various sizes and compositions. Each 
scan was repeated three times. Images were reconstructed with 
FBP, and model-based quantum iterative reconstruction (QIR). 
Image quality was investigated by measuring mean CT numbers, 
noise standard deviation (SD), and by line profiles. 
Results: UHR mode provided sharper difference between soft 
and hard plaques, and the lumen by reducing blooming artifacts. 
Furthermore, it improved the true CT number of the values by 
reducing partial volume However, SD of noise increases by a 
factor of ~8 in FBP reconstructions at thinnest slice thickness (0.2 
mm). Quantum iterative reconstruction algorithm reduced image 
noise x4 of the SR FBP without any apparent loss of spatial 
resolution.  
Conclusion: UHR PCCT improves plaque characterization 
through improved spatial resolution which results in lower 
blooming artifacts and partial volume effects. The increase in 
image noise can be mitigated by using model-based iterative 
reconstruction algorithms without any loss of spatial resolution. 
Depending on the imaging task, further noise reduction can be 
achieved by reconstructing thicker slices. A more detailed 
investigation with noise power spectrum analysis and observer 
model studies is warranted. 
 

Index Terms— photon-counting, computed tomography, 
cardiac CT, coronary plaque, plaque characterization, ultra-
high-resolution imaging,  
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I. INTRODUCTION 
HOTON-COUNTING CT (PCCT) has proven to be the next 
leap in CT imaging technology with many studies 

performed on prototype scanners developed by all major CT 
manufacturers [1], [2]. In this study, we investigate the image 
quality and ultra-high-resolution (UHR) performance of the 
first clinical dual-source PCCT scanner to characterize 
coronary artery plaques. It is well understood that increasing 
in spatial sampling frequency of a CT scanner results in wider 
image noise bandwidth while reducing blooming and partial-
volume artifacts[3]. In this work we present preliminary 
results of imaging mixed, i.e. soft and hard coronary artery 
plaques with such a system using a custom-made CT phantom. 

II. METHODS 

A. Test Object 
We used a custom-made mixed plaque phantom with eight 

Mixed coronary plaque characterization with the 
first clinical dual-source photon-counting CT 

scanner: a phantom study 

Thomas Wesley Holmes1, Leening P. Liu2,3, Nadav Shapira2, Elliot McVeigh3, Amir Pourmorteza1,5, 
Peter B. Noël2 

P 

 
 
Fig. 1.  Custom-made mixed plaque phantom with eight tissue types and ten 
simulated mixed plaques of various compositions. Contrast agents can be 
added to the empty holes at desired concentrations. The diameter of the 
phantom is 100 mm and it can be fit inside a standard QRM thorax phantom. 
  

The 7th International Conference on Image Formation in X-Ray Computed Tomography

165



 

tissue types and ten simulated plaques with different 
compositions of hard (calcium) and soft (cholesterol-rich) 
materials and contrast materials (Fig-1). The phantom has 
multiple empty holes that can be filled with desired 
concentrations of iodinated contrast material. We diluted the 
contrast material to have CT number of ~500 HU at 120 kVp, 
which is high enough to provide good contrast but low enough 
not to cause severe beam hardening artifacts. 

 

 
Table-1 – PCCT scan and reconstruction parameters. 
 
 

B. Image Acquisition 
The phantom was scanned on a clinical dual-source PCCT 

scanner with cadmium-telluride detectors (NAEOTOM Alpha, 
Siemens Healthcare, Germany). This scanner can operate in 
standard resolution mode, and UHR mode with apparent 
detector pixel sizes of 0.2 and 0.50 mm at the isocenter, 
respectively. The detailed description of the scanner can be 

found in [4]. Table-1 summarizes the scan and reconstruction 
parameters. Each scan was repeated three times. All values are 
reported as mean and SD of the three measurements. While 
the scanner is dual-source, the UHR scan mode was only 
available in single-source mode. We used the image 
reconstructed from all detected photons with energies > 25 
keV (T3D) in this study. Hence no spectral analysis was 
possible in UHR mode. 

C. Image Analysis 
We investigated the effective spatial resolution of the scans 

by comparing line profiles drawn in different regions of the 
plaques as seen in Fig-2. Image noise was measured as the SD 
of large circular region of interest (ROI) with diameter=20 
mm in the difference image of two repetitions of a scan 
divided by √2. 

The noise was measured for images reconstructed FBP and 
QIR with thinnest (0.2mm) possible slice thickness, as well as 
0.4, and 1.5 mm thicknesses, which are more commonly used 
in the clinic. 

 

III. RESULTS 
Figure 3 compares the line profiles for standard (Qr40) and 

UHR (Qr72) images reconstructed with FBP and QIR. UHR 
acquisition mode provided sharper delineation of soft and hard 
plaques, and the lumen albeit with amplified noise. This can 
be attributed to the reduced blooming artifacts due to the 
doubling of spatial sampling frequency. Furthermore, UHR 
showed more accurate CT number values due to the reduced 
partial volume effects. For example, P13 and P14 pass through 
air and therefore should have a minimum at -1000HU. The 
standard mode failed to resolve the true CT number due to 
partial volume effect, while UHR images all showed the 
correct CT number. Sample closeup images and profile lines 
are shown in figures 4,5.  
 Image noise, as measured by SD of difference image, was 
approximately 8 time higher in UHR mode compared to 
standard resolution for images reconstructed with FBP for all 
slice thicknesses. Images reconstructed with different 
strengths of QIR reduced the image noise by approximately 2 
folds in maximum strength (fig-6). 
 

IV. DISCUSSION 
In this preliminary study we compared the spatial resolution 
and noise of UHR mode compared to standard resolution 
for imaging various shapes and compositions of calcified 
plaques. Our study had several limitations which warrant 
further detailed studies: 1- we used a stationary phantom; 
future experiments with a dynamic phantom are planned to 
assess the effect of motion on the effective spatial resolution 
of the system. 2- the phantom has relatively simple 
geometries; we plan to assess the image quality in a series 
of excised heart with various levels and shapes of coronary 
calcification. 3- We measured image noise as the SD of a 
large ROI; a more detailed study with noise power spectrum 
(NPS) measurements is warranted. 

Scanner Model NAEOTOM Alpha 
Tube Voltage 120 kVp 
Revolution Time 0.5 sec
Spiral Pitch Factor 1
Slice Thickness 0.2, 0.4, 1.5 mm
Total Collimation Width 24 mm
Iterative Reconstruction QIR: 0, 2, 4
Reconstruction Filter Qr40, Qr72
Reconstruction Diameter 102 mm 
Matrix Size 1024 x 1024
CTDIvol 15 mGy
Pixel Spacing  0.0996 mm 

 
 
Fig. 2.  The locations of line profiles in the mixed plaque phantom. (WC: 
100, WW: 500). The black regions inside contrast material regions were 
caused by air bubbles. 
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Figure-4- Sample closeup images of a mixed calcified plaque and their 
corresponding line profiles. Standard resolution image (top left), and UHR 
images with various strengths of QIR algorithm. 
 

 
 
 

 
Figure-5- Sample closeup images of a mixed calcified plaque and their 
corresponding line profiles. Standard resolution image (top left), and UHR 
images with various strengths of QIR algorithm. 
 

 
 
Figure-3- Comparison of line profiles drawn through the regions depicted in fig-2 for various scan and reconstruction modes. standard resolution mode: (Qr40 
FBP), UHR mode with FBP (Qr72 FBP), and with QIR of strengths 2 and 4: IQr72-2, IQr72-4. Overall, UHR profiles showed sharper separation between different 
parts of the plaques due to reduced blooming artifacts. P13 and P14 pass through air and therefore should have a minimum at -1000HU. The standard mode failed 
to resolve the true CT number due to partial volume effect.  
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V. CONCLUSION 
UHR PCCT improves plaque characterization through 
improved spatial resolution which results in lower blooming 
artifacts and partial volume effects. The increase in image 
noise can be mitigated by using model-based iterative 
reconstruction algorithms without any loss of spatial 
resolution. Depending on the imaging task, further noise 
reduction can be achieved by reconstructing thicker slices. A 
more detailed investigation with noise power spectrum 
analysis and observer model studies is warranted. 
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Figure-6- Image noise measured as SD of a uniform ROI with diameter = 20 mm for standard resolution and UHR mode images reconstructed with FBP (strength 
= 0) and QIR (strength = 2,4) at different slice thicknesses and radiation doses.  
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Consistency-based auto-calibration of the spectral
model in dual-energy CT

Jérôme Lesaint, Simon Rit

Abstract—We propose a consistency-based material decom-
position algorithm. The method is free from any calibration
procedure. The inverse spectral mixing model is approximated by
a polynomial whose indeterminates are the raw-data values and
whose coefficients are estimated by minimizing a consistency-
based cost function. The consistency is in both the material
sinograms and their mono-energetic combination. A small a priori
on the object is incorporated in the minimization problem as a
constraint. The method was evaluated on dual-energy simulations
of a numerical phantom made of water and bone.

Index Terms—data consistency conditions (DCCs), spectral CT,
material decomposition.

I. INTRODUCTION

This work is related to projection-domain material decom-
position of energy-resolved X-ray projections, which aims
to decompose energy-resolved projections onto a basis of
material specific functions [1]. Since the early work of Alvarez
and Macovski [2], it is known that the linear attenuation
coefficient µ can be modeled as a linear combination

µ(~x,E) =
MX

m=1

am(~x)fm(E), (1)

of a small number M of energy-dependent basis functions
fm. In Equation 1, fm can for example be the linear attenua-
tion of the material m (expressed in cm�1) and am(~x) the
unitless proportion of material m at spatial position ~x. In
typical photon-counting detectors, several photon counters are
maintained at different energy ranges, based on pulse height
analysis. We denote B the total number of energy bins. Each
detector pixel returns B measurements mb, modeled by the
Beer-Lambert’s law:

mb =

Z 1

0
I
0
b (E) exp

 
�

MX

m=1

Amfm(E)

!
dE (2)

where I
0
b (E) is the effective spectrum of the bin b and Am =R

L am(~x) d~x is the line integral of the material map am along
the X-ray path L. In other words, Am is the equivalent length
of material m in the object µ along L. In this work, the basis
materials will be water and bone, so that M = 2 in the sequel.
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By material decomposition, we mean recovering the coeffi-
cients Am from the measurements mb (or from their log sb, see
Equation 4 below). Several approaches have been proposed.
A rigourous and natural way is to inverse the forward model
(m1, ...,mB) = �(A1, ..., Am) of Equation 2. This has been
done with a maximum likelihood approach in [3] further
regularized in [4] or with a regularized least-square approach
in [5]. In all cases, the forward model needs to be known
and the quality of the decomposition depends on the accuracy
of the model. In particular, the effective spectra need to be
calibrated, e.g. with a spectrometer for the source spectrum
and monochromatic sources for the detector response. To avoid
such a cumbersome procedure, it is possible to calibrate a
parametric model either of the direct mapping � [2] or of
the inverse mapping (A1, ..., AM ) = ��1(m1, ...,mB) (or
��1(s1, ..., sB)). In [6], the measured attenuations are related
to the coefficients Am via a polynomial model. The poly-
nomial coefficients are learnt from a set of calibration mea-
surements at various combinations of basis material lengths,
which cover the range of length combinations that will be
present in the imaged object. This procedure only requires
a specific calibration phantom with known thicknesses of
the basis materials but it is a time-consuming procedure. In
[7], the authors introduce an empirical dual-energy material
decomposition method. It is three-step: first, a calibration
phantom, made of the basis materials, is scanned. Second,
the reconstructed phantom image is segmented and regions
of interest (ROI) of each material are selected. Third, the
coefficients of a polynomial approximation of the inverse
mapping ��1 are estimated so that the reconstruction obtained
by applying the polynomial coefficients to the measures fits the
segmented ROIs. The procedure is called empirical because
the inverse mapping ��1 is indirectly estimated to retrieve
the Am from the mb measurements without knowing I

0
b .

The aim of the project is to avoid the calibration scan in
the material decomposition. The polynomial coefficients of the
inverse mapping are estimated by enforcing data consistency
conditions on the material-specific sinograms. Consistency
conditions have been successfully used in a number of CT arte-
facts correction problems, e.g., geometric calibration, beam-
hardening correction, scatter correction. In this paper, we
consider 2D parallel geometry only and its corresponding
set of consistency conditions known as Helgason-Ludwig
consistency conditions. The proposed method does not require
a calibration scan, only the scan of the object of interest. The
decomposition of the sinograms is exclusively based on the
raw data, plus a tiny a priori knowledge on the object.
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II. THEORY

The method minimizes a consistency-based cost function
(subject to some constraints) which is described in this section.
For simplicity, we focus on a 2D parallel scanning geometry.
Projections are acquired over a 180 degree angular range.
In a coordinate system (O, x, y), we denote the projection
angle ✓ (due to discretization, ✓ is assumed to vary in a
set of discrete values ⇥, whose cardinal is denoted |⇥|) and
the corresponding unit vector ~✓ = (cos ✓, sin ✓). The latter
indicates the direction of the 1D linear detector, which is
placed perpendicular to the direction of the X-rays. Position
along the detector is denoted p (again, due to discretization,
we denote �p the detector spacing and P the finite set of all
pixel positions). Without loss of generality, we assume that
the center of the detector is at the origin O of the coordinate
system, that it rotates around O and that the object of interest
fits the resulting field of view. At projection angle ✓, the X-
ray line L(✓, p) intercepted at position p of the detector has
equation ~x · ~✓ = p.

A. Photon-counts and attenuations

Assuming a photon counting detector with B bins and
according to Equation 2, the photon counts may be corrupted
with Poisson noise. The measures become

m
⇤
b(✓, p) ⇠ Poisson(mb(✓, p)). (3)

We only use mb(✓, p) in the rest of the paper and explicitely
indicate wether data are corrupted with noise. The projections
are then log-transformed according to

sb(✓, p) = � log

✓
mb(✓, p)

m0,b(✓, p)

◆
, (4)

where m0,b is the number of photons without object.

B. The polynomial model

We look for a a simplified model of the inverse mapping
(A1, ..., Am) = ��1(s1, ..., sB). We choose a polynomial
model. Each material sinogram Am is approximated by a
polynomial  m,D of degree D in the variables (s1, ..., sB).
Formally,

Am ⇡  m,D(s1, ..., sB) =
X

|k|d

c
k
ms

k (5)

where k = (k1, ..., kB) is a multi-index, |k| = k1 + ... + kB

and s
k = s

k1
1 ...s

kB
B . We define N(D,B) the total number of

coefficients of a polynomial of degree D in B variables, e.g.,
N(2,2)=6 and N(3,2)=10. Note also that the coefficients c

k
m

must be determined for each basis material m. If D, B and M

are fixed, M ⇥ N(D,B) coefficients have to be determined.
For example, if B = 2, M = 2 and D = 3, we seek 2 ⇥
N(3, 2) = 20 coefficients. Note that the same polynomial is
applied to all the pixels of the sinogram Am, i.e., that the
source spectrum and the detector response are uniform over
the beam and the detector, respectively.

C. The consistency metric
In 2D parallel geometry, the sought Am are the Radon

transform of the material map am

Am(✓, p) =

Z

L(✓,p)
am(~x) d~x =

Z

R
am(p~✓ + q~✓

?) dq (6)

where ~✓ = (cos ✓, sin ✓) and ~✓
? = (� sin ✓, cos ✓) are

perpendicular.
To account for the spectral nature of the decomposition

problem, we combine the material sinograms Am into mono-
energetic sinograms Cn, in view of applying the consistency
metric to them. We choose N energy levels En in the energy
range of the source and form the mono-energetic sinograms
Cn

Cn(✓, p) =
MX

m=1

fm(En)Am(✓, p). (7)

The coefficients fm(En) are known (see Equation 1).
A consistency condition of the Radon transform states that

the integral of each projection (the order-0 moment) does
not depend on the projection angle ✓ since each of these
integrals equals the integral of the attenuation coefficient over
the object. We define the moment Jn(✓) of the Cn by

Jn(✓) =

Z

R
Cn(✓, p) dp =

NX

n=1

fm(En)

Z

R
Am(✓, p) dp (8)

We use the variance of Jn to evaluate if Jn is constant over
⇥. The consistency function hence reads:

`n(c) =
1

|⇥|
X

✓2⇥

(Jn(✓)� Jn(✓))
2 (9)

where Jn(✓) denotes the mean of Jn over all ✓. Note that
the function `n depends on the polynomial coefficients c =�
c
k
m

�
since all Am do (see Equation 5). Finally, we define M

consistency functions `0m(c) on the material sinograms Am

in a similar way. The final consistency metric accumulates the
consistency of all computed mono-energetic sinograms and all
material-specific sinograms

`(c) =
NX

n=1

`n(c) +
MX

m=1

`
0
m(c) (10)

The consistency metric would evaluate to zero on perfectly
consistent material sinograms.

D. Minimization
Due to the hardening of the beam in each bin (see e.g. [8]),

the measured attenuations sb do not satisfy the consistency
condition. The loss ` is minimized with respect to the coef-
ficients c to achieve mono-energetic and material sinograms
which are as consistent as possible.

Since we use only order-0 consistency conditions, a constant
sinogram (i.e. Am(✓, p) = constant for all ✓ and p) is
perfectly consistent. To prevent the minimization to output
such undesirable solution, we follow the idea of [8] and
constrain the minimization by some known values. First, if
there is no attenuation in all bins (sb = 0, 8b 2 {1, ..., B}),
we enforce 0 in all material and mono-energetic sinograms by
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Fig. 1. The low-energy (LE) and high-energy (HE) spectra.

setting c
0
m = 0 for all m. Second, there still is a trivial solution

to the minimization of the consistency loss function: the null
sinogram. We enforce, for each material m, a particular value
in one voxel of each reconstructed material map am. To this
end, a small sample of each material is placed in the field-of-
view and a reconstruction from raw data is computed. The
small samples are easily identifiable in the reconstruction.
Let ~xm be one voxel in each material sample and assume
reconstructions are computed with a standard Filtered Back-
projection (FBP) algorithm. Since FBP is a linear operation,
one has

am(~xm) = FBP

0

@
X

|k|d

c
k
ms

k

1

A (~xm) =
X

|k|d

c
k
mFBP(sk)(~xm).

(11)
The values FBP(sk)(~xm) are easily computed once, before

the minimization. Each material map is constrained by exactly
M relations, which take the form

X

|k|d

c
k
mFBP(sk)(~xm0) =

⇢
0 if m 6= m

0

1 if m = m
0 (12)

III. NUMERICAL EXPERIMENTS

A. Simulation of data
Numerical experiments used a 2D phantom made of an outer

water disc of diameter 32 mm and five bone inserts (with
diameters ranging from 2 to 5 mm), placed inside the water
disc (see Figure 2). Two tiny inserts of bone and water (1 mm
in diameter each) were placed outside the phantom. One voxel
in each insert was chosen for the constraints. The material
sinograms Am were analytically computed with RTK [9]. The
simulated sinograms had 700 pixels with 0.05 mm spacing
and 720 projections over a 180� angular range. Two effective
spectra were used. The low-energy (LE) and high-energy (HE)
spectra had a tube-voltage of 80 keV and 120 keV respectively
(Figure 1). Without object, the detector received a total number
of photons of 1.3⇥106 and 2.9⇥106 photons for the LE and
HE spectra respectively. The photon counts mb were computed
by applying Equation 2, then log-transformed according to
Equation 4.

The degree of the sought polynomials was fixed to D = 3
and the consistency metric Equation 10 was minimized un-
der the constraints defined above, with the Sequential Least
Squares Programming algorithm. The total number of esti-
mated polynomial coefficients was 18. The initial guess was
always set to zero for all coefficients.

B. Evaluation methods

Our method was compared to the calibration from a set
of dedicated measurements with the same LE and HE spectra
over a set of water and bone lengths. The set covered all com-
binations which were present in the phantom. More precisely,
100 equi-spaced lengths of each material were measured.
Water lengths ranged from 0 to 32.6 mm and bone lengths
ranged from 0 to 10.97 mm. All these combinations were
irradiated with the same LE and HI spectra as the phantom.
Then the polynomials  ̃m,D were fitted to the calibration data
and further applied to the phantom data to produce a reference
polynomial decomposition.

We compared the poly-energetic reconstructions from raw-
data with mono-energetic images computed from our DCC-
based material maps and from the reference calibrated material
maps.

IV. RESULTS

A. Noise-less data

Results of the decomposition are shown in Figure 2. Water
and bone are adequately separated. The profiles in Figure 2
(bottom row) indicate residual cross-talk between the two
material maps. In the center of the water phantom, the low-
constrast feature is visible.

0 250 500 750 1000

Voxel index (water)

0

1

a
m

dcc
calib

0 250 500 750 1000

Voxel index (bone)

0

1
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calib

Fig. 2. Top: Material map obtained with the DCC-based decomposition.
Grayscale is : 1 ± 0.3. The red line indicates the profile used in Figure 4.
Botoom: Profiles along the red line for the DCC-based and the calibrated
water (left) and bone (right) maps. The consistency metric at convergence
was `(c) = 0.0208. If evaluated on the calibrated sinograms, the consistency
function was 0.0018.

Since the consistency is enforced on the mono-energetic
images, Figure 3 compares poly-energetic images, DCC-based
and calibration-based mono-energetic images. Poly-energetic
images clearly suffer from severe beam-hardening, which is
almost completely corrected on both mono-energetic images.
The profiles presented in Figure 4 reveal that the DCC-based
and calibrated 40 keV images can hardly be distinguished. A
slight discrepancy between the 80 keV images still subsists
though, especially in the vicinity of the border of the phantom.
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Fig. 3. Poly-energetic reconstructions (left) from LE (top) and HE (bot-
tom) data. DCC-based (middle) and calibration-based (right) mono-energetic
images at 40 keV (top) and 80 keV (bottom). Grayscale for all images :
0± 250HU.
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Fig. 4. Profile poly-energetic reconstructions from raw data and from mono-
energetic images computed from DCC-based and calibrated material maps.

B. Robustness to noise
The photons count measurements mb were corrupted with

Poisson noise according to Equation 3. The reference photon
flux is given by the spectra in Figure 1, i.e. 1.3 ⇥ 106 and
2.9⇥106 photons for the LE and HE spectra respectively. The
noise level was set by reducing the total number of emitted
photons by a factor 1, 10 and 100. The influence of noise
on the material maps is presented in Figure 5. The quality of
the images is significantly degraded. The consistency function
value at convergence increases with the level of noise. It is
0.2108 for reference noise level (factor 1), 1.4738 at factor 10
and 12.815 at factor 100. We expect the choice of the reference
voxel to play a critical role in the presence of heavy noise.

V. DISCUSSION AND CONCLUSION

We have demonstrated a consistency-based material decom-
position, which does not require any calibration procedure.
Only the raw data and a tiny a priori knowledge on the object
are sufficient to produce material specific sinograms. This tiny
a priori can be implemented in practice by placing inserts in
the field-of-view of the scanner. The resulting sinograms are
free from beam-hardening. The method achieves (on simulated
data) results that are close to those obtained with a standard
calibration-based decomposition method.

The influence of the choice of the reference voxels in the
reconstruction may play a critical role and should be further

Fig. 5. Mono-energetic images at 40 keV (top) and 80 keV (bottom), for
Poisson noise with photon counts donwscaled by a factor 1, 10 and 100
(from left to right). Grayscale for all images : 0± 250HU. The consistency
function at convergence was `(c) = 0.2108, 1.4738, 12.815 for factor 1, 10
and 100 respectively.

investigated. By choosing a voxel in the reconstruction as a
reference, we indirectly incorporate in the constraint all the
projections values from lines passing through the voxel (with
filtered back-projection, all the lines are incorporated but the
ramp filter drops rapidly, so mainly the lines through the voxel
are). If those lines “see” a wider range of length combinations,
we expect that the decomposition is improved.

Finally, we used a parallel geometry for its simplicity. But
order-0 DCC are also available for divergent beam 3D data.
In [8], they use such DCC to correct beam-hardening in a
circular acquisition. We expect that the decomposition method
presented in this work generalizes to multi-energy divergent
projections.
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I. DESCRIPTION OF PURPOSE 

HOTON counting detector (PCD)-based computed 
tomography (CT) has great potential for many clinical 

applications [1-3]. However, one of the challenges is spectral 
distortion in the PCD due to pulse pileup (PP). In this work, 
we propose a modification of the conventional photon 
counting technique, direct binning, that makes it more 
resilient to PP.  This study consists of two parts: the first 
on comparing direct binning to the existing scheme in the 
presence of PP; and the second on the agreement with 
counting statistics models.  

Detection schemes: To handle intense x-ray flux, most 
of the current PCDs with multiple energy windows count 
x-ray photons using a relatively simple scheme: pulse 
height analysis (PHA) with threshold-and-subtract (TS). 
Each counter counts up-crossing events when pulses 
exceed the corresponding energy threshold. After a set 
time period such as 200 µs corresponding to a single view 
of the sinogram, the counters’ data are read out and the 
outputs of the adjacent energy threshold are subtracted to 
produce the number of pulse peaks within the two-sided 
energy window.  

As shown in this study, the conventional TS scheme 
does not function as intended when PP is severe. In this 
study, we report that a PHA with direct binning (DB) 
scheme has advantages over a PHA with TS scheme.  

Counting statistics models: Accurate statistical models 
of PCD data are critical for statistical estimation 
methods. In previous studies, statistical models for the 
expectation and variance (and covariance) of total counts 
(and energy window outputs) have been derived for a few 

 
KT is with the Johns Hopkins University School of Medicine (Baltimore, 

Maryland, USA); SSH is with Mayo Clinic (Rochester, MN).  

simple detection schemes such as non-paralyzable and 
paralyzable detection schemes. In this study, we assess 
the agreement between DB and TS schemes with the 
models.  

II. METHODS 

We outline TS and DB in Sec. II.A, statistical models in Sec. 
II.B., and the assessment schemes in Sec. II.C.  

A. TS and DB 
A diagram of PHA with DB scheme is shown in Fig. 1. The 

only difference from that of PHA with TS is the additional NOT 
and AND logical operators. Note that DB does NOT actively 
detect pulse peaks. Many active pulse peak detection 
schemes—such as taking a derivative of the pulse train and 
detecting its zeros—may be susceptible to electronic noise. 
Instead, DB uses up-crossing events as other PHAs and 
the status of an adjacent comparator to decide whether or 
not the corresponding counter should be incremented. It 
is a very simple modification from the PHA with TS.  

When PP is severe and the pulse shape has a finite 
width, the baseline may be elevated to above zero when 
a new pulse arrives. This baseline elevation and its 
fluctuation over time may result in strange measurements 
with TS such as negative counts as shown in Fig. 2.  

B. Statistical models 
Let M be the total counts per reading. For both non-

Katsuyuki Taguchi and Scott S. Hsieh  

Direct binning for photon counting detectors  

P 

 
Fig. 1.  A diagram for the pulse height analysis (PHA) with direct binning 
(DB) scheme for one pixel. A timer is associated with each threshold; every 
up-crossing event changes the status of the threshold from ‘waiting’ to 
‘counting,’ and starts the timer. When the timer reaches a preset time Tw, 
the status of counter k and the inverse status of counter (k+1) go through 
AND operation and adds one count at counter Ck if the outcome is TRUE.  
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‘&’: Logical ‘AND’ operator
‘o’: Logical ‘NOT’ operator

 
Fig. 2.  The same pulse train generated by 12 incident photons (M=12) and 
processed by PHA with two different schemes, TS (A) and DB (B). The 
threshold counters of TS output counts (Nk) of 5, 8, 3, and 0 for 4 thresholds, 
from which the number of pulse peaks for four energy windows (Mk) are 
computed as –3, 5, 3, and 0, respectively. Notice a negative count (–3) at 
window 1. The total number of counts is the output of the lowest energy 
threshold (N1) and it is 5, which is lower than true counts (M=12). The DB 
ignores up-crossing events marked by ‘#’ because the above threshold is in 
‘counting state’ when the timer reaches Tw. The four DB window outputs 
(Mk) are 3, 6, 3, 0, respectively. The total counts is a sum of all of the 
window outputs, and it is 12, which is the same as the true counts (M=12).  
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paralyzable and paralyzable detection models, the expectation 
of M has been derived by Knoll [4] as  
!(#) = #!" × #

#$%&     (non-paralyzable)     (1) 
!(#) = #!" × '()(−+,),  (paralyzable)      (2)	

where at is a relative incident count rate (dimensionless) and 
Min is the number of incident photons per reading. The variance 
model has been derived by Yu and Fessler [5, 6] as 
.+/(#) = #!" × #

(#$%&)!,   (non-paralyzable)   (3) 

.+/(#) = 0#!" × '()(−+,)1 × 01 − 2+,	'()(−+,)1.  
 (paralyzable)      (4) 

Let Mk be the output of energy window k per reading. The 
expectation of window data, !(#)), has been proposed by for 
various detection schemes—both non-paralyzable and 
paralyzable detectors by Taguchi, et. al. [7, 8], up-crossing 
detectors by Roessl, et. al., [9]—and we omit them due to 
limited space.   

To our knowledge there is only one model for variance and 
covariance of Mk proposed by Wang, et. al., [10]. Wang made 
the following assumptions: (a) impulse pulse shape, (b) input 
pulses being not correlated, and (c) non-paralyzable detectors. 
A finite pulse shape such as Gaussian violates assumption (a); 
charge sharing violates (b); and paralyzable detectors or PHA 
DB violates (c). Based on these assumptions, the selection of 
window k of any pulse can be considered as a multinomial 
selection of k with a probability of [b1, b1, …, bk, …]. Thus, the 
expectation of can be calculated as 
!(#)) = 4)!(#).                (5) 

The variance of Mk depends on M, which is itself a random 
variable. Using the law of total variance, the variance is given 
as  

.+/(#)) = !0.+/(#)|#)1 + .+/0!(#)|#)1 = ⋯ 
= 4)!(#) + 4)*0.+/(#) − !(#)1.        (6)	

Similarly, covariance is given as  
89.(#) , #)+) = 4)4)+0.+/(#) − !(#)1.      (7) 

C. Monte Carlo simulation  
A Monte Carlo (MC) simulation was performed to compare 

two detection schemes: PHA with DB and PHA with TS; the 
time window Tw for DB was set at 10 ns, which is a half of 
pulse duration time (20 ns). We used a cadmium telluride PCD 
with a pixel size of (300 µm)2, a thickness of 1.6 mm, 4´4 
pixels, 4 energy thresholds at (20, 45, 70, and 95 keV), a charge 
cloud with a diameter of 36 µm, and an asymmetric Gaussian-
like pulse shape. The x-ray spectrum was 140 kVp with some 
window filter and 10 cm of water. Tube current value were 1, 
10, 50, 100, 200, 400, …, 2,000 mA and a tube current–time 
product (mAs) was fixed at 2´10–2 mAs/reading (e.g., 200 µs 
for 100 mA). A sum of 4´4 pixels were computed to produce 
super-pixel data for each reading. 2,200 noise realizations were 
used for each mA setting except for 1,600 noise realizations for 
1 mA.  

The mean, variance, and covariance of MC data, both total 
counts M and window data Mk, were calculated. A thousand 
bootstrapping samples were used to their standard deviations.  

The Cramér–Rao lower bounds (CRLB) of the following 

three spectral tasks were computed by adding a thin additional 
attenuator of water, bone, and a K-edge material (tungsten) and 
repeated the above–described processes.  

III. RESULTS 

A. Total counts M  
E(M): Overall, DB had a better count rate curve (CRC) than 

TS (Figs. 3A–3B). Both DB and TS had a better agreement with 
paralyzable detection model than with non-paralyzable 
detection model. The estimated detector deadtime for 
paralyzable detection model was 12.7 ns for DB and 17.7 ns for 
TS; DB had a 28% shorter deadtime. The maximum count rate 
was 350´106 counts per second (cps)/mm2 for DB and 220´106 
cps/mm2 for TS; DB had 59% larger peak counts.  

var(M): Both DB and TS had a reasonably good agreement 
with paralyzable detection model, and they are better than those 
with non-paralyzable detection model (Figs. 3C–3D).  

Plots of mean and variance of M showed that at 1 mA, the 
var(M) of MC data were larger than that predicted by the 
paralyzable model by ~30% due to double-counting with charge 
sharing, and the differences were diminished as increasing the 
tube current (Figs. 4A–4B).  

B. Window outputs Mk  
E(Mk): Probabilities of window k, bk, were obtained from MC 

data and Wang model Eq. (5) was used to compute E(Mk). Both 
DB and TS had an excellent agreement with the model (Figs. 
4C–4D). Notice that windows 1 and 2 of TS had negative counts 
(Fig. 4C), and we believe that it was attributed to elevated 
baseline due to severe PP, as predicted by Fig. 2.  

var(Mk): DB had an outstanding agreement with the model 
except for window 1 with <500 mA (Fig. 4F). We believe that 
the discrepancy was attributed to the charge sharing, i.e., 
double-counting increasing the variance. In contrast, TS had 

 
Fig. 3. Count rate curves (A,B) and variance of total counts (C,D). The data 
up to 800 mA were used to estimate deadtime t for both paralyzable (P) 
detector and non-paralyzable (NP) detector, and they were 17.7 ns and 25.9 
ns, respectively, for TS and 12.7 ns and 17.2 ns, respectively, for DB. The 
maximum count rate was 220´106 counts per second (cps) per mm2 for TS 
and 350´106 cps/mm2 for DB.  
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significantly higher variances than the model in general and the 

agreement was poor (Fig. 4E).  

cov(Mk, Mk’): DB had an excellent agreement with the model 

(Figs. 4H, 4J); however, TS had a very poor agreement with the 

model and covariance values were negative and significantly 

lower (hence, they were larger in magnitude) (Figs. 4G, 4I).  

The covariance between window data would be zero when 

all the data were Poisson distributed. The covariance was 

positive at lower count rates, as charge sharing was the 

dominant cause of non-zero covariance. The covariance was 

negative at higher count rates, as PP was the dominant cause. 

The break-even point seems to be 100–200 mA.  

Overall, DB had a much better agreement with the model and 

variance and covariance values were lower than TS in general.  

C. CRLB of three spectral tasks 
Conventional CT imaging: Water thickness estimation was 

used as conventional CT imaging (Figs. 5A, 6A). DB had lower 

nCRLB values up to 1,100 mA, then higher values >1,100 mA. 

At 600 mA, DB had 10% lower nCRLB than TS (Fig. 6A).  

The nCRLB with 1 threshold (window bin) was qualitatively 

similar to 4 windows, with differences between DB and TS 

significantly larger than the 4 windows case. 

Water–bone material decomposition imaging: DB had lower 

nCRLB values up to 1,500 mA than TS (Fig. 5B) and at 1,000 

mA DB was 30% better than TS (Fig. 6B).  

K-edge imaging: DB had better nCRLB values throughout 

the tube current range investigated (Figs. 5C, 6C), although the 

nCRLB ratio appeared to be near minimum at 2,000 mA (Fig. 

6C). At 2,000 mA, DB was 68% better than TS (Fig. 6C).  

As the complexity of spectral tasks increased from 

conventional CT imaging to K-edge imaging, the advantage of 

DB over TS increased and so did the tube-current point at which 

the two schemes crossed over and had equivalent performance.    

IV. DISCUSSION  

The proposed DB scheme was 28% faster than TS (if 

measured by deadtime) or 59% faster (if measured by the 

maximum count rate). Tube current values used in clinic would 

be up to 1,000 mA. Within this range and under the assumptions 

of our Monte Carlo model, DB was superior to TS with respect 

to variance and covariance of total counts and window outputs, 

normalized CRLBs of three spectral tasks, and the agreement 

with Wang’s model on variance and covariance of window 

data. DB scheme is relatively simple because only timers and 

logical operators were added to TS. In contrast, an active peak 

detection scheme, which takes a derivative of pulse train and 

aims to find zero, requires additional pulse processing circuitry 

and may be sensitive to noise.  

We found it very interesting that Wang’s variance and 

covariance model agreed with DB data very well, even though 

any of the three assumptions (a)–(c) used in the model (see Sec. 

II.B) were satisfied by neither the MC simulation nor DB 

scheme. Having a good agreement with the model may be 

valuable when constructing a model-based algorithm with PHA 

DB data.  

As shown in this study, TS scheme does not function as 

intended when PP is severe. There were negative E(Mk), 

excessive var(Mk), and negatively large cov(Mk, Mk’). The 

source of these problems can be understood to be is the 

 
Fig. 4.  E(M), var(M), E(Mk), var(Mk), and cov(Mk, Mk’) of DB and TS data and those predicted by the model  

  

 
Fig. 5.  The normalized CRLB (nCRLB) for 3 spectral tasks  

  

Tube current (mA) Tube current (mA) Tube current (mA)

(A) nCRLB, conventional CT (B) nCRLB, water–bone (C) nCRLB, K-edge imaging

TS, 4 bins

DB, 4 bins

TS, 1 bin DB, 1 bin

TS, 4 bins

DB, 4 bins

TS, 4 bins

DB, 4 bins

 
Fig. 6. The ratio of nCRLB for DB to that for TS for 3 spectral tasks  

  

(A) nCRLB ratio, conventional CT (B) nCRLB ratio, water–bone (C) nCRLB ratio, K-edge imaging

(DB 1 bin)/(TS 1 bin)

(DB 4 bins)/(TS 4 bins) (DB 4 bins)/(TS 4 bins) (DB 4 bins)/(TS 4 bins)
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elevation and fluctuation of the baseline.  
One may postulate, with no proof provided yet, that a use of 

baseline restoration (or baseline holder) might be able to 
decrease, although not eliminate, the negative effects observed 
with TS. It would also improve the spectral distortion with DB 
data as well. The results would strongly depend on a specific 
design of baseline restoration. The variance and covariance of 
Mk with baseline restoration has never been studied, and it will 
be an interesting topic of future work.  

V. CONCLUSIONS 

We have studied the PHA with DB scheme and found that DB 
had several advantages over the conventional scheme, TS. At 
low to moderate flux, DB could improve the resilience of 
PCDs to PP. For example, for a case where a 10 cm water 
object is imaged at 800 mA, our simulations predict that dose 
efficiency for conventional CT imaging, water–bone material 
decomposition imaging, and K-edge imaging is improved by 
4%, 26%, and 18% respectively.  
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Abstract—Developing novel contrast agents for multi-energy 

photon-counting (PC)CT will require a clear translation pathway 
from preclinical validation to clinical applications. To begin this 
development, we have used a clinical PCCT scanner (Siemens 
NAEOTOM Alpha) to study the spectral separation of a few 
contrast elements (Iodine, I; Gadolinium, Gd; Hafnium, Hf; 
Tantalum, Ta; Bismuth, Bi; Calcium, Ca) with currently available 
scanning protocols (fixed: 120 kVp, 20 and 65 keV thresholds). We 
also explored the capabilities of clinical and preclinical PCCT to 
image mice with hind limb sarcomas injected with I- and Gd-
containing nanoparticles (NP). Our results indicate that Ta or Hf 
are complementary to I or Gd, providing excellent spectral 
separation for future multi-agent studies. Based on preclinical 
PCCT with four energy thresholds, we also conclude that 
additional energy thresholds will benefit clinical PCCT. 
Furthermore, we demonstrate the role that multi-channel 
denoising and reconstruction algorithms will greatly benefit 
maximizing spatial and spectral resolution with clinical PCCT. 
Performing co-clinical research will facilitate the translation of 
novel imaging algorithms and NP contrast agents for PCCT. 

I. INTRODUCTION 
hoton-counting detectors (PCD) can significantly improve 
CT contrast and enable quantitative material separation 

with a single CT scan. Because of these advantages, the 
maturation of PCCT technology promises to enhance routine 
CT imaging applications with high-fidelity spectral 
information. This enhancement has been demonstrated in large 
animal [1] and rabbit [2] studies using prototype clinical 
hardware. Our group has advanced preclinical PCCT by 
building prototype systems and demonstrating their value in 
cancer [3] and cardiac [4] studies in mice. The full potential of 
PCCT has not yet been realized, since it is dependent on the 
development and clinical translation of new contrast agents. 
Here, we investigate spectral separation of high Z element 
contrast materials using PCCT, and we demonstrate a co-
clinical paradigm for PCCT research to translate preclinical 
validation experiments to clinical applications [5]. 

II. METHODS 
Conducting phantom experiments is crucial to the 

assessment of imaging performance. We next introduce the 
imaging systems and our multi-element phantom. We then 
present ex vivo imaging studies in mice.  
 

C. T. Badea, D. P. Clark, and A. Allphin are with the Quantitative Imaging 
and Analysis Lab, Dept. of Radiology while Y. M. Mowery is with the Dept. of 
Radiation Oncology at Duke University, Durham, NC 27710. P. Bhandari and 
K. B. Ghaghada are with the Baylor College of Medicine, and Texas Children’s 

A. Clinical PCCT 
A phantom (Fig. 1) containing solutions of various contrast 
elements was prepared using a stock solution of 10 mg/mL 
elemental standard to prepare subsequent dilutions (Iodine, I; 
Gadolinium, Gd; Hafnium, Hf; Tantalum, Ta; Bismuth, Bi; 
Calcium, Ca). Dilutions were prepared in 2% nitric acid. For 
imaging studies, 50 mL centrifuge tubes were filled with 
solutions at concentrations of 10, 5, 2.5, 1.25, and 0.625 
mg/mL. Our experiments used an FDA-approved clinical 
PCCT system (Siemens NAEOTOM Alpha) installed at Duke. 
The scans were performed at 120 kVp with a spiral pitch of 0.8 
and used two fixed energy thresholds at 20 and 65 keV. The 
dose was 16 mGy. The phantom and mouse images were 
reconstructed with a dual-energy (DE) protocol using a Qr40 
kernel and a voxel size of 0.29x0.29x0.4 mm, which yielded 70 
keV virtual monoenergetic CT images (VMI) and two binned 
images (low energy, 20-65 keV; high energy, 65-120 keV). The 
reconstructed matrix size was 512x512. The reconstructed data 
was also decomposed on the scanner to create I maps overlaid 
on virtual non-contrast (VNC) images. The binned images 
allowed alternative material decompositions.  
 

Fig. 1. The elements phantom: (A) a photo, (B) CT image corresponding to 
VMI at 70 keV and showing measurement circular ROIs, and (C) the iodine 
decomposition map (red) overlaid on top of the VNC image. Note that the I map 
also shows positive enhancement for Gd, Bi, and Ca; however, the Hf and Ta 
vials are clearly separated from I.  
 
A second ex vivo mouse scan was performed to achieve higher 
spatial resolution (0.15x0.15x 0.2 mm, kernel Qr 98u). The 
radiation dose was increased to 64 mGy to reduce noise. The 
scanner reconstructs 70 keV VMI images, but does not 
currently reconstruct separate bin images or perform material 

Hospital, Houston, Tx.. J. C. Ramirez-Giraldo is with Siemens Healthineers 
Contact: cristian.badea@duke.edu. This work was supported by the NIH (R01 
CA196667, U24 CA220245, RF1 AG070149). 
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multi-contrast imaging  
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decomposition for this high resolution scanning mode. For both 
the high and low resolution clinical images we performed post-
reconstruction denoising using our rank-sparse kernel 
regression algorithm [6]. 

B. PC Micro-CT  
Our PC micro-CT system contains two imaging chains based 
on using both an energy-integrating detector and a PCD [3]. 
Each chain uses a G-297 X-ray tube (Varian Medical Systems, 
Palo Alto, CA) with a 0.3 mm focal spot size powered by an 
Epsilon high-frequency X-ray generator (EMD Technologies, 
Quebec, Canada). For this work, we have used only the imaging 
chain with a SANTIS 1604 CdTe-based PCD developed by 
Dectris, Ltd. (www.dectris.com). This detector has 150-μm 
pixel size and four energy thresholds. The source-to-detector 
distances were 831 and 680 mm, giving a magnification of 
approximately 1.2. To extend the PCD field-of-view along the 
z-axis and to reduce ring artifacts in our reconstructions, the 
subject was placed on a translational stage, and scans were 
performed using a helical trajectory. Our selection of kVp (120) 
and energy thresholds (20, 34, 50 and 65 keV) was based on the 
clinical scanner settings. The first and the last threshold (20 and 
65 keV) were selected to match the clinical thresholds, while 
the other two were intended to match I (33.2 keV) and Gd (50 
keV) K-edges. We used 200 ms exposures and 1 mA for each 
projection and 900 projections at each threshold. Based on 
ionization chamber measurements, the absorbed radiation dose 
was ~100 mGy. The projection data were air normalized, and 
the gaps between the tiles of the PCD were filled via 
interpolation.  
  Image Reconstruction: We performed an iterative 
reconstruction  using the split Bregman method with the add-
residual-back strategy [7] and rank-sparse kernel regression 
regularization (RSKR [6]), solving the following optimization 
problem:  

 X = arg min
X

1
2

∑ ‖RX𝑒 − Y𝑒‖2
2 + 𝜆‖X‖BTV𝑒 .  (1) 

This algebraic reconstruction problem solves for the vectorized, 
reconstructed data, the columns of X, for each energy threshold 
simultaneously (indexed by e). The reconstruction for each 
threshold minimizes the reprojection error (R, system 
projection matrix) relative to the log-transformed projection 
data acquired at each threshold (the columns of Y). To reduce 
noise in the reconstructed results, this data fidelity term is 
minimized subject to the bilateral total variation (BTV) 
measured within and between energies via RSKR. 

D. Material Decomposition  

Extending the approach of Alvarez and Macovski [8], we 
performed post-reconstruction spectral decomposition both on 
clinical PCCT and PC micro-CT data. On the clinical DE PCCT 
data, we studied the following basis material decomposition: a) 
I and Ca, b) I and Gd and c) I and Ta. Using the PC micro-CT 
data we have performed a) I and Gd decomposition using 20 
and 65 keV threshold images (unsubtracted) and b) 
photoelectric effect (PE), Compton scattering (CS), I and Gd 
decomposition using all 4 thresholds images. Vials of known 
concentrations of each material were used to construct a 
sensitivity matrix of enhancement per unit concentration 

(HU/mg/mL). Spectral decomposition was then performed by 
matrix inversion, followed by sub-space projection to prevent 
negative concentrations. After decomposition, the material 
maps were color coded and combined in ImageJ. 

 
Fig. 2. A bar plot of the DE indices shows highest positive values for I and Gd 
and negative values for Hf and Ta. 

C. Figures of merit 
We have assessed our noise performance by measuring the 

standard deviation in water vials. The sensitivity of DE CT to 
particular contrast materials can be quantified by the DE index 
computed as follows:  

 𝐷𝐸 𝑖𝑛𝑑𝑒𝑥 =  
𝑋𝐸1−𝑋𝐸2

𝑋𝐸1+𝑋𝐸2+2000
,  (2) 

where 𝑋𝐸1, 𝑋𝐸2 are the measured CT numbers normalized by 
concentration for each element at the two energies.  

Another figure of merit for material decomposition used here 
was the condition number of the sensitivity matrix (after unit 
normalization of each material’s sensitivity vector). The 
condition number is the ratio of the largest and smallest singular 
values of a matrix, and it quantifies the potential for error 
amplification when performing matrix inversion 
(decomposition). A better spectral decomposition would 
correspond to a lower condition number. 

D. Animal Experiments 
For the tumor imaging study, we used a transplant model of 

soft tissue sarcoma that resembles human undifferentiated 
pleomorphic sarcoma. A sarcoma cell line was generated from 
an autochthonous soft tissue sarcoma (p53/MCA model) 
induced in C57BL/6 wild type mice by intramuscular injection 
of adenovirus expressing Cas9 endonuclease and sgRNA to 
Trp53 gene (Adeno-sgp53-Cas9; Viraquest) followed by 
intramuscular injection of the carcinogen 3-methylcholenthrene 
(MCA)[9]. Transplant sarcomas were induced by intramuscular 
injection of 100,000 cells into the gastrocnemius muscle of 
C57BL/6 wild type mice Imaging studies were initiated when 
tumors were palpable (>6 mm diameter ). Liposomal-based 
contrast agents containing iodine (Lip-I) and gadolinium (Lip-
Gd) were fabricated similar to methods described 
previously[10]. Four mice with sarcomas were intravenously 
injected with Lip-Gd contrast agent (0.32 mg Gd/g body 
weight) by retro-orbital injection. Three days later (Day 3), the 
same animals were injected with Lip-I (1.32 mg I/g body 
weight) and shortly after they were euthanized. The mice were 
kept in formalin, and scanned with both clinical PCCT and PC 
micro-CT.  

III. RESULTS 

A. Elements Phantom 
Fig. 2 shows that I and Gd have the highest DE indices for 
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DE PCCT, and they can be separated best from Bone (Ca). 
Fig. 2 shows that I and Gd have the highest DE indices for DE 
PCCT, and they can be separated best from Bone (Ca). On the 
other hand, if another material could be used, Hf and Ta are best 
suited as they provide a negative DE index and therefore could 
be easily separated from either I or Gd. This can be explained 
by the positions of K-edges, i.e. for Ta (67 keV) and Hf (65 
keV) relative to the two thresholds. Original reconstructions 
and RSKR denoising results are shown in Fig. 3. After RSKR 
denoising, the noise measured in the water vial decreased from 
8.5 to 2.2 HU for the low energy threshold, E1, and from 10.6 
to 2.2 HU for the high energy threshold, E2. Subtraction shows 
no structural information, thus proving the edge preserving 
performance. For example, denoising for Ta improved the 
detectable concentration (Rose criterion, CNR > 5) from 4.5 
mg/mL to 1.25 mg/mL for E1 and from 6.5 mg/mL to 1.25 
mg/mL for E2. The images were used for I/Ca decomposition 
(condition number: 11.8).  

Fig. 3. (A) The original, RSKR denoised images and their subtractions for E1 
and E2. (B) In-house material decomposition into I (red) and Ca (green) for 
original and denoised images. The combined color maps and the subtractions 
are also shown.  

 
Fig. 4. (A) I/Gd and (B) I/Ta decompositions.  Note the better separation of I 
in the I/Ta decomposition, as predicted by the lower condition number. Note 
the 1.25 mg/ml I vial (yellow arrow). Hf vials are also very well separated 
from I. The decompositions were performed on denoised images.  

In Fig. 3, the I and Ca maps show levels of cross-contamination 
for vials of I with concentrations less than 5 mg/ml. Denoising 
improves the decomposition results; however, cross-
contamination (blue arrow) between I and Ca still exists. Most 
of the other elements are mapped to the Ca basis. 
Decomposition images for I/Gd and I/Ta are shown in Fig.4. 
The condition numbers were 13.63 for I/Gd and 5.14 for I/Ta. 
As confirmed by Fig.4B, the I/Ta provides the best separation 
with no significant cross-contamination in the I vials and the 
best visualization of the low concentration vials.  

B. Mouse scans 
Fig. 5 presents the results for PC micro-CT in one mouse 

with a sarcoma. The iterative reconstructions with RSKR 
ensure similar noise levels in all energy bins (std ~ 20 HU). We 
show decompositions corresponding to two energy thresholds 
(20, 65 keV; I/Gd maps) and all four energy thresholds (I, PE, 
CS, Gd). The tumor appears to contain undetectable Gd levels; 
however, the vessels containing I are enhanced, and the overall 
quality of the decomposition is increased when using data 
corresponding to four energy thresholds. 
 

 
Fig. 5. (A) PC micro-CT images of a mouse with a sarcoma tumor reconstructed 
with 4 energy thresholds. A yellow arrow indicates the tumor. The vasculature 
is enhanced by the presence of contrast agents. (B) DE decomposition to I/Gd 
maps and their overlaid display. (C) The I/PE/CS/Gd decomposition using all 
4 energy thresholds. 

 
In Fig. 6  we show a comparison of clinical PCCT and PC 

micro-CT. The full mouse was scanned with clinical PCCT and 
the I/Gd decompostion confirms the expected uptake of Gd in 
the liver and spleen. Note that only the lower part of the body 
with the tumor was scanned with the PC micro-CT. When using 
two energy bins, both the clinical and DE PC micro-CT data 
have been decomposed into I/Gd maps. However, the tumor 
does not show Lip-Gd accumulation. This may be due to the 
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lower concentration of Gd injected compared to I. Lip-I is 
present in the vasculature. The cross-contamination between 
the I and Gd appears to be higher when using DE PC micro-CT 
data. The four thresholds PC micro-CT data separated into 
I/PE/CS/Gd shows higher quality and displays smaller vessels 
in the tumor that are not visible in the DE PC micro-CT 
rendering (see yellow arrow, Fig. 6). 

Finally, in Fig. 7 we show a higher resolution scan of the 
mouse (voxel size of  0.15x0.15x 0.2 mm) scanned with the 
clinical PCCT system. The exisiting protocol provides only a 
single 70 keV VMI image for this setting. RSKR denoising 
reduces the noise standard deviation from 115 HU to 29 HU in 
soft tissue. Note how the resolution of the clinical PCCT 
approaches the level of resolution of the PC micro-CT scanner  
(compare with Fig. 5A). 

 
Fig. 6. A comparison of the clinical PCCT (A) and PC micro-CT (B) 
decompositions using 2 and 4 energy thresholds for the same mouse.  

IV. DISCUSSION AND CONCLUSIONS 
Our results indicate that Ta (Z=73, K-edge at 67 keV) and Hf 

(Z=72, K-edge at 65 keV) appear complementary to I and Gd, 
providing excellent candidates for multi-agent studies. Their 
superior performance is explained by their higher Z number and 
the proximity of their K-edges to the second threshold (65 keV) 
of the clinical PCCT scanner. Both Ta [11] and Hf [12] have 
been proposed as contrast agents for CT imaging. Although 
current spatial and spectral resolution is lower on the clinical 
PCCT compared to PC micro-CT, denoising and/or iterative 
reconstruction can enable spectral imaging at higher resolution 

and with more than two energies. By performing scans on both 
clinical and preclinical PCCT systems, we can bridge the 
translational gap for both imaging algorithms and the 
developments of new contrast agents including NPs that show 
promise in the field of cancer theranostics (combined therapy 
and diagnostics). 

 
Fig. 7.  (A) VMI from clinical PCCT. (B) Post-reconstruction denoising using 
RSKR. (C) A 3D rendering of the denoised set. 
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Reproducibility in dual energy CT: the impact of a
projection domain material decomposition method

Viktor Haase, Frédéric Noo, Karl Stierstorfer, Andreas Maier, and Michael McNitt-Gray

Abstract—Reproducibility of CT numbers represents an ongo-
ing challenge, especially in clinical applications where exams are
performed to assess disease progression or response to therapy.
Dual energy CT (DECT) offers an opportunity for improved
image quantification, but also presents unique issues. This work
presents an initial phantom study that investigates reproducibility
over time, across different scanners, and with regard to position-
ing of the phantom. Both an image domain and a projection
data domain material decomposition method are used to create
mono-energetic images from DECT data. The scanned object
is the ACR CT accreditation phantom. Images were evaluated
for reproducibility both inside the phantom inserts of module A
as well as in regions between the inserts, where image artifacts
are frequently visualized. The results demonstrate that artifacts
are worse for off-centered positions. They also demonstrate that
the data-based material decomposition provides comparable HU
numbers within the inserts of interest like the image-based
method, but provides substantially less artifacts and less HU
variability in regions surrounding the inserts across the different
phantom positions.

I. INTRODUCTION

Reproducibility of CT numbers represents an ongoing chal-
lenge, especially in clinical applications where exams are
performed to assess disease progression or response to ther-
apy. In these exams, comparison to a baseline or previous
exam is critical. When these applications involve quantitative
assessments (e.g., lung nodule density, emphysema scoring),
the reproducibility of HU across scans becomes critical. DECT
offers an opportunity for improved image quantification, but
also presents unique issues. Previously, we explored a projec-
tion data-based method for material decomposition that uses
an analytical energy response model to create mono-energetic
images from DECT data [1]. The purpose here is to investigate
how well this method performs in terms of artifacts and HU
variability in a phantom study. The investigation addresses
two potentially challenging conditions: 1) scan repetition on
another scanner with a three-year time difference, 2) changes
in the position and orientation of the phantom.

II. BACKGROUND

The methods to create mono-energetic images from DECT
data can be grouped into two categories: image-based and
data-based material decomposition approaches. In this work,
we are comparing both approaches by using a specific realiza-
tion of each of them which is shortly explained in this section.

V. Haase, and K. Stierstorfer are with Siemens Healthcare GmbH, Germany.
A. Maier is with the Department of Computer Science, Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany as well as V. Haase. F. Noo is with
the Department of Radiology and Imaging Sciences, University of Utah, Salt
Lake City, USA. M. McNitt-Gray is with the Department of Radiology, David
Geffen School of Medicine, University of California, Los Angeles, USA.

For the image-based approach, the material decomposition
takes place in the image domain, after the high and low energy
projection data sets are separately reconstructed. Here, we use
an an image-based decomposition approach that follows the
steps outlined in [2]. In short, two region of interests (ROIs)
are selected, each of which only includes pixels from one
of the two basis materials. For each kV setting, the mean
attenuation value of both ROIs is computed, then their ratio
is compared with a ground truth ratio to identify an effective
energy for the scan. Once the effective energy is known for
the high and low energy scans, the decomposition proceeds
on a pixel-by-pixel basis by inversion of a 2 × 2 system of
equations. The input groups the two pixel values observed
from the high and low energy scans. The matrix assembles
the linear attenuation coefficient (LAC) of each basis material
at the effective energy of the high and low energy scans. The
output gives the components along each basis material. Finally,
the pixel value in the mono-energetic image is obtained by
linearly combining the LAC of the two basis materials at the
desired energy using the obtained components.

For the data-based approach, the material decomposition is
performed directly from the projection data of the high and low
energy scans. The outcome of the decomposition is the line
integrals of the images whose pixel values are the components
along each basis material. Image reconstruction is taking place
after the decomposition and yields the components for each
pixel. The final step to create the mono-energetic image is the
same as in the image-based approach. In [1], we proposed a
data-based approach that uses an analytical energy response
model for the CT system. In this work, we use the same
method as it has shown robust results using real CT data.

III. EXPERIMENTAL SETUP

A. Baseline Experiments

We use module A of the ACR CT accreditation phantom
(model 464, Gammex-RMI, USA). Module A is a cylinder
of water-equivalent material with a diameter of 20 cm and a
length of 4 cm. It contains five cylindrical inserts representing
the X-ray attenuation behaviour of bone, polyethylene, acrylic,
air, and water. The chemical composition characteristics of
each material were provided by the phantom’s manufacturer.
In addition, the module shows horizontal ramps for slice
thickness evaluation and four 1mm diameter steel beads to
center the module in the z-direction. In 2018, the phantom
was scanned using a state-of-the-art CT system (SOMATOM
Definition AS+, Siemens Healthineers). All scans consisted
of 2304 projections at a fixed bed position using an in-
plane flying focal spot. The detector coverage was defined by
736 channels and 60 rows with a row width of 0.6mm. The
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dual energy scans were acquired sequentially, i.e., the high
and low energy scans were performed consecutively, with the
X-ray tube set to 120 kV and 300mAs, and to 80 kV and
500mAs, respectively. The phantom was placed so that the
center of module A closely matches the center of the scan
field of view (FOV). The scans were repeated ten times and
the average of the repeated scans was taken to reduce noise
in the data for easier image analysis.

The collected data was processed with both image-based
and data-based material decomposition methods explained in
Section II. The decomposition used the water-equivalent and
bone-equivalent materials that are used to create the water
and bone inserts in the ACR phantom. An offline filtered
backprojection implementation of the vendor’s own recon-
struction software was used for image reconstruction. A semi-
smooth kernel (D40s) that is recommended for quantitative
applications was systematically applied.

B. Experiments on Reproducibility
New scans were taken three years later, in 2021, using the

exact same phantom with a different scanner (SOMATOM
Definition Flash, Siemens Healthineers). The scan geometry
was the same except for the bowtie filter material and the beam
collimation, which was changed to 32 rows with a 1.2mm
row width, so that the energy response model used in the data-
based decomposition needed to be adjusted. The phantom was
scanned using three different positionings. The first one was
the same as that used for the baseline scan, i.e., the phantom is
centered in the scan FOV. The second one included a vertical
shift of 4.8 cm up. The last one included a counterclockwise
rotation of 45◦ together with a vertical shift of 4.8 cm.

All projection data was processed in the same way as
described previously to create mono-energetic images with the
image- and the data-based approaches. For the non-centered
positionings of the phantom, a shifted grid of pixels was used.

IV. RESULTS

A. Baseline Results
Fig. 1 shows the reconstructions of the high and low energy

scans used as baseline. Fig. 2 presents the mono-energetic
images at 70 keV, as obtained with the image- and data-based
decompositions. This energy was selected because it results in
the lowest amount of noise in the images. The image-based
decomposition leads to streak artifacts originating from the
metal beads and to a bright artifact between the bone and
the air insert, which is not present in the data-based result. To
convey the quality of the implemented material decomposition
approaches, Table I compares the mean attenuation value
within the inserts in the mono-energetic images of Fig. 2
against the corresponding ideal attenuation values.

B. Results on Reproducibility
Reconstructions of the new high and low energy scans in the

centered, off-centered, and off-centered and rotated position-
ings are displayed in Fig. 3 as an initial guide to interpret the
mono-energetic reproducibility results, which are presented in

[-40 40] HU

(a) 80 kV, centered

[-40 40] HU

(b) 120 kV, centered

Fig. 1. Reconstructed images of the baseline high and low energy scans.

[-40 40] HU

(a) Image-based decomposition

[-40 40] HU

(b) Data-based decomposition

Fig. 2. Mono-energetic images at 70 keV as computed from the baseline data,
using (a) image-based and (b) data-based material decomposition.

Fig. 4. For the centered phantom, the images in Fig. 4 have
an appearance similar to those from the baseline scans. When
the phantom is moved out of the centered position, strong
image artifacts around the bone insert can be observed in the
image-based approach. These artifacts appear either absent or
strongly reduced for the data-based approach.

For quantitative evaluation of the images in Fig. 4, Fig. 5 to
Fig. 7 provide profile plots for differences with the baseline
results. The mono-energetic images were registered to geo-
metrically match the baseline results; the registration used
cubic interpolation. Fig. 5 shows a circular profile around
the bone insert, which was created by using 360 small ROIs
around the bone insert, each with a radius of 5 pixels and
placed at the same distance from the center of the bone
insert. The differences in mean values for these ROIs are
plotted starting at the 12 o’clock position going clockwise.

TABLE I
MEAN LINEAR ATTENUATION VALUES WITHIN THE PHANTOM’S INSERTS

IN CM−1 , AS OBTAINED AT 70KEV USING THE BASELINE SCAN.
REFERENCE VALUES GIVEN BY NIST [3].

# ROI: Material Reference Image-based Data-based
1: Bone 0.3696 0.3735± 0.0000 0.3655± 0.0001
2: Polyethylene 0.1718 0.1756± 0.0000 0.1771± 0.0000
3: Acrylic 0.2172 0.2173± 0.0000 0.2184± 0.0000
4: Air 0.0002 0.0038± 0.0000 0.0035± 0.0000
5: Water 0.1916 0.1935± 0.0000 0.1935± 0.0000
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[-40 40] HU

(a) 80 kV, centered

[-40 40] HU

(b) 120 kV, centered

[-40 40] HU

(c) 80 kV, off-centered

[-40 40] HU

(d) 120 kV, off-centered

[-40 40] HU

(e) 80 kV, off-centered + rotated

[-40 40] HU

(f) 120 kV, off-centered + rotated

Fig. 3. Reconstructed images for the new, high and low energy scans for
the centered, off-centered, and off-centered and rotated positionings of the
phantom.

The plots reveal more important deviations for the image-
based approach than the data-based approach. For example,
the image-based approach yields differences of −20 to 13HU
for the off-centered positioning of the phantom that only are
of −6 to 5HU when the decomposition is performed in the
data domain. A second circular plot was created around the air
insert in a similar manner as around the bone. Fig 6 shows that
errors around the air insert are always in an acceptable range of
−5 to 5HU. It also shows that the results for the image-based
approach are slightly better than for the data-based approach:
for the off-centered positioning of the phantom, the curve for
the data-based approach has a standard deviation of 2.03HU
while that for the image-based approach is 1.21HU. A third
profile plot is presented in Fig. 7, showing a thick horizontal
profile, located below the bone insert within the main body
of the phantom. Again, higher deviations from the baseline

[-40 40] HU

(a) centered, image-based

[-40 40] HU

(b) centered, data-based

[-40 40] HU

(c) off-centered, image-based

[-40 40] HU

(d) off-centered, data-based

[-40 40] HU

(e) off-centered + rotated, image-based

[-40 40] HU

(f) off-centered + rotated, data-based

Fig. 4. Mono-energetic images at 70 keV from the new scans: (left) image-
based and (right) data-based material decomposition. Top to bottom: centered,
off-centered, and off-centered and rotated positionings of the phantom.

result can be observed when the image-based decomposition
is used. We have also compared the mean values within the five
inserts. The results (not shown here) convey that both image-
and the data-based decomposition yields similar accuracy, with
all absolute differences less than 5.0HU.

V. DISCUSSION AND CONCLUSION

We presented an initial phantom study investigating artifacts
and reproducibility in HU that result from applying a method
we previously presented for DECT with material decomposi-
tion in the data domain. The investigation included changes
over time and scanner, as well changes in phantom positioning.
This study demonstrates that our data-based decomposition
shows promise as it globally produces more robust results than
an image-based material decomposition. Future direction in-
volves extending the method to helical scanning and extending
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(b) Image-based decomposition
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(c) Data-based decomposition

Fig. 5. Quantitative analysis using a circular profile plot around the bone insert. The plots show the difference in mean ROI values relative to the baseline
result. The position of the ROIs is highlighted in red in the left image. The angular location of the ROIs starts at the 12 o’clock location and moves clockwise.
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(b) Image-based decomposition
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(c) Data-based decomposition

Fig. 6. Quantitative analysis using a circular profile plot around the air insert. The plots show the difference in mean ROI values relative to the baseline result.
The position of the ROIs is highlighted in red in the left image. The angular location of the ROIs starts at the 12 o’clock location and moves clockwise.

[-40 40] HU

(a) Location of horizontal profile

100 150 200 250 300 350 400

Horizontal Pixel No.

-20

-15

-10

-5

0

5

10

15

20

D
iff

e
re

n
ce

 in
 M

e
a
n
 V

a
lu

e
 [
H

U
]

New

New, Off

New, Off+Rot

(b) Image-based decomposition
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(c) Data-based decomposition

Fig. 7. Quantitative analysis using a thick profile that averages values over 31 neighboring horizontal lines within the phantom. In the left image, the central
line of the profile is marked with a solid line and the vertical range with dashed lines. The plots show the difference relative to the baseline results.

the investigation to other challenges affecting reproducibility
such as physiologic motion and imaging with contrast agent.
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Abstract— Cardiac CT is a useful tool for cardiovascular 

diagnostics that offers different acquisition modes, each with its 
advantages. The development of direct converting detector 
technology has resulted in the clinical translation of dual-source 
photon-counting CT. This takes advantage of the improved image 
quality at high heart rates from dual-source CT while making 
available spectral results for more precise material 
characterization and quantification. To evaluate the stability of 
spectral results among different acquisition modes and heart rates, 
a cardiac motion phantom with a rod mimicking a 50% coronary 
stenosis was scanned with a dual-source photon-counting CT in 
three different acquisition modes (retrospective dual-source 
spiral, prospective dual-source step-and-shoot, dual-source flash 
spiral) and at different heart rates (60, 80, 100 bpm). Dice scores 
of stenosed regions relative to a static scan, eccentricity of non-
stenosed regions, full width half max, and normalized area under 
the curve of line profiles were calculated for iodine density maps, 
and virtual mono-energetic images at 40 and 70 keV. Dice scores 
and eccentricity were consistent and not significantly affected by 
acquisition mode or heart rate for spectral results. Full width half 
max and normalized area under the curve similarly illustrated 
minor differences between acquisition modes and heart rates. The 
consistency in these metrics demonstrate preserved image 
structure and allows for the use of spectral results with high 
confidence. Dual-source photon-counting CT will enable 
cardiovascular diagnostics with better material characterization 
and differentiation. 
 

Index Terms— Photon-counting CT, Cardiac CT, Spectral CT 

I. INTRODUCTION 
ARDIAC computed tomography (CT) plays an important 
role in evaluation of heart disease [1]–[3]. These scans 

acquire high temporal resolution images in one of two ways: 
spiral, i.e. helical mode, or step-and-shoot. In the spiral/helical 
mode, images are reconstructed based on a retrospective 
selection of the phase of the cardiac cycle. This presents more 
control in time and image quality but comes at the cost of higher 
radiation exposure [4]. In comparison, step-and-shoot 
acquisition is a prospectively triggered process that results in 
reduced radiation doses [5], [6]. However, it has limited use at 
higher heart rates due to the inability to accurately select the 
phase of the cardiac cycle with minimal motion [7]. 
 

This study was funded by the National Institutes of Health (R01EB030494) 
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L.P. Liu is with the Department of Bioengineering and Department of 
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 With the development of newer technologies, cardiac CT has 
further improved with dual-source CT. Dual-source CT adds an 
additional detector and x-ray tube at almost 90 degrees offset 
from the other detector and x-ray tube [8]. While a total of 180 
degrees and fan angle of rotation are required to acquire images 
with a single source CT, dual source reduces the required 
rotation to 90 degrees. This effectively doubles the temporal 
resolution [8], which reduces motion artifacts to decrease the 
influence of heart rate on image quality [9], [10]. A third mode 
utilizes a high pitch dual source helical acquisition; this results 
in reduced radiation dose compared to spiral/helical mode [11], 
[12]. 
 Another technology development, spectral CT, improves 
upon quantification, material characterization, and material 
differentiation by acquiring attenuation maps from two or more 
distinct x-ray spectra and generating spectral results, such as 
iodine density maps and virtual mono-energetic images (VMI) 
[13], [14]. The newest realization of spectral CT, photon-
counting CT (PCCT) [15], in combination with dual-source CT 
not only has all three acquisition modes for cardiac CT but also 
allows for the acquisition of spectral results during cardiac CT 
[16], which was not previously available in cardiac CT. The 
addition of spectral results to cardiac CT presents an 
opportunity to advance characterization of heart disease with 
improved quantification and material differentiation but may be 
affected by the different acquisition modes and limited by heart 
rate. 

II. METHODS 
To evaluate the effect of acquisition mode and heart rate on 

coronary material quantifications using different spectral 
results, a cardiac motion phantom with a three-dimensional 
motion simulator was utilized (QRM-Sim4D-Cardio, Quality 
Assurance in Radiology and Medicine, Möehrendorf, 
Germany). The phantom included rods submerged in a water 
tank. Analysis was performed on a rod that mimics a coronary 
artery filled with contrast and a fibro-fatty plaque that fills half 
the lumen, resulting in 50% stenosis. Programmed motion 
combined with a synthetic ECG signal simulated heart rates of 
60, 80, and 100 beats per minutes (bpm). 
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The phantom was imaged on a first-generation dual-source 
PCCT (NAEOTOM Alpha, Siemens Healthineers, Erlangen, 
Germany) (Figure 1). The scanner offers three cardiac 
acquisition modes: retrospective dual source helical (DS spiral), 
prospective dual source step-and-shoot (DS sequence), and 
prospective high pitch dual source helical (flash spiral).  In all 
modes, a standard clinical protocol (Table 1) was utilized to 
obtain images at 120 kVp for each heart rate: 60, 80, 100 bpm. 
In addition to dynamic scans, a static scan (motion-free) was 
acquired with a standard clinical protocol. Spectral results, 
including iodine density maps and VMI at 40 and 70 keV, were 
generated for each scan. 

To determine consistency of lumen extent in images with 
different heart rates and acquisition modes, axial slices of non-
stenosed and stenosed regions were extracted from scans. 
Adaptive thresholding with a Gaussian filter was applied to 
axial slices to generate a mask of the stenosed region. Using the 
mask from the static scan as reference, Dice similarity 

coefficients were calculated for 5 consecutive slices from each 
acquisition mode and heart rate combination. Dice scores were 
represented in a scatter plot as mean ± standard deviation. The 
eccentricity of non-stenosed regions of the rod were also 
examined. After adaptive thresholding of the non-stenosed 
region, an ellipse was fit to the contour (Figure 2). Eccentricity 
was calculated as 

 

         (1) 
 

where a is the semi-minor axis and b is the semi-major axis. 
Values were represented in a scatter plot as mean ± standard 
deviation. 

Line profiles were extracted from coronal slices at the 
stenosed region to further assess the consistency between 
acquisition modes and heart rates. A threshold was applied to 
the line profile to isolate the peak associated with the rod from 
the background signal. The value of this threshold was 
calculated as the average + standard deviation of the first and 
last 5 pixels of the line profile. The full width half max 
(FWHM) from this peak was calculated to describe the spread 
in points. Additionally, the normalized area under the curve 
(AUC) for the peak was determined by evaluating the AUC and 
normalizing by the maximum value of the peak. Values for both 
FWHM and normalized AUC were averaged across 5 slices and 
reported as mean ± standard deviation. For all four metrics, a 2-
way ANOVA was implemented to evaluate the effect of 
acquisition mode and heart rate (60, 80, 100 bpm). A p-value of 
less than 0.05 was considered significant. 

TABLE I 
ACQUISITION PARAMETERS FOR CARDIAC MOTION PHANTOM 

 Static DS spiral DS sequence Flash spiral 
Tube voltage 120 kVp 
Exposure time [s] 0.25 1.388 0.34 0.078 
Spiral pitch factor 1 0.23 N/A 3.2 
Exposure [mAs] 250 62 51 48 
CTDIvol [mGy] 10 8 8 6 
Collimation width 0/4 / 57.6 mm (single/total) 
Slice thickness 0.4 mm 
Convolution kernel Bv36f 
Field of view 200 mm 
Matrix size 512 x 512 
Pixel spacing 0.390625 mm 

 

 
Fig. 1. Experimental setup. (A) A cardiac motion phantom coupled with a 3D 
motion simulator was scanned with a dual-source photon-counting CT. It 
contained a variety of artificial coronary arteries containing stenoses of 
different materials and extents (B).  70 keV VMI images (C-F) illustrate a 
fibro-fat stenosis within the rod scanned at different heart rates (0, 60, 80, 100 
bpm).  

 
Fig. 2. Fitted ellipses of non-stenosed lumen. Ellipses (pink) matched rods on 
axial VMI 70 keV images for 0 (A), 60 (B), 80 (C), and 100 (D) bpm. Size and 
shape of the lumen were similar between the different heart rates with some 
slight distortion in shape that was reflected in eccentricity. 
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III. RESULTS 
Dice scores (Figure 3) were similar between 60, 80, and 100 

bpm for each of the acquisition modes and spectral results. The 
maximum average difference in Dice score between the three 
heart rates was 0.11, 0.20, and 0.19 for iodine density maps, 
VMI 40 keV, and VMI 70 keV, respectively. Of note, Dice 
scores from high-pitch spiral scans deviated less than Dice 
scores from other acquisition modes. There was no significant 
effect of acquisition mode or heart rate on the Dice score for 
iodine density maps (0.79, 0.69) and VMI 40 keV (0.67, 0.10) 
but not for the Dice score for VMI 70 keV (0.039, 0.002). In 
general, the high level of similarity illustrated image 
consistency of stenosed regions of the coronary artery phantom. 

Eccentricity (Figure 4) was independent of heart rate and 
acquisition mode across the different spectral results. The shape 
of the non-stenosed area in dynamic scans demonstrated similar 
properties to those observed in static scans, with maximum 
magnitude of the average difference relative to the static scan 
of 0.05, 0.20, and 0.19 for iodine density maps, VMI 40 keV, 
and VMI 70 keV, respectively. These deviations correspond to 
small changes related to motion blurring. Even so, for the three 
different acquisition modes, eccentricity was not significantly 
different for different heart rates and acquisition modes for each 
of the three spectral results. This highlights that consistency 

was present at both non-stenosed and stenosed regions of the 
rod. 

FWHM (Figure 5) at different acquisition modes and heart 
rates for iodine density maps, VMI 40 keV, and VMI 70 keV 
illustrated the stability in the sharpness of rod in comparison to 
its background. This stability was apparent with the maximum 
magnitude of the average difference relative to the static scan, 
which amounted to 0.30, 0.24, and 0.23 for iodine density maps, 
VMI 40 keV, and VMI 70 keV. Moreover, acquisition modes 
and heart rates did not significantly affect FWHM with the 
exception of acquisition mode for iodine density maps. 
Similarly, normalized AUC (Figure 6) was only significantly 
affected by acquisition mode or heart rate for iodine density 
maps, thus demonstrating stability between heart rates for each 
acquisition mode and most spectral results. 

 

IV. DISCUSSION 
This systematic evaluation of the three acquisition modes for 

cardiac CT demonstrated stability at different heart rates and 
acquisition modes for iodine density maps, VMI 40 keV, and 
VMI 70 keV. This stability can be extended to other spectral 
results that were not examined here, and the minimal effect of 
acquisition mode and heart rate provides confidence in 
visualization and quantification of these spectral results. 
Moreover, this is the first-time spectral results are available for 

 
Fig. 5. Effect of acquisition modes and heart rates on full width half max of 
line profiles of coronary phantom. Between acquisition modes and heart rates, 
results were stable and did not vary for each spectral result. 

 
Fig. 3. Dice similarity coefficient of stenosed areas of coronary phantoms at 
different spectral results, acquisition modes, and heart rates. High similarity 
between Dice scores of different heart rates and acquisition modes 
demonstrates consistency. 

 
Fig. 4. Eccentricity of non-stenosed lumen between different spectral results, 
acquisition modes, and heart rates. Shape of non-stenosed lumen was not 
affected by acquisition modes or heart rates. The stability applied to all three 
spectral results examined: iodine, VMI 40 keV, and VMI 70 keV. 

 
Figure 6. Comparison of normalized area under of the curve of line profiles of 
stenosed lumen in coronary artery phantom. Normalized area under of the 
curve varied little across heart rates and acquisition modes for each spectral 
result. 

The 7th International Conference on Image Formation in X-Ray Computed Tomography

188



 

a wide range of heart rates with dual-source CT. One of the 
main applications for these spectral results is examining and 
characterizing coronary artery plaque, which can be composed 
of different materials, i.e. calcium, fibro-fatty, or fatty tissue. 
As demonstrated in dual-energy CT, each spectral result plays 
a different role in material differentiation: iodine density maps 
isolate contrast from other materials, while virtual mono-
energetic images at different keVs have specific advantages, 
such as increased contrast, reduced beam hardening, and metal 
artifact reduction. As a result, the stability of spectral results in 
dual-source PCCT augurs well for their utility in material 
quantification and characterization. 

V. CONCLUSION 
This initial study of dual-source photon-counting CT in 

cardiac mode illustrates potential for improved cardiovascular 
diagnostics. Clinical studies are an essential next step to 
establish PCCT in the clinical routine. 
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Deep Scatter Estimation for Coarse
Anti-Scatter Grids as used in Photon-Counting CT

Julien Erath, Jan Magonov, Joscha Maier, Eric Fournié, Martin Petersilka, Karl Stierstorfer, and Marc Kachelrieß

Abstract—Due to the smaller detector pixels in photon-

counting CT, coarse anti-scatter grids are used. This may lead to

high frequencies in the scattered radiation and therefore moiré

artifacts in the reconstructed images can occur. It has been shown

that deep convolutional neural networks are very effective to

correct scatter artifacts in clinical CT. In this work we present

an adapted version of the deep scatter estimation (DSE) to correct

for the high frequency artifacts effectively. With the use of DSE

the mean absolute error of the scatter artifacts is reduced from

about 8 HU to under 1 HU. At the same time the moire artifacts

can be prevented and additional post-processing in the image can

be avoided.

I. INTRODUCTION

Recently the U.S. Food and Drug Administration (FDA) has
cleared the world’s first photon-counting computed tomogra-
phy (CT) scanner, the Siemens NAEOTOM Alpha. The FDA
described it at the first major new technology for computed
tomography imaging in nearly a decade. Since its introduction,
photon counting detectors have shown a great potential to
improve the spectral and spatial resolution of CT imaging
[1]. The spectral information can be used for several different
image techniques, for example virtual monochromatic imaging
or iodine overlays. These possibilities can improve the clinical
diagnostic of CT. To avoid the pulse pile-up effect and to
improve the spatial resolution, the detector of the new photon-
counting CT has very small detector pixels [2]–[4]. This can
be useful to visualize, for example, small pulmonary vessels
[5] or to show details of the inner ear [6].

Scattered radiation and the resulting image artifacts are
well-known in clinical CT. Generally, there are two strategies
to minimize the effect of scatter, first to reduce the measured
scattered radiation with special hardware like anti-scatter grids
(ASG) and second to correct the scatter in the pre-processing
of the image reconstruction. To achieve the best possible image
quality these two techniques should be combined.

The use of the smaller detector pixels influences the effect of
the scattered radiation in the detectors. For energy integrating
detector each pixel is surrounded by the lamella of the ASG.
Since with the photon counting CT the detector pixels are
much smaller, several pixels are combined between the lamel-
lae of the ASG (left side in figure 1). This results in the fact
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many) and with the Heidelberg University (Germany). Corresponding author:
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Fig. 1: In energy integrating detectors each pixel is surrounded
by the lammela of the anti-scatter grid. In a photon counting
detector there are several pixels between the lamellae. Depend-
ing on the direction of the incoming scatter photon, it will be
absorbed by the anti-scatter grid. Thus two neighboring pixels
will receive a different scatter intensity.

that, dependent on the location and the angle of the incoming
scattered photon, the scatter intensity can vary between the
adjacent pixels in one ASG block. On the right side of figure
1 it can be seen that, depending on the angle of incidence,
some photons will be absorbed by the anti-scatter grid and
other will be measured in the detector. For energy-integrating
detectors scattered intensities are usually low-frequency and
only slowly change across the detector. These additional high
frequencies in the scattered radiation can lead to ring artifacts
in the reconstructed CT-images, as shown in figure 2.

Fig. 2: Illustration of the moiré effect due to the use of coarse
anti-scatter grids in photon-counting CT.

We have recently shown the efficient use of deep convolu-
tional neural networks (CNN) to correct for scatter artifacts
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in clinical CT with the deep scatter estimation (DSE) [7]–[9].
Once trained, the CNN’s can lead to a very robust and fast
scatter estimation. In this work, we propose the use of neural
networks to correct for the artifacts resulting from coarse anti-
scatter grids. Based on our previous work, we have modified
the architecture of our neural network to estimate the new high
frequencies in the occurring scattered radiation.

II. METHODS AND MATERIAL

A. Data generation

Fig. 3: Simulated detector geometry. There are 6 different
pixels location within the anti-scatter grid which will measure
a different intensity of scattered radiation. The total detector
size 1376⇥144 pixels, consisting of 688⇥48 of the six-pixel-
blocks.

To obtain the scatter data for the neural network, we have
adapted our in-house Monte-Carlo simulation [10] to the
geometry of the photon counting scanner NAEOTOM Alpha
(Siemens Healthineers). In contrast to an energy-integrating
detector where each pixel is surrounded by the lamella of the
ASG, a coarse anti-scatter grid is used where 2⇥3 pixels are
located between the lamellae of the ASG. The total detector
size is 1376⇥144 pixels. As shown in figure 3, there are
six different pixel locations under the coarse anti-scatter grid.
If only one location is considered, the scattered radiation is
further low-frequency. To consider this, post-smoothing needs
to smooth only across same pixel locations and must not
smooth between neighboring pixels. The distribution of the
attenuation coefficient for the simulation of the CT scans is
obtained from clinical full body CT exams. The patients are
assumed to consist of four different materials (air, adipose
tissue, soft tissue, and bone). One of these materials is assigned
to each voxel based on CT value thresholds. In total 16
patients at 14 z-positions are Monte Carlo simulated every
10�. Twelve patients are used for training, two patients are
used as validation data during the training and 2 patients are

used as test data to evaluate the robustness of the networks.
The corresponding primary intensities are obtained with a
polychromatic forward projection. Overall 8064 paired scatter
and primary data pairs are obtained for training and evaluation
of the networks.

B. Deep scatter estimation
DSE is trained to predict scatter based on the acquired

projection data as input [7]. In general DSE can be trained with
measured or simulated scatter intensities [11]. Here the Monte
Carlo-simulated scatter data will be used as the training and
validation data. To adapt the network architecture to a coarse
ASG the network receives the six different pixel locations as
separate input channels (figure 4). The network is trained to
predict six different output channels of the pixel locations,
which then can be merged to obtain the scatter estimation for
the whole detector. Each input and output channel has the size
of 688⇥48 pixels.

C. Reconstruction
To evaluate the performance of the algorithm the scatter-

corrected projections are reconstructed with the extended par-
allel back-projection (EPBP) algorithm [12]. Image quality is
evaluated for the reconstructed images with the mean absolute
error (MAE) compared to the ground truth. In the calculation
of the MAE, air is excluded and only the patient area is
considered.

III. RESULTS

A clear moiré effect is visible in the reconstructed images
without scatter correction. The average MAE in the uncor-
rected images is 8.4 HU. With the proposed algorithm the
ring artifacts that appear can be significantly reduced and the
average MAE is decreased to an average of 0.6 HU. In the
figures 5 and 6 two examples of the scatter correction are
shown. In the enlarged area, it is visible that the moiré effect
is corrected. The difference images also show that the DSE
algorithm corrects the scatter artifacts very well.

IV. DISCUSSION

We propose a deep learning-based method to correct for
scatter artifacts in photon-counting CT. In this work we
demonstrate the potential of DSE to correct the artifacts that
may occur due to the smaller detector pixel size and the
coarse anti-scatter grid. The neural network is able to leverage
information about the different pixel locations and shows an
accurate scatter estimation. The results presented are based
on simulated data, but the algorithm can also be applied
to measurements. In our following step we plan to use the
spectral information of the photon counting detectors to further
improve the scatter corrections.
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Fig. 4: The neural network has six different input and output channels corresponding to the different pixel location
in the ASG.

Fig. 5: First example of DSE for coarse ASGs. With the proposed neural network the MAE gets reduced from
8.4 HU to 0.9 HU. In the enlarged area it can be seen that the moiré artifacts gets corrected. C = 0 HU, W = 400
HU. Difference to GT: C = 0 HU, W = 50 HU.
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Fig. 6: Second example of DSE for coarse ASGs. Here the algorithm reduces the MAE from 8.0 HU to 0.6 HU.
In the difference image, it is visible that the networks corrects both the scatter and moiré artifacts. C = 0 HU, W
= 400 HU. Difference to GT: C = 0 HU, W = 50 HU.
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Cross-Domain Metal Segmentation for CBCT
Metal Artifact Reduction

Maximilian Rohleder1,2, Tristan M. Gottschalk1,2, Andreas Maier1 and Bjoern W. Kreher2

Abstract—Metallic objects in the volume of a CBCT system

can cause various artifacts after image reconstruction such as

bright and dark streaks, local distortions of CT values and

shadowing. In the intraoperative setting, this drastically reduces

clinical value and can harden decision making. Most existing

approaches to reduce such artifacts rely on a threshold-based

metal segmentation in the reconstruction domain, which is prone

to failure; especially in cases with extreme artifacts. Faulty metal

masks impair these inpainting-based MAR methods and at times

even worsen image quality by introducing secondary artifacts. In

this work, a novel neural network topology is proposed to segment

metallic objects in CBCT reconstruction domain by leveraging

information of the given raw projection images. A reconstruction

operator is embedded into this architecture, which enables the

model to yield projection and reconstruction domain information

during end-to-end training. This cross-domain approach is com-

pared to the self-configuring segmentation method ”nnUNet”,

which predicts the three dimensional metal masks directly from

the artifact corrupted reconstruction. To provide a baseline, a

segmentation using a global dice-optimal threshold is determined.

Segmentation results on simulated data confirmed by 5-fold cross

validation show that the cross-domain network yields a mean dice

coefficient of 0.87 ± 0.05 at a prediction time of 4s per volume.

The reference method achieves 0.86 ± 0.03 in 43s, whereas the

optimal similarity using a threshold averages to 0.45 ± 0.22.

Index Terms—Known Operator Integration, Metal Artifacts,

Cone-Beam CT, Segmentation.

I. INTRODUCTION

A. Motivation

M
OBILE C-Arm devices are an integral part of modern
surgical procedures. In addition to 2D X-Ray projection

images used for guidance, modern systems allow to accurately
verify the placement of tools and implants via 3D imaging.
One major limitation of this modality are metal artifacts.
Originating from simplifications in the reconstruction model
and inconsistencies in the measured data, these image artifacts
appear as bright and dark streaks, local distortions of CT
values, and shadowing. As they emerge especially around
metal objects, they obstruct the implant placement verification
and thus drastically decrease the diagnostic value during the
surgical intervention.

B. Existing MAR Approaches

Most modern Metal Artifact Reduction (MAR) methods re-
duce metal artifacts by inpainting the metal traces in projection

1 Pattern Recognition Lab, Department of Computer Science, Friedrich-
Alexander-University, Erlangen-Nuremberg, Germany

2Siemens Healthineers AG, Forchheim, Germany
Email: Maxi.Rohleder@fau.de

domain. These metal traces are obtained by forward projection
of the volumetric segmentation of metal objects. Inpainting in
this context refers to the process of substituting pixel values to
remove their contribution to the reconstruction image. Over the
last decades, multiple approaches for inpainting have been pro-
posed starting with simple linear or polynomial interpolation
[1], [2], frequency domain interpolation [3], using wavelets
[4] or with the help of machine learning [5]. Regardless of
how elaborated the inpainting approach is designed, a faulty
estimation of the metal mask can sabotage the effectiveness
of said approaches, reduce the level of detail around the
corrected metal, remove relevant anatomy, and even introduce
new artifacts [6].

C. Related work

To enhance the mask quality, a shape-model based estima-
tion of the metallic objects has been proposed [7]. A known
object’s outline is registered to a coarse volumetric metal
segmentation to refine its shape. However, this approach is
not generally applicable, as prior knowledge about the shape
of the metal is usually not available.

The segmentation of metal in image domain is prone to
error mainly because of the metal artifacts. The alterations of
CT values around the depicted metal prohibit a purely value-
based approach such as the traditional global thresholding. By
including structural information, Convolutional Neural Net-
works (CNN) have proven to be successful in many medical
segmentation scenarios.

Recent advances in known operator integration have facili-
tated the end-to-end training of cross-domain architectures. A
derivable backprojection operator can be embedded into the
model and used with gradient backpropagation for supervised
learning [8]. The observation that metal artifacts originate
during the domain transformation suggests that neural network
architectures can benefit from projection domain information.

Multi-domain approaches have successfully been applied
in Metal Artifact Avoidance (MAA) to estimate metallic
objects from very few given projections [9]. However, the
objective is fundamentally different compared to MAR. For
MAA, a rough distribution of metal is sufficient to adapt the
trajectory, whereas high detail masks are desirable for MAR.
Furthermore, the system matrix based reconstruction from [9]
cannot be applied to MAR segmentation due to the larger
number of input projections.

A dual domain network topology has also been demon-
strated for direct, learned MAR [10]. The authors report
significant improvements over other single domain MAR ap-
proaches.
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D. Planned Contributions

In this work, a novel cross-domain segmentation network
which yields both raw rotational and reconstruction domain
information is presented. It is compared to a CNN approach
applied to artifact-corrupted reconstruction images and a sim-
ple threshold-based method.

II. METHODS

A. Data

The cross-domain architecture proposed in this work re-
quires training data, where the input consists of X-Ray pro-
jection images and the target metal mask is a volume-shaped
binary array. It is crucial that the simulated projection images
exhibit all physical effects which are relevant for the formation
of metal artifacts. To model said effects, a simulation frame-
work was derived from the DeepDRR method described in
[11]. However, the provided pre-trained weights for material
segmentation and scatter estimation could not be used as they
did not generalize well on the raw data used in this project.

A total of 11 cone-beam CT volumes were acquired from
5 different specimens from a human spine cadaver study of
the lumbar and thoracic region using a Siemens Cios Spin
System.1 To realistically model the shapes of metal objects, a
library of 3D models of surgical screws, plates, k-wires, and
towers are available from Nuvasive, San Diego, California. A
set of metal objects is realistically positioned relative to the
skeletal structures in the base volume using the 3D modelling
suite Blender.2 The position and orientation of each object is
stored and considered during the simulation.

1) Simulation Process: First, each base volume is seg-
mented into three materials M 2 {air, tissue, bone} using an
empirically defined threshold. Then, projection images of the
three material volumes and all metal objects are generated. The
resulting material path-length projections are weighted with
their spectrum-dependant attenuation coefficients according
to the polychromatic Beer-Lambert law. To approximate the
influence of scatter on the artifact formation, a constant back-
ground signal is added to the images. This simulation pipeline
produces stacks of 200 X-Ray projection images of shape
(488⇥488) over the angular range of 200 degrees which, after
reconstruction, exhibit the desired metal artifacts. To generate
the training labels, a cube-shaped binary array with side-length
256 is created from the metal objects depicted in one sample.
With an isotropic voxel-size of 0.626, the binary volume
resembles the standard volume size of the Siemens Cios Spin
C-Arm System. Because of GPU memory limitations, the
training data for this project has half the resolution and number
of projection images compared to measured raw data.

2) Data Augmentation: In order to increase the dataset size,
four random rotations around the z-axis are applied to each
sample as an offline data augmentation step. This rotation is

1The work follows appropriate ethical standards in conducting research and
writing the manuscript, following all applicable laws and regulations regarding
treatment of animals or human subjects, or cadavers of both kind. All data
acquisitions were done in consultation with the Institutional Review Board of
the University Hospital of Erlangen, Germany.

2Open Source 3D Creation Suite, https://www.blender.org/

virtually applied prior to projection by simply appending to the
projection matrices. Using this method, a total of 44 samples
are generated from the 11 independent tool configurations.

B. Optimal Threshold-Based Method

As current product-grade MAR methods utilize a threshold-
based segmentation, it serves as a baseline here. To obtain
a best-case estimate of such a global thresholding method,
the optimal threshold is calculated for each sample. As an
optimality criterion, the dice similarity coefficient (DSC) is
used. Equation 1 shows the dice similarity defined on the
binarized volume X and the binary label Y .

DSC(X,Y ) =
2|X \ Y |
|X|+ |Y | (1)

A threshold is defined as optimal when the binarization it
generates maximises the DSC metric. For each simulated CT
volume, an optimal threshold is determined by testing 1000
values over the range of its histogram values.

C. Image Domain CNN Method

To obtain a standardized segmentation benchmark, the self-
configuring framework nnUNet is used [12]. nnUNet auto-
matically configures all relevant parameters of the popular
architecture U-Net and adapts it to the so-called dataset
fingerprint. The user can choose between a 2D, a 3D high-
resolution, and a 3D low-resolution U-Net layout.

For this project, the 3D low-resolution (3d-lowres) U-Net
model was chosen. The training of the other models was omit-
ted, as the cross-domain method produces lower resolution
masks and the results are compared on this lower resolution
anyway. This model contains 6 mio. trainable parameters and
is applied patch-wise on cube-shaped sub-volumes of side-
length 128. The model is trained on CT volumes reconstructed
from the simulated projection data. To predict volumes of side-
length 256, the model is evaluated 27 times as the patches are
strided by half a patch-size.

The performance of the 3d-lowres architecture was eval-
uated using 5-fold cross validation. The simulated X-Ray
images were reconstructed using filtered backprojection to
serve as training input to this method. The data splitting, pre-
processing and evaluation using the DSC metric was handled
by the framework.

D. Cross-Domain Architecture

Inspired by the success of the 3D U-Net architecture, an
encoder-decoder layout with skip-connections is used [13].
To enable end-to-end training with input and labels from
different domains, a derivable backprojector is integrated into
the network. This operator is implemented as the PyroNN

filtered backprojection layer with a non-trainable Ram-Lak
filter [8].

As seen in figure 1, this domain transform happens during
the skip-connection step, such that the encoder is applied to
projection domain and the decoder to reconstruction domain.
The shapes of the tensors are indicated next to each stage of the
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Fig. 1. Cross-domain network architecture with an encoder in projection domain and a decoder in image/reconstruction domain. The backprojection
operators embedded on the skip-connections reconstruct volumes from the input projection domain feature maps and stack them along the channel axis (blue).

architecture, whilst the number of computed feature-maps is
shown above each block symbolizing a layer’s output. At each
stage of the network, the stack of projections is downsampled
both in the number of projections and their resolution.

To facilitate the reconstruction of differently sized volumes,
the projection matrices and the resolution configurations are
adapted accordingly. The convolutional layers with kernels of
side length three use zero-padding to generate similarly sized
feature maps. At the skip-connections, these feature maps are
reconstructed individually and the resulting volume-shaped
activations are stacked along the channel axis.

E. Cross-Domain Training Procedure

1) Preprocessing: The simulated intensity images are first
converted to line integrals. A cross-validation split is defined
with nine samples in the training set and the remaining two
samples in the test set of each of the five splits. After splitting,
the previously described offline data augmentation strategy is
applied to boost the set sizes to 36/8 (train/test).

During training, different noise levels are augmented. An
additive, intensity dependent noise is drawn from a Poisson
distribution. Furthermore, a convolutional noise model is used
to imitate the detector characteristics and low-dose effects [14].

2) Training: The training samples are fed to the network
in a batch-size of one due to GPU memory constraints.
To compensate the resulting stochastic gradients, the Adam
optimizer is applied with the standard parametrizations of the
first and second order moments and an initial learning rate of
10�3. Furthermore, the learning rate is reduced by a factor of
10 if the training loss plateaus for longer than 10 epochs. The
training is terminated after the learning rate is reduced for the
third time. As a loss function, the dice similarity defined in
equation 1 is used.

III. RESULTS

A. Quantitative

The cross-validation results and the evaluation of the opti-
mal threshold-based method are shown in Table I. Our method
achieves a dice similarity of 0.87 ± 0.05 averaged over the
different data splits.

The reference method applied in reconstruction domain
evaluates to a DSC of 0.86± 0.03 across all cross-validation
runs. Note, that the data splits are not identical between our
method and the reference image domain CNN.

The best possible segmentation using a per-sample threshold
was evaluated for the entire simulated dataset. Overall, this
method achieves a DSC metric of 0.45± 0.21.

TABLE I
RESULTS OF MODEL EVALUATION (DICE SIMILARITY)

Ours CNN Threshold
split 0 0,8131 0,8089 -
split 1 0,8145 0,8875 -
split 2 0,9138 0,8574 -
split 3 0,8921 0,8699 -
split 4 0,9140 0,8613 -

mean±std 0,87±0,05 0,86±0,03 0,45±0,21

Apart from the segmentation performance, other attributes
of the compared methods are displayed in Table II.

TABLE II
ADDITIONAL METHOD ATTRIBUTES

Ours CNN Threshold
Inference Time 4s 45s <1s

Inference GPU Memory 9.6Gb 2.1Gb -
Training Duration 15h 97h -

Training GPU Memory 23.2Gb 6Gb -
#Params 200k 6mio. 1

The inference time of the reference image domain CNN
method is about eleven times longer than our method. The
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Fig. 2. Cropped slice from a volumetric metal segmentation. a) shows the corresponding artifact-corrupted reconstruction, b) is the ground truth, c)
depicts the best-possible threshold-based segmentation, d) shows the result of the reference image domain CNN, and e) shows our methods prediction.

auto-configuring framework nnUNet trains the models for
about 97h which is more than six times longer than our
methods, which are trained 15h on average. The cross-domain
network requires about four times more GPU memory during
training and inference.

B. Qualitative

To intuitively compare the methods performance, an unseen
sample is segmented using the three compared methods (Fig-
ure 2). From the resulting volumetric metal masks, a slice
is selected and cropped to a region of interest showing two
screws with tulips fixated to connecting rods.

For reference, the corresponding reconstruction is added.
As the screws’ main axes align with the acquisition trajectory,
heavy artefacts are visible.

The thresholding method c) greatly underestimates the
ground truth mask b). The image domain CNN and the cross-
domain segmentation network produce similar looking masks,
which, compared to the label, yield a dice similarity of 0.88
and 0.90 respectively.

IV. CONCLUSION

Summarizing the quantitative and qualitative results, it be-
comes evident that both learned methods largely improve the
segmentation compared to the purely value-based thresholding
baseline. Visually, there is no distinct difference between the
cross-domain and single-domain network’s predicted masks.
However, the newly presented cross-domain method achieves
this similar performance using 10% of trainable parameters
and 15% of training time.

With the application in the surgical suite in mind, the
cross-domain network offers the clear advantage of a faster
inference time. This is largely attributable to the patch-wise
application of the image domain CNN. On the downside,
the novel network architecture has increased GPU memory
requirements which might not be readily available on systems
in the operating room due to financial cost.

Future work should focus on evaluating the effectiveness of
the proposed approaches on measured data. Should this be suc-
cessful, the impact of the improved metal masks on inpainting-
based MAR methods needs to be investigated. Furthermore,
the memory footprint of the cross-domain method can be
reduced by revising the implementation of the backprojection
operator.
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Sparsier2Sparse: Weakly-supervised learning for
streak artifact reduction with unpaired sparse-view

CT data
Seongjun Kim, Byeongjoon Kim, and Jongduk Baek

Abstract—Sparse-view computed tomography (CT) becomes a

major concern in the medical imaging field due to its reduced

X-ray radiation dose. Recently, various convolutional neural

network (CNN)-based approaches have been proposed, requiring

the pairs of full and sparse-view CT images for network training.

However, these paired data acquisition is impractical or difficult

in clinical practice. To handle this problem, we propose the

weakly-supervised learning for streak artifact reduction with

unpaired sparse-view CT data. For CNN training dataset, we

generate the pairs of input and target images from the given

sparse-view CT data. Then, we iteratively apply the trained

network to given sparse-view CT images and acquire the prior

images. As the success factor of our novel framework, we estimate

the original streak artifacts in the given sparse-view CT images

from the prior images and subtract the estimated streak artifacts

from the given sparse-view CT images. As a result, the proposed

method has the best performance of lesion detection compared

to the other methods.

Index Terms—Computed tomography, Convolutional neural

network, Weakly-supervised learning, Sparse-view CT.

I. INTRODUCTION

C
OMPUTED tomography (CT) has been widely used for
disease diagnosis in the medical imaging field due to

its detailed observations of anatomical structures. However,
the X-ray radiation exposure can increase a potential risk
of cancers to the patients. To reduce the X-ray radiation
dose, decreasing the number of projection views during CT
scan, called sparse-view CT, can be implemented, whereas
the severe streak artifacts are generated in the reconstructed
images.

To overcome this, several iterative reconstruction (IR) meth-
ods, which iterativley optimize the both CT data fidelity
and the image regularization terms, have been developed for
sparse-view CT. For the prior of image regularization term,
total variation [1], [2] is often utilized. However, IR calculates
the forward and backprojection during optimization, requiring
a huge amount of computational cost. Moreover, it is not
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easy to balance the parameters of fidelity and regularization
terms for various imaging tasks. Therefore, the usage of IR
methods is limited in medical imaging field, where the real
time applications are required.

Recently, deep learning-based approaches have shown
promising results in sparse-view CT reconstruction. Inspired
by convolutional neural networks (CNNs), the image-domain
method [3]–[5] trains the spatial information of streak artifacts
distribution and reduces the streak artifacts effectively, whereas
it also often reduces the signals overlapped by streak arti-
facts together. To overcome this limitation, the hybrid-domain
approach [6]–[8], which contains both image and sinogram
domain, not only learns the image prior but also utilizes
the information of measured projection data during network
training. From this, the hybrid-domain method improves the
performance of streak artifact reduction while preserving the
edge sharpness better than when only the image-domain is
used.

Although the above CNN-based methods showed good per-
formance, they are fully-supervised approaches that require the
paired full and sparse-view CT images, where the anatomical
structures are identical. In practice, it is not feasible to acquire
the dataset of those pairs from the patients due to the principle
of ALARA (as low as reasonably achievable). In this reason,
to acquire the full and sparse-view CT image pairs, most of
methods generate the sparse-view CT images by a computer
simulation using the full view CT data. However, if only the
sparse-view CT data are given, it is impossible to produce
full view CT images that are anatomically identical. This
is because image reconstruction in sparse-view CT is an
undetermined inverse problem that has no general solution [9].

To tackle this problem, we propose a weakly-supervised
learning for streak artifact reduction when the only unpaired
sparse-view CT data are given. We acquire the pairs of data for
CNN training from the given sparse-view CT data and train the
network. We then apply trained network to the given sparse-
view CT images iteratively. For the success of our framework,
we perform streak estimation model for signal preservation.

II. METHODS

Figure 1 shows the schematic diagram of the proposed
method for reducing streak artifacts with unpaired sparse-view
CT data.
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Fig. 1. The overall schematic of the proposed method. FP: forward projection; FBP: filtered back projection

A. Weakly-supervised learning

For CNN training to reduce streak artifacts, it is required to
set the images with strong and weak streak artifacts as input
and target, respectively. Since the only unpaired sparse-view
CT data are given in our scenario, we should acquire pairs of
the input and target from given sparse-view CT data. For this,
we generate an image that has stronger streak artifacts than the
original streak artifacts in given sparse-view CT image, which
is denoted as a sparsier-view CT image. We then regard the
sparsier and sparse-view CT images as the input and target for
CNN training, respectively.

Here, the method of sparsier-view CT image generation is
described in the following procedures. To make streak artifacts
stronger, it can be achieved by decreasing the number of
projection views because the strength of the streak artifacts is
dependent on the number of projection views. Therefore, we
down-sampled the given sparse-view sinogram by half and
acquire a sparsier-view sinogram. Then, we reconstruct the
sparsier-view CT image from the sparsier-view sinogram with
the filtered backprojection (FBP) algorithm [10]. Note that we
set down-sampling ratio as 2 to ease CNN training because the
spasier view CT image will be significantly corrupted when
the down-sampling ratio is bigger than 2.

Let x̂ and x be the sparsier-view CT image and sparse-
view CT image, respectively. Since the projection data of x̂ is
extracted and down-sampled from that of x, the streak artifacts
in x̂ will be amplified while keeping the directionality of the
original streak artifacts in x. Therefore, we set a pair of x̂ and
x as CNN training dataset. We then train CNN with the mean
squared error (MSE). The MSE is defined as

LMSE = E
⇥
kf(x̂; ✓)� xk2

⇤
(1)

where f(·; ✓) and ✓ denote the network operator and network
parameters, respectively.

B. Iterative streak artifact reduction
Since the network trains to reduce streak artifacts by pre-

dicting the original streak artifacts in x from the amplified
streak artifacts in x̂, we iteratively apply the trained network
to a given x to reduce the streak artifacts. In the first iteration,
we set x as the network input and acquire the network output
f(x; ✓). Since a single iteration is not sufficient to reduce
streak artifacts in x, more than two iterations are conducted.
Note that the output of the previous iteration was set as the
input of the current iteration. We perform this processing until
the streak artifacts in x are reduced to the level we want. Note
that the number of iterations can be flexibly controlled and it
was set to a maximum of five in this work. We will notate y
as the resulting image of the last iteration in this step.

C. Streak artifact estimation
Applying the trained network operator several times works

to reduce streak artifacts rather than preserve the anatomi-
cal structure. Therefore, the streak artifacts are significantly
reduced in y, but over-smoothing and blurring can occur,
resulting in low performance of signal detection. In this reason,
it is inadequate to utilize y itself as the final result. To preserve
the fine details that may have been blurred, we estimate the
original streak artifacts in x from y.

For streak estimation model, we first reconstruct full and
sparse-view images from y by sequentially applying forward
projection and FBP algorithm with full and sparse-view pro-
jection data, respectively. These full view image and sparse-
view image are denoted as yfull and ysparse, respectively. The
estimated streak image is generated by subtracting yfull from
ysparse. We then acquire the final output by subtracting the
estimated streak image from x.

D. Training configurations
We used the U-net structure [11] because it is well-known

for effectively extracting the widely distributed streak artifacts
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in the reconstructed images. The network was optimized by
Adam optimizer [12] with default parameters and the learning
rate 1e-4. To increase the datasets for CNN training, we
implemented data augmentation that randomly flips and rotates
the cropped images, where the images of 256 by 256 pixels
are cropped from the original images of 512 by 512 pixels.
We trained the network until 100 epochs and set batch size as
4.

III. DATASETS AND EXPERIMENTS

A. XCAT dataset
We used abdomen and thorax regions of XCAT simulation

dataset in our work. A total of 9690 slices was extracted
from the 28 XCAT phantoms. We generated XCAT images
in fan-beam geometry system and the simulation parameters
are summarized in Table I. During image generation, the
forward projection was implemented using Siddon’s ray-driven
algorithm [13] and the FBP algorithm was conducted with a
Ram-Lak filter. For CNN dataset, we used 25 phantoms (8720
slices) and 3 phantoms (970 slices) for training and test set,
respectively. The different details between sparse and full view
CT images are explained in the following section.

TABLE I
FAN GEOMETRY SIMULATION PARAMETERS

Parameters Values
Source to iso-center distance 50cm
Source to detector distance 50cm
Detector pixel size 512 x 1
Detector cell size 0.2cm2 x 0.1cm2

Reconstructed matrix size 512 x 512
Reconstructed pixel size 0.0628cm2 x 0.0628cm2

B. Data generation
We generated sparse and full view CT images with 128 and

512 projection views, respectively, and each projection angle
was equally spaced over 360 degrees. For Poisson noise, we
set the number of incident X-ray photons as 106 for full view
CT images. However, since the number of projection views in
the sparse-view CT images is a quarter of full view CT images,
the noise level of sparse-view CT images will be four times
higher than that of full view CT images when the number of
incident X-ray photons are the same. To make the noise level
equal, we set the number of incident X-ray photons as 4⇥106

for sparse-view CT images. Note that the only unpaired sparse-
view CT images are given for CNN training and the full view
CT images are only used in testing phase.

C. Comparison methods
We additionally conducted a simple linear interpolation

method and a fully-supervised learning [11] for comparison.
The linear interpolation method estimated the missing view
data of sparse-view sinogram by applying linear interpolation
in view direction. For fully-supervised learning, we assumed
that the paired of sparse and full view CT images were given
for input and target of CNN training, respectively. The training

configurations were the same as that we used in the proposed
method.

IV. RESULTS

Figure 2 shows the resulting images on XCAT dataset. The
linear interpolation image showed less streak artifacts than 128
view FBP image through the estimation of missing view data,
whereas the secondary artifacts such as edge distortion were
produced due to the interpolation errors. The fully-supervised
method reduced the streak artifacts and noise significantly.
However, it can be seen that the lesions indicated by red and
yellow arrows in ROIs of the fully-supervised method were
blurred, leading to poor performance of visibility of those
signals. In contrast, the proposed method produced the best
visual similarity of ROIs to those of 512 view FBP image
while preserving the edge sharpness. For the proposed method
with iteration 1, its difference image had more edge errors than
the results of other iterations. However, these errors disappear
as more iterations are conducted.

Table II summarizes the average and standard deviation of
normalized root MSE (NRMSE) and structural similarity index
(SSIM) [14] on XCAT testset. We observed that the fully-
supervised method showed the best scores of NRMSE and
SSIM. For the proposed method, iteration 2 had the lowest
NRMSE and highest SSIM scores. Although the proposed
method with iteration 2 showed slightly worse scores than
the fully-supervised method, visual inspection confirms that
the proposed method produces better image texture without
sacrificing the detectability of lesions.

To examine the effect of the streak estimation model in
the proposed method, we did not apply the streak estimation
model after the iterative streak artifact reduction procedure and
the results are shown in figure 3. As the number of iterations
increases, although the streak artifacts are gradually reduced, it
can be seen that the images were getting blurred. For the ROIs
of more than iteration 2, the signals were lost and the edge
was also over smoothed. Although the results of iteration 1
preserved the signal indicated by red arrow, the streak artifacts
were not reduced enough. From this, we chose to use iteration
2 to effectively reduce streak artifacts while preserving edge
and signal shapes.

V. CONCLUSION

In this work, we proposed the weakly-supervised learning
for streak artifact reduction with unpaired sparse-view CT
data. From the results, the proposed method achieved the
best performance in preserving lesions while reducing streak
artifacts compared to the other results. By overcoming the
difficulty of acquiring the pairs of sparse and full view CT
images in practice, we expect that our novel framework can
be utilized successfully in medical imaging field.
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Fig. 2. The reconstructed images with XCAT dataset. The display window of field of view (FOV) and zoomed region of interest (ROI) images is (-240,320)
in HU. The display window of difference images is (-100,100) in HU.

TABLE II
THE QUANTITATIVE EVALUATIONS OF XCAT DATASET

Metrics 128 view Linear interpolation Fully-supervised Proposed
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

NRMSE 0.0268 ± 0.0042 0.0157 ± 0.0036 0.0064 ± 0.0013 0.0122 ± 0.0015 0.0102 ± 0.0012 0.0104 ± 0.0012 0.0108 ± 0.0012 0.0111 ± 0.0012
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Dual Domain Closed-loop Learning for Sparse-view
CT Reconstruction

Yi Guo, Yongbo Wang, Manman Zhu, Dong Zeng, Zhaoying Bian, Xi Tao and Jianhua Ma

Abstract—Sparse view sampling is one of the effective ways
to reduce radiation dose in the CT imaging. However, artifacts
and noise in sparse-view filtered back projection reconstructed
CT images are obvious that should be removed effectively to
maintain diagnostic accuracy. In this paper, we propose a novel
sparse-view CT reconstruction framework, which integrates the
projection-to-image and image-to-projection mappings to build
a dual domain closed-loop learning network. For simplicity, the
proposed framework is termed as closed-loop learning recon-
struction network (CLRrcon). Specifically, the primal mapping
(i.e., projection-to-image mapping) contains a projection domain
network, a backward projection module, and an image domain
network. The dual mapping (i.e., image-to-projection mapping)
contains an image domain network and a forward projection
module. All modules are trained simultaneously during the
network training stage, and only the first mapping is used
in the network inference stage. It should be noted that both
the inference time and hardware requirements do not increase
compared with traditional hybrid domain networks. Experiments
on low-dose CT data demonstrate the proposed CLRecon model
can obtain promising reconstruction results in terms of edge
preservation, texture recovery, and reconstruction accuracy in
the sparse-view CT reconstruction task.

Index Terms—Computed tomography, closed-loop learning,
image reconstruction, sparse view.

I. INTRODUCTION

COMPUTED Tomography (CT) has been widely used in
modern medical diagnosis and treatment due to its fast

imaging speed, high resolution, etc. However, patients will
receive lots of radiation dose during the CT examination,
which is becoming a concern. Sparse-view scan can effec-
tively reduce the radiation dose, but with the decrease of the
scan views, the image quality will degrade when using the
traditional filtered back projection (FBP) algorithm.

Numerous model-based iterative algorithms (MBIR) have
been proposed for sparse-view CT reconstruction in the past
decade. With correct prior assumptions [1], [2], the iterative
algorithm can obtain high quality images. However, prior
information is often manually selected, which cannot achieve
desired results when it is not completely consistent with
the actual collected projection data. In addition, the iterative
algorithm requires repeated forward and backward projection
until the desired image is obtained, which is time-consuming
and requires a lot of computing resources.

This work was supported in part by the NSFC under Grant U21A6005 and
Grant U1708261, the National Key R&D Program of China under Grant No.
2020YFA0712200. (Corresponding author: Jianhua Ma.)

Y. Guo, Y. Wang, M. Zhu, D. Zeng, Z. Bian, X. Tao and J. Ma are with the
School of Biomedical Engineering, Southern Medical University, Guangdong,
China; and the Guangdong Artificial Intelligence and Digital Economy
Laboratory (Guangzhou), Guangdong, China (e-mail: jhma@smu.edu.cn).

In recent years, deep learning has achieved great success
in the CT reconstruction task. The deep learning based re-
construction methods can be divided into the following three
categories. The first category trains a network mapping from
low-dose data to normal-dose data in the image domain or
projection domain [3]–[5]. Some scholars attempt combine
image domain network with projection domain network to
form a hybrid model [6], [7]. The second category expands
the iterative reconstruction algorithms into a network [8]–
[10]. The third category builds a projection-to-image recon-
struction network [11]–[13]. Through sufficient training, the
network can directly reconstruct the image without artifacts
from sparse-view projection data. In addition, Tao et al. [14]
proposed to learn in the view-by-view backprojection tensor
(VVBP-Tensor), and the experiment found that the results
of this learning framework was significantly improved. At
present, the application of deep learning in CT reconstruction
mainly completes the learning from projection to image.
However, this process lacks the constraint of comparing the
difference between the calculated projection by projecting the
reconstructed image and the measured projection like iterative
algorithms.

Different from traditional supervised learning or semi-
supervised learning, dual learning forms a closed-loop system
by creating a dual problem of the primary problem. The
primary problem and dual problem can mutually promote
learning each other through this closed-loop system, so as to
obtain better learning. Dual learning has been a great success
in natural image processing such as image super-resolution
[15] and raindrop removal [16]. For CT reconstruction, the
advantages of traditional iterative reconstruction algorithms
in low-dose CT reconstruction are mainly reflected in the
use of forward and backward projection operators to update
the target image by error feedback. This process implies a
constraint that the estimated projection obtained by projecting
reconstructed image should be consistent with the measured
projection. Inspired by these works, we propose a closed-loop
learning reconstruction model (CLRecon) for sparse-view
CT reconstruction. In the proposed CLRecon, the original
problem is learning the mapping from measured projection
to image, and the dual problem is learning the mapping from
image to measured projection. The mapping from image
to projection can effectively constrain the mapping from
projection to image to learn in the right direction, and thus
helping to improve the quality of reconstruction.
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Fig. 1. The proposed closed-loop learning reconstruction framework.

II. METHODS

A. Overview

Fig. 1 depicts the overview of our proposed closed-loop
learning reconstruction framework. It consists of two learning
mappings. The primal mapping is used to learn the transforma-
tion from sparse-view projection to reconstructed image, and
the second one learns the dual mapping from reconstructed
image to projection. The primal mapping includes a projection
domain network, a gradient returnable backward projection
module which is the implementation of FBP and an image
domain network. The dual learning mapping consists of an
image domain network and a gradient returnable forward
projection module.

B. Network Architecture

We build the backward projection module by implementing
FBP algorithm based on PyTorch deep learning library [17],
which can retain gradient during forward propagation. Consid-
ering the sparsity of system matrix, we construct it by sparse
matrix. This greatly reduces memory requirements and makes
it possible to project the reconstructed image when training the
neywork. In our proposed closed-loop learning sparse-view CT
reconstruction framework, sub-network G1, G2, G3 can be any
network. In our next experiment, we chose FBPConvNet [18]
as the base network and we remove the batch normalization
layer as is shown in Fig. 2.

C. Loss Functions

We adopt the simple mean square error (MSE) loss to train
the network. To make network training is constrained by both
label image and measured projection, we add the loss in both
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Fig. 2. The architecture of the base network.

image domain and projection domain. For image domain loss,
we can formulate it as follows:

Limg =
1

MN

M∑

i=1

N∑

j=1

‖X̂ij −Xij‖22, (1)

where X̂ is the output of the network and X is the label
image. M is the number of samples in a batch and N is the
number of pixels in sample. The projection domain loss can
be formulated as follows:

Lproj =
1

MP

M∑

i=1

P∑

j=1

‖Ŷij − Yij‖22, (2)

where Ŷ is the output of the network and Y is the measured
projection. P is the number of pixels in sample. If we have
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(a) full-view (b) sparse-view (c) FBPConvNet

(d) REDCNN

(g) DDenseNet

(e) FVVTensor (f) FramingUnet

(h) FBPConvNet(projection) (I) Ours

Fig. 3. Reconstruction results of different networks with a view
number of 72. Display window: [-160, 240] HU.

full-view projection, Y can be full-view projection for better
performance. The full objective function contains the image
domain loss and the projection domain loss as follow:

Lmse = λLimg + (1− λ)Lproj, (3)

where λ is a parameter that balances image loss and the
projection loss, and in this work, it is set to be 0.8.

III. EXPERIMENTS

A. Data
We used AAPM Low Dose CT Grand Challenge datasets

for evaluation which consists of routine dose CT and the
corresponding simulated LDCT data [19]. We used 10976
slices from 34 patients for training the network and 1095 slices
from 6 patients for validation and testing. We projected the
images to obtain the simulation fan-beam projection data. The
geometry parameters projection were set as: projection view
number of 1152, detector bin number of 736, image pixel
space of 0.6934mm× 0.6934mm, and detector bin width of
1.2858 mm. In our experiment, we extracted 72 views with
equal angle distribution to simulate the sparse-view scan.

B. Implementation Details
The framework was implemented in Python based on Py-

Torch deep learning library [17]. All reconstruction images
have a size of 512 × 512 and the sinograms are with a size
of n × 1152, where n is the projection views. The Adam
optimizer [20] was used to optimize the whole framework
with the parameters (β1, β2) = (0.9 0.999). The learning rate

TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT MODELS.

Model RMSE SSIM

FBPConvNet 4.6328 0.8710
REDCNN 4.9033 0.8417

FVVTensor 4.2655 0.8827
FramingUnet 4.4261 0.8782
DDenseNet 4.4699 0.8770

FBPConvNet (projection) 5.0693 0.8603
Ours 3.7063 0.9004

TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT

COMBINATIONS OF MODULES.

Model RMSE SSIM

G2 4.1230 0.8858
G1 +G2 3.9299 0.8937

G1 +G2 + FP 3.7685 0.8984
G1 +G2 +G2 + FP 3.7063 0.9004

drop linearly from 10−3 to 10−5. We trained the network on
NVIDIA GeForce RTX 3090 GPUs.

IV. RESULTS

A. Experimental Results on Mayo Data

1) Qualitative analysis: We compared our method with the
recent deep-learning-based methods, including FBPConvNet
[18], FramingUNet [21], REDCNN [22], DDenseNet [23],
FVVtensor [14]. FBPConvNet is closer to the network we
used, but we did not use the batch normalization layer like it
did. FramingUNet, REDCNN and DDenseNet optimized the
network structure for better performance. FVVtensor learns
in VVBP-Tensor and obtains good results. We also applied
the FBPConvNet in projection domain to repair sparse views
projection directly.

Fig. 3 shows the visual comparisons of our method and
other methods on the reconstructed images with 72 views. We
show the full-views image, sparse-view image and results of
different models. To better compare the results of different
networks, the ROI in the image is enlarged at the bottom of
the image. It can be observed that our network can achieve
excellent results in edge preservation and artifact removal.

2) Quantitative comparisons with state-of-the-art methods:
Table I shows the quantitative comparison results of our
method and other methods. It’s the average of all the test
slices. We can observe that our model achieves lower root
mean square error (RMSE) and higher structured similarity
index (SSIM) than other methods, which can prove that our
network can obtain better reconstruction quality under this
sparse-view degradation levels.
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(a) full-view (b) sparse-view (c) G2

(d) G1+G2 (e) G1+G2+FP (f) G1+G2+G3+FP

Fig. 4. Reconstruction results of different combinations of
modules. Display window: [-160, 240]HU.

B. Ablation Study

In our proposed CLRecon, we add a image-to-projection
mapping to the primal mapping (i.e., projection-to-image
mapping) and form a closed-loop learning system. To show
the effectiveness of this procedure, we compared the recon-
struction results of different combinations of G1, G2, G3

and forward projection module (FP). Fig. 4 shows the visual
comparisons of different combinations of modules. We can
observe that the image quality can be improved after adding
G3 and FP. Table II shows the quantitative comparison results
of different experiments. We can see that it can achieve lower
RMSE and SSIM with forward projection module and G3.
The network complexity did not increase because image-
to-projection mapping was not used during the test stage.
The improvement of reconstructed image quality lies in the
improvement of network learning strategy rather than the
increase of network depth. It proves that the proposed closed-
loop learning can improve the reconstruction quality in sparse-
view CT reconstruction.

V. CONCLUSION

We have presented a closed-loop learning reconstruction
model (CLRecon) for sparse-view CT reconstruction in this
paper. Specifically, the primal mapping is used to learn the
transformation from sparse-view projection to reconstructed
image, and the dual mapping learns from reconstructed image
to projection. Our experiment shows that the addition of these
two modules can improve the quality of reconstructed image.
Since this mapping is only used in network training, the
network parameters are not increased. The improvement of
network performance lies in the change of learning strategy.
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Hybrid Reconstruction Using Shearlets and Deep
Learning for Sparse X-Ray Computed Tomography

Andi Braimllari, Theodor Cheslerean-Boghiu, Tobias Lasser

Abstract—In sparse X-ray Computed Tomography, the radia-

tion dose to the patient is lowered by measuring less projections

views compared to a standard protocol. In this work we in-

vestigate a hybrid approach combining shearlet representation

with deep learning for reconstruction of sparse-view X-ray

computed tomography. The proposed method is hybrid in that

it reconstructs the parts that can provably be retrieved by

utilizing a model-based approach, and it in-paints the parts that

provably cannot through a learning-based approach. In doing

so, we attempt to benefit from the best aspects of model- and

learning-based methods. We demonstrate first promising results

on publicly available data.

Index Terms—sparse-view X-ray computed tomography, shear-

lets, deep learning.

I. INTRODUCTION

X
-RAY Computed Tomography (CT) is an essential tech-
nique that provides deep insight of a patient or an object

of interest in a non-invasive manner. The forward model can
be formulated as

Rf = y + ⌘ (1)

where R represents the X-ray transform, f the quantity to be
reconstructed (the absorption coefficients), while y represents
the X-ray measurements and ⌘ some noise.

An important aspect of medical X-ray CT is the radiation
exposure of the patients. One technique to lower the radiation
dose is by lowering the number of projection views [14].
This is referred to as sparse-view or sparse X-Ray CT. The
reconstructions of such sparse measurements tend to feature
streak artifacts near edges tangent to the acquired X-rays
[14]. With increasing sparsity and thus the increasing lack
of measurement data, the severity of these streak artifacts
also increases. Hence a reconstruction approach alleviating the
impact of these streak artifacts is highly desirable.

The visibility principle [4] tells us in essence that the visible
part of an object is comprised of the set of edges tangent to
the acquired X-rays, and the invisible part is comprised of
the edges non-tangent to these X-rays. Moreover, which edges
can or cannot be reconstructed is dependent on the acquisition
geometry, therefore known before acquisition.

Following [1], we leverage this principle by employing
shearlets to resolve the wavefront set of such a signal. This

A. Braimllari was with and T. Cheslerean-Boghiu, T. Lasser are with
Computational Imaging and Inverse Problems, Department of Informatics,
School of Computation, Information, and Technology, Technical University
of Munich, Germany, and with Munich Institute of Biomedical Engineering,
Technical University of Munich, Germany.

enables us to properly reconstruct the visible edges using `1-
regularization and to in-paint the invisible ones using deep
learning. Using only model-based methods, by the visibility
principle, we cannot retrieve the invisible information. On the
other hand, using only deep learning on such an ill-posed
problem, we might get satisfactory results up to a point, but
we will not be able to certainly assert as to how much the
original signal has changed [1].

Therefore, our proposed approach, which we will term
SDLX for the remainder of this work, is a hybrid method
that benefits from the best aspects of both model-based and
learning-based approaches for sparse-view X-ray CT recon-
struction. The SDLX method is very closely related to [1],
which was developed for limited-angle X-ray CT. In the
following we will present the SDLX method in detail, along
with first results on a publicly available data set.

II. METHODS

A. Shearlets
Shearlets are a mathematical concept building on top of

existing wavelet-theory components with distinct advantages.
They represent a multi-scale framework that provides opti-
mally sparse approximations of multivariate, anisotropic data.
The approximation rate of shearlets is of O(N�2), compar-
atively better than the O(N�1) of wavelets. Shearlets are
constructed by applying three operations, translation, dilation,
and shearing, see [5] for details. They are applied to a single
generating function  , resulting in a shearlet system

 a,s,t = | detMas|1/2 Mas(�t) (2)

Here, a 2 R+ dictates the dilation matrix Aa, s 2 R
dictates the shearing matrix Ss, while t 2 R2 represents the
translations. The composite matrix Mas is then defined as
Mas = A�1

a
S�1
s

. The continuous shearlet transform is then

SH(f) = hf, a,s,ti (3)

For the discerete shearlet transform, we sample the pa-
rameter space R+ ⇥ R ⇥ R2 at discrete points. This defines
the regular discrete shearlet system as

SH( ) = { j,k,m23j/4 (SkA2j ), 8(j, k,m) 2 Z⇥ Z⇥ Z2}
(4)

The discrete shearlet transform is defined similarly to the
continuous scenario.

Given the directional bias exhibited by regular shearlets
[8], we will instead be using the cone-adapted shearlets as
they provide a remedy to it. For a visual representation of
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the tiling that is generated in the Fourier domain, see Fig. 1.
Additionally, we want to explicitly specify and emphasize, that
the cone-adapted discrete shearlet systems as mentioned
above, under mild assumptions, form a Parseval frame [9].
Based on this fact and the above statements, we know that

f = SHT (SH(f)) (5)

This equation represents a powerful reconstruction formula
of the discrete shearlet transform, which is essential to our
hybrid approach.

(a) f

Fig. 1: Frequency tiling of the cone-adapted shearlet

system. By Afg genzel - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=27761187

By far the most important property of the shearlet systems
to the hybrid approach is their ability to resolve the wavefront
set of the signals at hand [1]. This allows us to differentiate
the visible and invisible boundaries, and is accomplished by
distinguishing different decay rates of the shearlet transform.

It is worth pointing out that we utilize classical shearlet
systems, which are band-limited (compact support in the
frequency domain [5]). Our implementation of such a discrete

cone-adapted band-limited shearlet transform is based on
[10], to which we refer the reader to for further details. We
also utilize the shearlet transform available in [11] as an
intermediary operation after running the `1-regularization.

B. Sparse Regularization with ADMM
Sparse regularization attempts to leverage the assumption

that the output of a problem can be described by a fewer
number of inputs, or put differently that for every output
there exists a sparsifying representation system [1]. More
specifically for low-dose CT, it has been shown that such
methods enable more accurate reconstructions given very few
tomographic measurements [1]. Therefore, such a paradigm is
of interest to us for tackling sparse-view X-ray CT.

Alternating Direction Method of Multipliers (ADMM)

is a general algorithm that works quite well in splitting the
minimization of the sparsity-promoting `1-regularization term

and the data fidelity term. Details on ADMM can be found in
[12].

Based on (1), we are now able to construct and utilize
shearlet-based sparse regularization. Explicitly expressing the
reconstruction problem built so far, we write

argmin
f�0

1

2
kRf + yk+ kSH(f)k1,w (6)

in which w 2 RW⇥H⇥L

�0 represents the weights to the
regularization term. This allows us to split the wavefront set of
the signal into the visible and invisible parts, as described in
the visibility principle. In this equation we have also explicitly
specified a constraint for non-negative solutions, as it leads to
better reconstructions [1].

We solve this minimization problem using ADMM.

C. Recovering the Invisible using Deep Learning
Deep Learning is one of the most influential paradigms of

the last few decades with impressive results in a plethora of
fields. In the recent years, considerable attempts have also
been made towards the field of medical imaging as well. Many
of the current model architectures and techniques pre-process
the measurements or post-process the reconstructions, which
can produce impressive results. However, it is not always
immediately obvious that data fidelity was kept. In a medical
setting this is not something that can be easily overlooked, as
accuracy is a crucial.

In the hybrid approach that we are working on, the influence
of deep learning is kept to a minimum. It is only used for in-
painting missing information that can provably not be retrieved
through classical model-based approaches. The architecture
that we are using is PhantomNet, as proposed in [1].

PhantomNet is a fully-convolutional neural network based
on one of the most prevalent architectures, U-Net. Different
from U-Net, it is also a multi-channel input and multi-channel
output network, based on the fact that it operates on the phase
space and works with shearlet coefficients. More specifically,
it takes a signal of shape (L,W,H) (e.g. (61, 512, 512)
and outputs a signal of the same shape. Here, W and H
respectively represent the width and height of the image, while
L dictates the number of layers of the shearlet coefficients. We
refer the reader to [1] for full details on the architecture.

D. The SDLX method
Using the separate components of the hybrid approach

outlined above, we now summarize all the steps that make
up the SDLX method.

1) Retrieve the visible coefficients

Compute `1-regularized solutions of the following prob-
lem

g 2 argmin
f�0

1

2
kRf + yk+ kSH(f)k1,w (7)

by utilizing ADMM (or any other appropriate solver),
which retrieves the visible coefficients based on the
provided measurements. The input to this step are the
sparse-view measurements y, while the output g is a
reconstruction with sparse-view artifacts.
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2) Estimate the invisible coefficients

We apply the shearlet transform to all of the images
g generated above, which maps them from (W,H) to
(L,W,H). The PhantomNet uses these shearlet co-
efficients as input, and it outputs objects of the same
shape, which are the in-painted shearlet coefficients.
After training PhantomNet (PN), we use this model
to estimate the invisible coefficients. If its weights are
well adjusted, the following approximation should hold
to a satisfactory threshold,

PN(SH(g)) ⇡ SH(f)inv (8)

3) Combine the visible and invisible coefficients

Up until here we have the retrieved visible coefficients
and a decent-enough estimation of the invisible coeffi-
cients (output of PN). We sum them together and bring
the entire output back to the spatial-domain through the
inverse shearlet transform

fSDLX = SHT (SH(g)vis + PN(SH(g))) (9)

Here, fSDLX is our end-result (of shape (W,H)),
which contains the reconstruction of the sparse-view
measurements along with the in-painting of the missing
information.

The run-time of the proposed SDLX method is dominated
by ADMM solving the `1-regularized problem. The imple-
mentations of our proposed algorithm are available at [3], [2].

III. EXPERIMENTS AND RESULTS

The dataset used here is the one provided by the Mayo
Clinic for the AAPM Low-Dose CT Grand Challenge [15].
It contains human abdomen scans with width and height of
512. We chose the low-dose scans, with pixel intensities in
[0 : 255].

For training of the PhantomNet we selected 10 patients,
with the IDs of L004, L006, L014, L019, L033, L049, L056,
L057, L058, and L064, which comprised a total number of
1525 scans. For testing we chose another patient, with an ID
of L071.

To generate training pairs for the PhantomNet, we first
simulate sparse, 64 projection view sinograms (over an arc of
360 degrees) of the 1525 training images using [2], adding
1% Gaussian noise. Then we compute `1-regularized recon-
structions of those sinograms using ADMM as in (7), with 10
iterations of ADMM and 5 inner iterations of the conjugate
gradient method on the normal equation. We manually selected
the parameters of ADMM as ⇢1 = 1/2, ⇢2 = 1 (as in [1]),
and w = 0.001. Afterwards, we apply the forward shearlet

transform from [11].
We train the PhantomNet for 100 epochs in single-batches

(e.g. one (61, 512, 512) object as a batch) on a learning rate
of 7e�5 and weight decay of 1e�7. The chosen optimizer is
Adam. The loss function is the mean squared error loss from
torch.nn.MSELoss.

For testing, we use the data from the patient with ID of
L071, and simulate sparse-view sinograms with 64 projection

TABLE I: Metrics of the 64-view reconstruction results on
patient L071 compared to the ground truth. The lower the
RE, the better. The higher the PSNR, SSIM, HaarPSI, the
better.

Metrics
Method RE PSNR SSIM HaarPSI
fCG 0.073 21.664 0.221 0.339

fADMM 0.061 22.409 0.246 0.352
fSDLX 0.026 26.001 0.271 0.626

views as above, adding 1% Gaussian noise. We execute the
full SDLX method as in subsection II-D, using the same
ADMM parameters as for training the phantom net. In the
last step, we sum together the visible coefficients from the `1-
regularization and the estimated invisible coefficients that the
trained PhantomNet predicts, and apply the inverse shearlet

transform to it.
An example result fSDLX of our proposed SDLX method

is shown in Fig. 2 for one of the slices of patient ID L071,
which was not seen during training. We also compare with
the ground truth and reconstructions using the same ADMM
as in the first step of SDLX, fADMM , and the result of an
unregularized CG reconstruction using 10 iterations, fCG.

It is apparent that this hybrid method is capable of in-
painting the missing singularities for sparse-view CT. SDLX

outperforms the other methods, a claim also supported by
the metrics, as displayed in Table I. The metrics utilized
are the Relative Error (RE), Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), and
Haar Wavelet-Based Perceptual Similarity Index (HaarPSI).

We also ran the same testing experiment without adding
noise to the simulated sinograms. The trained model (on noisy
simulated data) performed just as well on the unseen data,
which serves as an indicator that SDLX is fairly robust towards
noise.

IV. DISCUSSION AND CONCLUSION

The results from the experiment indicate that the hybrid
approach works for sparse-view CT. However, a certain
smoothing effect is also visible in the results. First experiments
(not shown here) indicate that further tuning of the training of
PhantomNet might negate this effect.

One aspect of the SDLX method that might introduce
unexplained features is the deep learning step. Fortunately, this
element is utilized here in a relatively controlled manner, given
that it only handles the inference of the invisible coefficients.
Further tuning of the hyper-parameters might be beneficial,
as might be the study of more advanced models, such as
transformers, instead of the U-net.

In summary, SDLX works because shearlets are capable
of resolving the wavefront sets of the signals we are dealing
with, and these decomposed coefficients adhere to certain rules
which we can then learn. Adapting the work for limited-angle
X-ray CT in [1], our first experiments for sparse-view X-ray
CT on a publicly available data set show promising results.
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(a) f (b) fCG

(c) fSDLX (d) fADMM

Fig. 2: 64-view reconstruction results on patient L071. The ground truth is f , while fSDLX is the output of our proposed
SDLX algorithm. For comparison, we also show reconstruction of the first step of the SDLX algorithm (fADMM ) as well as
an unregularized iterative CG reconstruction fCG. The pixel intensities lie in [0 : 255]. For further details see section III.

ACKNOWLEDGMENT

We would like to express our gratitude to David Frank, a
maintainer of the elsa library [2], for his code reviews.

REFERENCES

[1] T. A. Bubba and G. Kutyniok and M. Lassas and M. März and W. Samek
and S. Siltanen and V. Srinivasan, Learning The Invisible: A Hybrid Deep
Learning-Shearlet Framework for Limited Angle Computed Tomography.
2018.

[2] T. Lasser and M. Hornung and D. Frank, elsa - an elegant framework for
tomographic reconstruction, 15th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine,
11072. International Society for Optics and Photonics, SPIE, Samuel
Matej and Scott D. Metzler, 2019, 570 – 573, 10.1117/12.2534833,
https://doi.org/10.1117/12.2534833.

[3] A. Braimllari, SDLX, https://github.com/AndiBraimllari/SDLX. 2021.
[4] E. T. Quinto, Artifacts and Visible Singularities in Limited Data X-Ray

Tomography. 2017.
[5] G. Kutyniok and D. Labate, Introduction to Shearlets. 2012.
[6] E. J. Candès and D. L. Donoho, New Tight Frames of Curvelets and

Optimal Representations of Objects with C2 Singularities. 2002.

[7] E. Candès and L. Demanet and D. Donoho and L. Ying, Fast Discrete
Curvelet Transforms. 2006.

[8] K. Guo and G. Kutyniok and D. Labate, Sparse Multidimensional
Representations using Anisotropic Dilation and Shear Operators. 2005.

[9] O. Christensen, An Introduction to Frames and Riesz Bases. 2003.
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ABSTRACT The x-ray computed tomography (CT) images with low dose are noisy and may contain photon 
starvation artifacts. The artifacts are location and direction dependent. Therefore, the common shift-invariant 
denoising filters do not work well. The state-of-the-art methods to process the low-dose CT images are image 
reconstruction based; they require the raw projection data. In many situations, the raw CT projections are not 
accessible. This paper suggests a method to denoise the low-dose CT image using the pseudo projections 
generated by the application of a forward projector on the low-dose CT image. The feasibility of the proposed 
method is demonstrated by real clinical data. 

INDEX TERMS Image processing, Image reconstruction, Biomedical imaging, Computed Tomography, 
Filters

I. INTRODUCTION 
An immediate negative effect of using a low dose in CT 

imaging is that the images become noisy. The conventional 
denoising methods are based on the shift-invariant 
assumption. They can be implemented either in the spatial-
domain as convolution methods or in the Fourier-domain as 
multiplication methods.  

Shift-invariant filters can also be nonlinear. The 
nonlinear filters may outperform the linear filters in terms of 
sharp edge preservation.  

Convolutional neural network (CNN) based methods 
can be very effective in removing noise from the images 
provided a large amount of noisy/noiseless image pairs are 
available to train the neural network.  

This paper presents an effective nonlinear shift-variant 
procedure that does not need any image pairs to train. This 
proposed procedure blends the concepts of linear filtering, 
shift-variant filtering, and tomography. The feasibility and 
effectiveness of the proposed procedure are illustrated by its 
application to real clinical data. 

 
II. METHODS 

In this paper, we assume that the image x is already 
somehow reconstructed, for example, by the analytical filtered 
backprojection (FBP) algorithm. The image is noisy and 
contains photon starvation artifacts. The original measured 
projections are NOT available anymore. 

 
A. The proposed algorithm 

The proposed artifact reduction algorithm is introduced as 
follows.  

 
Step 1. For a given image xold, generate simulated pseudo 
projections as 

𝑝𝑖 = 𝑎𝑖
𝑇𝑥𝑜𝑙𝑑 (1) 

for all i. 
Step 2. Select a threshold value T. 
Step 3. Loop through all projections 𝑝𝑖 . 
 If 𝑝𝑖 < 𝑇, do nothing. 

If 𝑝𝑖 ≥ 𝑇, replace 𝑝𝑖 by its filtered version using a 
one-dimensional moving-average filter along the 
detector direction. 

Step 4. Apply the filtered backprojection (FBP) algorithm to 
the processed pseudo projections, to obtain the final image 
xnew. 
 

The threshold value T is a user-selected parameter, and 
we used T as the 75% of the maximum projection value in our 
study in this paper. 

We now explain what motivates this algorithm. We do not 
choose any shift-invariant filters, because the artifacts are 
location and direction dependent. Since the state-of-the-art 
denoising algorithms are image reconstruction based, we 
choose an image reconstruction-based algorithm.  

Our biggest obstacle is that we do not have an access of 
the original measurements in the projection domain. We only 
have a noisy reconstruction xold. The simulated pseudo forward 
projection 𝑎𝑖

𝑇𝑥𝑜𝑙𝑑  is not the same as the originally measured 
projection.  
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The original projections due to noise are inconsistent. The 
inconsistency carries the noise information. The inconsistency 
information is lost in the forward projection 𝑎𝑖

𝑇𝑥𝑜𝑙𝑑.  The 
objective function is already at its minimum with the pseudo 
projections because 𝑝𝑖 = 𝑎𝑖

𝑇𝑥𝑜𝑙𝑑 . Therefore, the strategy of 
selecting a set of weights to minimize the objective function 
does not help. 

Realizing that the re-projected pseudo measurements do 
not carry the same information and do not have the same 
values as the original raw measurements, our novel strategy of 
this paper is to use the transmission data noise model to 
estimate the noise variance in the re-projected pseudo 
measurements. The FBP algorithm is selected to reconstruct 
the final image, because it is fast and easy to implement. 
B. Image evaluation 

The most common way to determine the effectiveness of 
artifact removal algorithms is by visual inspection or human 
observer studies. A quantitative evaluation metric adopted in 
this paper is the Sum Square Difference (SSD), defined as 

𝑆𝑆𝐷 =
∑ [𝑋𝑔𝑜𝑙𝑑(𝑖, 𝑗) − 𝑋(𝑖, 𝑗)]2

𝑖,𝑗

√∑ [𝑋𝑔𝑜𝑙𝑑(𝑖, 𝑗)]2 ∑ [𝑋(𝑖, 𝑗)]2
𝑖,𝑗𝑖,𝑗

, (2) 

where 𝑋𝑔𝑜𝑙𝑑  is the gold standard image, which is the FBP 
reconstruct from the regular-dose projections, and X is another 
image to compare with. The SSD essentially is the normalized 
distance between two images 𝑋𝑔𝑜𝑙𝑑 and X.   

III. RESULTS 
In this section, the methods are labeled with A – G. We point 
out that methods A and F use the ‘unavailable’ projections. 
In Figs. 1, the following labels are used for the images: (A) 
the gold standard image FBP reconstructed from the regular-
dose x-ray projections; (B) the raw FBP reconstruction 
image reconstructed from the measured low-dose x-ray data; 
(C) the processed image using the proposed algorithm in the 
paper using the pseudo data; (D) the image is FBP 
reconstructed with a linear Hanning filter applied to the 
pseudo data; (E) the image is FBP reconstructed with a 
nonlinear bilateral filter applied to the pseudo data; (F) the 
image is post processing result of image from (B) with a 
BM3D filter in the image domain; (G) almost the same as 
(C) except that the ‘unavailable’ low-dose x-ray data is used 
instead of the pseudo data.  

The numerical results of the Sum Square Difference 
(SSD) values are listed in Table 1. The SSD is a non-negative 
quantity, the smaller value the better. The ideal SSD value is 
0. In all these cases, the proposed method gives the smallest 
SSD values, indicating the best performance.  

The projection-domain images (also known as the 
sinograms) are displayed in Fig. 2. The images are (a) the 
‘unavailable’ regular-dose projections, (b) the difference 
between the raw ‘unavailable’ low-dose projections and the 
‘unavailable’ regular-dose projections, (c) the difference 
between the pseudo forward projections from the low-dose 
FBP reconstruction and the ‘unavailable’ low-dose 
projections, and (d) the difference between the processed 
version of the pseudo forward projections from the low-dose 

FBP reconstruction and the unprocessed version, 
respectively. It is observed from Fig. 2d that the proposed 
method only alters a very small portion of the projections. 

The proposed algorithm is effective in reducing the 
streaking artifacts and keeping the image resolution. As a 
comparison, the images produced by a linear Hanning filter, 
a nonlinear bilateral filter, or a BM3D filter are unable to to 
keep small details while the streaking artifacts are still 
severe. 
 

 
(1A) Standard dose image. The yellow line segment indicates the 
path that the line profiles are taken along in Fig. 14. 
 

 
(1B) Low-dose image 
 

(1C) Low-
dose image processed by proposed algorithm 
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(1D) Low-dose image processed by FBP-Hann 
 

 
(1E) Low-dose image processed by a bilateral filter 
 

 
(1F) Low-dose image processed by a BM3D filter 
 

 
(1G) Low-dose image processed by proposed algorithm using the 
‘unavailable’ measured projections 

Figure 1. Processed and unprocessed images. The standard-dose 
image in (1A) is the gold standard. The image with the proposed 
method (1C) gives the best result among all images using the low-
dose raw image (1B). 
 
Table 1. Full width at half maximum value comparison 

Method FWHM 
(pixels) 

Severe 
Artifacts? 

A. Regular-dose FBP 2.54 No 
B. Low-dose FBP, using the 
‘unavailable’ low-dose measurements 

2.34 yes 

C. Low-dose FBP using proposed 
method 

2.96 No 

D. Low-dose FBP using linear Hann 
filter 

3.76 Yes 

E. Low-dose FBP using nonlinear 
bilateral filter 

7.00 Yes 

F. Measured Low-dose using BM3D 
filter 

2.55 Yes 

G. Low-dose FBP using proposed 
method, but using the ‘unavailable’ 
low-dose measurements 

2.34 No 

H. Low-dose FBP, using the pseudo 
data  

2.98 No 

 

 
a. The sinogram for the regular-dose projections 

 
b. The difference between the low-dose projections and 

the regular-dose projections  

 
c. The difference between the low-dose projections and 

the forward projections of the FBP reconstruction from 
the low-dose projections 
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d. The difference between the forward projections of the 

FBP reconstruction from the low-dose projections and 
the processed projections by using the proposed 
algorithm  

Figure 2. Sinogram domain images.  
 

 
Figure 3. A sensitivity study of the SSD with respect to the 
threshold value T.  

IV. DISCUSSION 
When a noisy reconstructed image is available while the 
original projection measurements are no longer available, the 
pseudo re-projected line integrals are not helpful to reduce 
noise if a conventional iterative image reconstruction 
algorithm is to be used. The conventional iterative image 
reconstruction algorithms work in the principle of reducing 
the data fidelity term. By using the pseudo re-projected line 
integral data, this data fidelity term is already at its minimum 
value, which is zero. 

One way of denoising is to stop the iterations early. This 
approach is equivalent to lowpass filtering, which is almost 
shift invariant. As we demonstrated in the Results section, 
shift-invariant denoising smooths the images but still cannot 
reduce the streaking artifacts. 

A filter is referred to as shift-invariant if the filter 
operation is the same everywhere. In our proposed filter, the 
filter operation is only applied to a small amount of selected 
pseudo projections. Therefore, our proposed filter is shift 
variant. 

Our proposed algorithm is NOT an iterative image 
reconstruction algorithm; it is an analytic FBP algorithm 
with a nonlinear pre-filter. In the FBP algorithm, a ramp filter 
(which is a high-pass filter) must be used to cancel the 
bachprojection blurring. The purpose the low-pass filter is to 
reduce the noise in the image. The application of a low-pass 
filter is optional in FBP, only when image denoising is 

necessary. The main goal of this paper is photon-starvation 
artifact reduction, we do not apply a linear low-pass filter in 
the FBP algorithm. In the proposed algorithm, there is a 
threshold value T; any pseudo projection data value that is 
less than this threshold value is not affected. The majority of 
the pseudo projections are less than this threshold. Thus, the 
image resolution degradation is kept to its minimum. 

The proposed algorithm contains a user-determined 
hyper parameter T. This hyper parameter T is determined by 
trial and error. In fact, parameter T is not very sensitive. As 
shown in Fig. 3, the SSD vs T curve has a flat valley, which 
means that a wide range of the parameter T can give the 
optimal solution. 

Three noise-reducing filters have been used to compare 
with the proposed shift variant filter in the task of photon 
starvation artifact reduction. Those three noise-reducing 
filters do not perform well for this task. If the filters are 
adjusted to remove the artifacts, many image details are 
removed as the price to pay. The message of our paper is that 
the noise reduction task is different from the artifact 
reduction task. For artifact reduction, where to filter (or 
equivalently, where not to filter) is far more important than 
what filter to use. Once the region to be filtered is identified, 
many filters are effective as long as the filters have enough 
smoothing power. We choose the simplest linear moving-
average filter with a large enough kernel size. Other noise 
reduction filters such as bilateral and BM3D filters will work 
just fine when applied only in the specified region.  The 
critical point is that we do not apply the lowpass filter to the 
entire image or the entire sinogram. 

V. CONCLUSIONS 
We have developed an effective method to reduce the photon 
starvation streaking artifacts in low-dose x-ray CT images. 
The proposed method is shift-variant; it only applies lowpass 
filtration for some pre-determined measurement values in the 
sinogram domain. 

We assume that the raw, low-dose measurements are not 
available, and the noisy reconstruction is available. A set of 
pseudo re-projections are generated from noisy reconstruction. 
A threshold value T is selected by the user using a trial-and-
error method. The pre-determined measurements are selected 
if the pseudo measurement value is greater than T. The pre-
selected pseudo measurements are filtered in the sinogram 
domain by a simple moving-average lowpass filter along the 
detector direction. The FBP algorithm is performed to 
generate a final image using the selectively filtered pseudo 
measurements. 
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Data-driven Metal Artifact Correction in Computed
Tomography using conditional Generative

Adversarial Networks
Nele Blum1, University of Lübeck1, Germany, Thorsten M. Buzug1,2 and Maik Stille1,2, Fraunhofer

IMTE2, Germany,

Abstract—Metal objects in the field of view cause artifacts

in the image, which manifest as dark and bright streaks and

degrade the diagnostic value of the image. Standard approaches

for metal artifact reduction are often unable to correct these

artifacts sufficiently or introduce new artifacts. We propose a

new data-based method to reduce metal artifacts in CT images

applying conditional Generative Adversarial Networks to the

corrupted data. A generator network is applied directly to

the corrupted projections by the metal objects to learn the

corrected sinogram data. Further, two discriminator networks

are used to evaluate the image quality of the enhanced data

from the generator. The method was initially developed based on

a supervised approach. However, there is usually no ground truth

for actual clinical data without artifacts, which is needed to train

the networks. Therefore, the method was further improved to

train an unsupervised network, i.e., without the ground truth. In

addition the input data, the neighboring slices and the stochastic

components of the image are included using the latent space

representation of the data. The results show that the trained

generator network can reasonably replace the missing projection

data and reduce the artifacts in the reconstructed image.

I. INTRODUCTION

A
RTIFACTS are particularly apparent in computed tomog-
raphy (CT) when high-density objects like metal im-

plants or surgical instruments are present in the field of view.
Various metal artifact reduction (MAR) methods have been
proposed since the first publications on MAR [1]. Projection
completion methods are often used due to their simplicity
and fast application. They treat the data affected by metal
objects as missing image information and replace them with
synthetic data, usually obtained by interpolation [2]. A signif-
icant drawback of this method, especially in inhomogeneous
image regions, is the loss of information in the metal trace. An
alternative to this approach are iterative methods [3], yet they
have the disadvantage of high computation times, especially
for large 3D images. Recently, neuronal networks have been
used to correct corrupted data [4], [5]. To train the networks
effectively, the definition of a suitable loss function is crucial.
Still, loss functions are often designed to optimize specific,
quantifiable image parameters, even if a selection of image
properties to describe good image quality is usually hard to

N.Blum is with the Institute of Medical Engineering, University of Lübeck,
23556 Germany, e-mail: (see blum@imt.uni-luebeck.de).

T.M.Buzug and M.Stille are with Fraunhofer Research Institution for
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define. However, instead of specifying parameters for a good
image quality, it is possible to use an additional network.
Besides the so-called generator network, which generates the
improved projection data, a second network can be trained,
the discriminator, to distinguish the actual projections from
the synthetic data.
The first results using this method have already been published
and showed the potential of the new method on the reduction
of artifacts in the image compared to conventional approaches
[6]. One major drawback of the published method, however,
is the use of ground truth data to train the networks.
Prajot et al. propose a model for image inpainting, which
allows learning the distribution of reconstructed images in a
completely unsupervised setting by integrating the stochastic
component that introduces an explicit dependency between this
component and the generated output in the learning process
[7]. We further developed this approach and incorporated it
into our previous work. Different from Prajot’s approach, it
can be assumed that additional information is available in
the neighborhood of the corrupted metal projections. This
information can be used in the training process to get more
realistic predictions from the generator network.

II. METHODS

To train the networks, a combination of different loss
functions is used. In the objective function

G⇤ = arg min
G,E

max
D1,D2

LGAN(G,D1) + LGAN(G,D2)+

�zL
z(G,E) + �yL

y(G,D1, E) (1)

several networks interact with each other. For the training
process, the loss function is minimized by the generator G
and the encoder E and maximized by the discriminators D1
and D2. No access to the metal-free projection data is usually
available for the networks training. This is especially the case
if the networks are to be trained on actual clinical data. Hence,
in the first part of the loss function, the output data of the
generator network are not used directly. Instead, a binary mask
of the metal trace is first applied to the generated data using a
function F , allowing the output data to be compared with the
original input data. This is realized by applying an adversarial
loss function

LGAN(G,D1) = Ey[log(D1(y))]+

Ey,m,z[log(1�D1(F [G(y, z) + y,m]))] (2)
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Fig. 1. Schematic representation of the used network architectures.

in which the generator and the first discriminator D1 compete
against each other. Here, both networks are optimized based
on a Min-Max game over the expectation values E of the input
data y and the masked output data of the generator.
In addition to the incomplete or corrupt sinogram sections,
there are also sections without the influence of a metal object.
By searching for slices in the image in front of and behind
the metal trace, these sections can be used as a reference for
another discriminator network D2. In the second part of the
loss function, again an adversarial loss is used in which the
generator and the second discriminator compete against each
other. The loss

LGAN(G,D2) = Ex⇤ [log(D2(x⇤))]+

Ey,m,z,x⇤ [log(1�D2(x⇤, G(y, z)))] (3)

is calculated now over the expectation values E of the input
data y and the reference data x⇤ from the neighbor slices
to integrate the information from the uncorrupted projection
data into the learning process. In both parts of the objective
function, the generator receives the incomplete sinogram data
and the corresponding metal trace as an input. Using a two-
stage architecture consisting of a coarse and a fine network
[8], the generator generates an output image that is used as
an input to the discriminator networks. Each discriminator
network, a binary classification network, assigns a probabil-
ity between [0, 1], indicating whether the data are real or
artificially generated compared to the original input data or
the data from the neighbor slices, respectively. The structures
of the generator and discriminator network architectures are
represented in Figure 1. To stabilize the training process,
the loss is extended by two complementary losses, which
help to enforce the dependency on the stochastic component
weighted by the parameter �. First, an encoding z-loss is used
to force the generator to use information from the stochastic
component z from the latent representation of the given data
and the masked output data of the generator network by adding

Lz(G,E) = Ey,m,z kz � E(F [G(y, z) + y,m]))k2 (4)

to the objective function. However, as shown in [9] and [10],
this loss exhibits a “stenography behavior” and is not sufficient

alone to stabilize the network training.

y
m

E z

D1 G x̃ D2

D2x⇤

Adv

ỹ

F mAdv

D1

D1

m

G

x̂

E ẑ

m

Fŷ

Adv+MSE

MSE

Fig. 2. Schematic representation of the used network interactions. The input
data y are given together with a binary mask m and the latent representation
into the generator G. The output data x̃ are then used as an input to the
discriminator D1, by applying as masked function F , and the discriminator
D2. Additionally, the masked output data ỹ are given again into the generator
together with the latent representation z̃ and the binary mask. The output ŷ
of the second pass is given into D1, and an adversarial loss is calculated
together with the MSE-error to the original input data. Further, both latent
vectors z and z̃ are used to calculate an MSE-loss to update the generator
and encoder network.

Therefore, an additional loss function, the encoding y-loss, is
used. Here, the output data of the generator ỹ are not used
directly but are given after the application of the function F ,
again into the generator. The masked output data of the second
pass are then compared again with the original input data y
by calculating

Ly(G,D1, E) = Ey[log(D1(y))]

+ Eỹ,z̃[log(1�D(F [G(ỹ, z̃) + ỹ,m]))]

+ Ey,z̃ ky � F [G(ỹ, z̃) + ỹ,m]k2 (5)

using an MSE-loss to constrain G(ỹ, z̃) to be close to y and
let their distribution be similar via an adversarial loss. Figure
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TABLE I
TRAINING PARAMETERS

Parameter Value
number training data 183 000
number validation data 31 000
batch size 32
number epochs 250
learning rate 1 · 10�5

2 shows the interaction between the four networks and the
before described realization of the calculated loss functions
for the network training.

III. EXPERIMENTS

Simulated data from a software phantom [11] with varying
parameter settings were used to train and test the networks.
Objects with different shapes were inserted in 120 different
data sets at random positions. Using simulations for 3D cone-
beam CT, the metal affected projection data were generated.
In the image domain, the metal objects were segmented and
projected forward to obtain the metal trace, which is used
to remove the metal corrupted data. The generated data were
divided into training (90), validation (15), and test (15) data. To
generate more training data and data with a higher variation,
image sections of 128 ⇥ 128 were used instead of the full
3D sinograms. Training was performed using the training
parameters listed in table I.

IV. RESULTS

After successfully training the networks, the generator net-
work can be applied to the test data. As shown in Figure 3,
the network is able to reconstruct the missing data from the
input data consisting of the data with the missing metal trace
and the binary mask. Compared to the ground truth, hardly
any differences can be seen. In the left part of Figure 4,
an example slice from a completed 3D sinogram from the
trained generator network is shown compared to the original
input data above. Thereby, the artificially generated data by the
generator network can barely be distinguished from the real
surrounding data, making it difficult to detect the previous
existing metal trace. The right side of the figure shows the
resulting reconstruction obtained by an FDK reconstruction
compared to the reconstruction from the original metal inserted
data. Compared to the original data, it can be shown that the
presence of artifacts could be reduced significantly by applying
the generator network.
In Figure 5, the results of the generator network are shown
compared to a linear interpolation for cylindrical hollow
objects, which the network had not seen yet in the training
process. It can be shown that the network, in contrast to the
interpolation, is able to reconstruct the inner structures of these
kinds of objects. The mean squared error (MSE) between the
reconstructed images and the ground truth was calculated on
the test data set for validation. As a result, the network was
able to learn most of the missing structures, but some streak
artifacts remain visible in the reconstructed image (Figure

Fig. 3. Example data from the test data set completed by the generator
network.

Fig. 4. Data before (top) and after application of the network (below).

6). Compared to linear interpolation, the average MSE value
overall test images is recognizably lower with 7.7⇤10�9 versus
1.0⇤10�8 . As well compared to the normalized metal artifact
reduction (NMAR), the average MSE value is slightly smaller
with 7.7 ⇤ 10�9 versus 7.9 ⇤ 10�9 .

V. DISCUSSION

The developed method shows the first promising results on
the simulated test data set. However, a detailed study of the
influence of different training parameters is still missing. In
particular, the weighting of the individual components of the
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Fig. 5. Generator results (top) compared to normalized metal artifact reduction
(below) for a cylindrical hollow object.

Fig. 6. Calculated MSE values between the reconstruction results of the
generator and the ground truth compared to NMAR and linear interpolation.

loss function could further improve the training results.
One of the next steps is the integration of actual clinical
data into the training process of the networks. Here, both the
influence of different acquisition geometries on the network
training, as well as the used resolution should be investigated.
Increased or decreased resolution could lead to the necessity
of adjusting the patch size for training the networks. Also,
a validation method must be developed that is applicable to
actual clinical data where, unlike for the simulated data, the
ground truth is not available.
Further, the corrupted data should be integrated into the
training process, as there might be more information about
the image structures near the metal object available. One way
to realize this is to replace the binary mask as an input of the
network with the original data of the metal trace. Here, for
example, a weighting depending on the position would also
be conceivable, which could be integrated into the network
convolution. Besides the integration of the original data, it is
also possible to take advantage of the fact that 3D data are
available so that the input data used as well as the networks

can be adapted to 3D.

VI. CONCLUSION

The results demonstrate that the generator is able to re-
place the missing image information in the sinogram and
reduce a vast number of artifacts in the reconstructed image.
Furthermore, by developing a method to train the networks
without using any ground truth, the networks can be applied
to real clinical data in the next step without the need for
major modifications. In the future, the corrupted projection
data should be used as an input of the generator network
instead of using the binary mask of the metal trace. The
network should be able to use this information from the metal
trace to avoid introducing false image structures.
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CT-Value Conservation based Spatial Transformer
Network for Cardiac Motion Correction

Xuan Xu, Peng Wang, Liyi Zhao, Guotao Quan*

Abstract—Artifact correction is a great challenge in cardiac
imaging. During the correction of coronary tissue with motion-
induced artifacts, the spatial distribution of CT value not only
shifts according to the motion vector field (MVF), but also shifts
according to the volume change rate of the local voxels. However,
the traditional interpolation method does not conserve the CT
value during motion compensation. A new sample interpolation
algorithm is developed based on the constraint of conservation
of CT value before and after image deformation. This algorithm
is modified on the existing interpolation algorithms and can be
embedded into neural networks with deterministic back propaga-
tion. Comparative experimental results illustrate that the method
can not only correct motion-induced artifacts, but also ensure the
conservation of CT value in the region of interest(ROI) area, so
as to obtain corrected images with clinically recognized CT value.
Both effectiveness and efficiency are proved in forward motion
correction process and backward training steps in deep learning.
Simultaneously, the visualized motion vector field transparentizes
the correction process, making this method more interpretable
than the existing image-based end-to-end deep learning method.

Index Terms—Interpolation, Cardiac Motion Correction, Con-
volutional neural networks

I. INTRODUCTION

RECENT study shows that cardiovascular disease is still
the largest worldwide. Coronary Computed tomography

angiography(CCTA) is a crucial technology to diagnose coro-
nary heart disease as a simple, fast, noninvasive and safe imag-
ing method. However, the beating characteristics, especially
patients with high heart rates, introduce motion artifacts to the
reconstruction, which significantly decreases the quality and
confidence of the image and potentially limits the evaluation
of coronary arteries or even makes misinterpretion. Existing
technologies try to suppress artifacts from both hardware and
software. Limited by the physical and mechanical properties
of CT equipment, even the small incremental gain of the frame
rotation time needs to make great efforts in engineering design.

Some methods try to improve image quality during recon-
struction [1] [2].Rohkohl et al [3]initially proposed a Metric-
based correction method and later improved and extended.
Some registration-based also have shown good performance
in compensating for strong motion artifacts.A classical non-
rigid registration algorithm [4] uses the motion vector field
estimated by bidirectional labeled point matching (BLPM)

Corresponding author: Guotao Quan* is with the Shanghai United Imaging
Healthcare Co., Ltd email: guotao.quan@united-imaging.com

Xuan Xu is with the Shanghaitech University
Peng Wang and Liyi Zhao is with the Shanghai United Imaging Healthcare

Co., Ltd,2258 Chengbei Rd, Jiading District, Shanghai China

algorithm to perform 3D warping on a series of partial recon-
structions. This algorithm uses thin plate spline interpolation
algorithm (TPS) for interpolation. TPS, as a very robust spatial
data interpolation method, was introduced by Duchon et al. [5]
into geometric design, which is commonly used for non-rigid
registration. Since the structure of TPS is differentiable, Spatial
Transformer Networks (STN) [6] applies it in the network to
achieve spatial alignment of feature maps.

Deep learning based cardiac motion correction method, as
a particular case of image deblurring, usually follows two
common ways: using deep network to estimate the motion
vector field, and then combined with the traditional warp
algorithm to deform. Another way is to learn from image
to image, that is, the trained neural network can output the
corrected image directly. Methods proposed by S. Jun [7]
and N. Fu [8] have successfully proved that CNN has the
ability to generate and learn coronary motion patterns. [9]
[10] has successfully applied STN for end-to-end training.
The obtained images can be well registered in shape, but
due to the limitations of traditional interpolation in value
conservation, the accuracy of the CT value needs to be
investigated. Based on the principle of CT imaging, the overall
integral value of the reconstruction image is not related to the
states of motion of object in the fixed Field of View. However,
various system biases may be introduced in the reconstruction
process, resulting in differences between motion and static
reconstruction results.

Separating raw data to generate multiple partial angle re-
constructions and applying different MVFs with affine trans-
formation is one way to eliminate the interpolation issue, but
it requires more detailed and exact motion patterns for each
subset. In order to solve the interpolation issue and meanwhile
avoid increasing the complexity of correction process, the
conservation integration constraint interpolation method is
designed. This paper takes into account the proportional coef-
ficient between the integral value and the area of deformation
grid. This new deformation interpolation method is based on
the existing interpolation method and can be embedded into
the classical spatial transform network for back propagation.

II. MATERIALS AND METHODS

The outline of the proposed coronary correction pipeline is
shown in Fig.1. Firstly, the front Network is designed to output
three sets of deformation parameters ✓s.Then the deformation
parameters of each pixel in the whole image are obtained by
interpolation of ✓s, and are used to warp the coronary ROI.
Simultaneously, calculate the deformation coefficient of the
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Fig. 1: Patch-based coronary correction pipeline of the proposed interpolation method. The front network receives an input which can be
central axial, sagittal, or coronal slices of a motion-corrupted volumetric ROI and generate deformed parameters ✓1, ✓2, · · · , ✓k.

CTVC-STN network feed with ✓1, ✓2, · · · , ✓k to interpolate to get ⇥1,⇥2, · · · ,⇥n (k  n) and sampling to output an corrected image.

area of the deformed grid. Then the deformation coefficient
is multiplied by each corresponding pixel to obtain the final
image which is the closest to the ground truth, not only in
shape but also in CT value. The whole process can be back-
propagated in the convolutional Network.

A. Deformation parameters estimation
Inspired by literature [11], a changed 2D-UNet network

with deep supervision [12] is selected as the front network
to generate deformation parameters ✓1, ✓2, · · · , ✓k(k � 1) in
decoder path, and it can be substituted by other suitable
network structures. Since convolutional layers of different
depths have different receptive fields, different from Unet [13],
this network simultaneously outputs the learned deformation
parameters from features extracted at different scales. For
the specific coronary artery correction task in this paper, the
features of three different scales are selected to estimating
deformation parameters at the same time and calculate loss
respectively, and finally the total loss is calculated by the
combination of the three losses. This configuration can not
only increase the stability of the network during training,
but also support pruning the network during testing, which
can increase the testing speed while ensuring the correction
accuracy, thereby reducing the amount of network parameters
within a controllable range.

B. CT Value Conservation Network based on Spatial Trans-
former (CTVC-STN)

In order to realize CT value conservation while ensuring the
deformation, CTVC-STN network is proposed by improving
on the basis of Spatial transformer Network as STN has
shown some deficiencies in the end-to-end training of motion
correction. First, STN introduces full connection layers to
output an affine matrix ✓ with the size of 2 ⇥ 3 which increases
the difficulty of training and limits that STN can only be used
for small-size features.Secondly, STN uses conventional affine
transformation and interpolation function to warp, in which

the interpolation function can be bilinear interpolation, bicubic
interpolation and thin plate spline interpolation. However, for
coronary images with artifacts caused by different motion
patterns, the simulated data as Fig.2 show that, ideally, the sum
of CT value of the stationary and motion reconstructions are
conserved. Therefore, this paper designs a deformation inter-
polation network CTVC-STN to keep the CT value conserved.

Fig. 2: One simulated case of the stationary reconstruction and motion
reconstruction.The first image is the result of stationary reconstruction, and

the rest three motioned images are reconstructed from different gantry
starting positions and reconstruction angles. The CT value sums of the four
images are approximatly equal. The CT value difference among them comes

from system resolution error.

As illustrated in Fig.1, The Grid & Determinant Generator
feeds with deformation parameters ✓s = ✓1, ✓2, · · · , ✓k,which
are generated by front network. According to ✓1, ✓2, · · · , ✓k,
input image is averagely discretized into k pixels. For the pre-
supposed conditions, ✓1, ✓2, · · · , ✓k are the accurate deforma-
tion parameters corresponding to k pixels, so the coordinates
of these points can be directly obtained. Furtherly, combined
with sampling and bilinear interpolation, the coordinates and
pixel values of all points in the initial deformed image are also
obtained. Backward mapping is used for sampling, that is, the
pixel value of each point of the deformed image is traversed to
find the corresponding coordinates on the original image, and
then the surrounding pixels are used for simple interpolation.
This method avoids holes generated during forward mapping.
To realize CT value conservation of an image before and after
deformation, ideally, when one pixel p of deformed image is
contributed by q pixel grids on the original image where q > 1
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Fig. 3: A sample interpolation example. a) initial image of 4x4. b) result of
bilinear interpolation, 2x2. c) result of proposed interpolation method with
CT value-sum conservation. d)initial image with 2x2 focused ROI. e) the
result of bilinear with deformation parameters ✓. f)the result of proposed

method. b),c) is still in the focused ROI, while e),f) not, so CT value
conservation can be obtained in b),c), but invalid in e),f).

,as shown in Fig.3 e), q > 2, for these q pixels, calculating
the ratio of covered area of each pixel grid of initial image.
Then, the sum of the pixel values of these q grids multiplied
by the corresponding ratio should be the exact pixel value
of that pixel. An alternative solution is used here to alleviate
the situation that computational complexity increase as initial
image size becomes larger. To our knowledge, in the two-
dimensional space, the geometric mathematical significance
of the determinant of the matrix represents the directed area
surrounded by two vectors [14]. Based on this mathematical
theory, the area of each pixel in the affine transformation grid
can be obtained.

A sample interpolation example is shown in Fig.3 a)-c).
Geometrically, consider the pixels of the image as squares
rather than points and the pixel value as the center points of the
input’s corner pixels. Fig.3 a) is the initial image with a size of
4x4, Fig.3 b) is the result of bilinear interpolation and sampling
with scaling factor of 1/2. As it illustrated in Fig.3 b), the
summation of all pixel value is non-conservation. According
to the affine matrix of each pixel of this transformation and
its determinant are as follows:

✓ =

✓
2 0 �x
0 2 �y

◆
, k✓k = 4 (1)

Therefore, the value summation of the image obtained by
multiplying Fig.3 b) by k✓k is equal to the initial image, as
shown in Fig.3 c).

The proposed method maintains CT value conservation
meets the following constraints: First, if the deformed image
exceeds the size of the deformed grid, the boundary pixels will
be lost in the sampling process,which are illustrated in Fig.3
e),f). Second, at the ideal limit resolution, even very exagger-
ated deformations will become very smooth. Therefore, the
method can realize the conservation of CT value under ideal
conditions. However, due to the difficulty of implementation
and computational complexity, very precise grids are not used
during implementation, which will cause errors. However, the

following experiments show that the method can control the
error within the clinically acceptable range, as shown in Fig.5.

III. RESULTS
A. Image acquisition

The combination network above is performed using su-
pervised end-to-end training strategy. To train this model,
the ground truth used in the training process are anony-
mous motion-artifacts-free cases with United Imaging Health-
care(UIH) uCT ATLAS devices. Referring to the forward
model for simulating cardiac motion method proposed in
related literature [15] [16] and our knowledge of cardiac
beating patterns, artificial motion vector fields is generated
to simulate all kinds artifacts. The artificial blurred data are
input data for training. 9600 samples of 2D coronary patches
with the size of 64x64 based on the above artifact simulation
methods were generated. The samples were divided into 80%
training data and 20% validation data. Test data set involves
real motion blurred cases to examine the effectiveness of
network and simulation method.

B. Neural Network Training
The training was performed on an NVIDIA TITAN RTX

for 1000 epochs using an Adam optimizer with 0.1 decay,
The batch size is 16 and the loss function is Mean Square
Error(MSE).

C. Evaluation
Real data from several clinical patients with severe artifacts

were used to test the trained network model.

Fig. 4: The trend of different numbers of deformation parameters on the loss
convergence as the training epoch increase. The loss is Mean Square Error.

The number of deformation parameters directly affects the
accuracy of artifact correction. Fig.4 shows the trend of
different deformation parameters on the loss convergence as
the training epoch increases. It can be seen that since coronary
motion is a relatively complex non-rigid deformation, it is
impossible to correct the deformation of the entire image with
a single parameter, so the loss is maintained at a relatively
high level. With the increase of deformation parameters, the
network can gradually learn complex motion deformation, and
its number is positively correlated with the correction result.
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Fig. 5: The x-y plane of one image patch is visualized before and after
different methods. Among these, CTVC-STN shows best correction both in
shape and CT value. The CT value sum of Input is 3914156, CTVC-STN:
3914182, STN-biliear: 3909930, STN-TPS: 3908637, and Target: 3914188.
CTVC-STN: can obtain an aproximate value coservation with a value error
ratio of 1e-6. Figure b),c),d) show the differences between ground truth and

the Results of STN-bilinear c), STN-TPS d) , our method b).

When the number of ✓ generated by the network is the same
as the number of pixels in the input image, it is equivalent
that each pixel has its own specific displacement vector, and
a more accurate shape correction can be achieved under this
configuration.

When Mean Square Error (MSE) and structural similarity
index measure (SSIM) were used as the loss function, the
above corrected CT value will be slightly deviated. The net-
work needs to add the directed area of the deformation vector
for further numerical correction. As shown in Fig.5, TPS
and STN failed to maintain the image CT value conservation
before and after correction, while CTVC-STN can achieve
approximate conservation of CT value within the range of loss
not exceeding 1e-6. Real cases were also tested to demonstrate
the effectiveness of this method as shown in Fig.6, which
shows that the designed network has a good performance in
correcting drastic artifacts of coronary images in three planes.

Fig. 6: One clinical case to show that the proposed pipeline is robust in
related artifacts in three planes images of patient’s coronary .

IV. CONCLUSION

The key contribution of this work is the solution that
provides individual deformation of each pixel of the image,
and can maintain the approximate conservation of the CT

value in deformation. This method is a supplement to the
existing interpolation algorithm and can be used in the network
to support back propagation. A novel framework for motion
correction of CCTA were experimented to verify the validity of
this method. Compared with the existing interpolation method
such as bilinear interpolation and TPS, it can get images with
more accurate CT value and lower MSE. For the further works,
we would focus on improving the network capacity that allows
a full field of view image as input and realize self-attention
to the regions of coronary or anywhere artifacts appear. The
second improvement would take place to extend this method
into a 3D network to achieve direct 3D coronary volume
correction.
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Exploiting voxel-sparsity for bone imaging with
sparse-view cone-beam computed tomography

Emil Y. Sidky, Holly L. Stewart, Christopher E. Kawcak, C. Wayne MacIlwraith, Martine C. Duff, and

Xiaochuan Pan

Abstract—An optimization-based image reconstruction frame-
work is developed specifically for bone imaging. This framework
exploits voxel-sparsity by use of !1-norm image regularization
and it enables image reconstruction from sparse-view cone-beam
computed tomography (CBCT) acquisition. The effectiveness
of the voxel-sparsity regularization is enhanced by using a
blurred image representation. Ramp-filtering is included in the
data discrepancy term and it has the effect of acting as a
preconditioner, reducing the necessary number of iterations. The
bone image reconstruction framework is demonstrated on CBCT
data taken from an equine metacarpal condyle specimen.

Index Terms—Voxel sparsity, CBCT image reconstruction,
sparse-view, and equine imaging

I. INTRODUCTION

THE majority of sparsity-exploiting image reconstruc-
tion techniques for sparse-view cone-beam computed

tomography (CBCT) have employed total-variation (TV) as
a sparsity regularizer because gradient sparsity is an effective
prior for X-ray based imaging [1], [2]. Prior to this work,
it was suggested that voxel-sparsity itself could be useful for
application with few-view CBCT for imaging sparse structures
such as blood vessel trees in CT angiography [3]. When
applying sparsity-regularization to bone imaging, deciding
between gradient and voxel sparsity is not obvious. Bone
tissue occupies more volume than truly sparse structures such
as blood vessels but less volume than the soft tissue. Bones
also have high-contrast fine trabecular structure. Porosity will
increase the number of non-zeros in a gradient-magnitude
image but it will improve voxel sparsity, thus favoring the
latter. Further complicating this decision is that some of the
fine bone structures may not be resolvable by the CBCT
system. Even though the underlying bone tissue may be porous
on a scale of ≈ 10 microns or less, it will appear uniform at
standard CBCT resolution, ≈ 200 microns, thus favoring the
use of gradient sparsity.

In a prior study, we employed a micro-CT scan of an equine
limb sample to generate a high-resolution computer phantom
for studying sparsity regularization for image reconstruction in
sparse-view CBCT [4]. In that work it was found that use of
voxel sparsity regularization was more effective at reducing
the streaks due to view-angle undersampling in CBCT. A
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Fig. 1. FBP reconstructed slice images from the full CBCT dataset consisting
of 720 views. The shown slices are for orthogonal planes that intersect at the
lucency indicated by the red arrows. The image on the right corresponds to
a trans-axial slice. The grayscale window is [0.02,0.32] cm−1.

model was developed that expresses the reconstructed volume
in terms of a blurred voxel-sparse image.

In this work, we apply this model to an actual CBCT scan
of a horse limb sample. A full 720-view CBCT dataset is
collected and sparse-view configurations are generated by sub-
sampling this dataset. In Sec. II, we review the optimization-
based model used for image reconstruction in sparse-view
CBCT of bone tissue. In Sec. III, reconstruction slice images
are shown demonstrated the parameter dependences of the
algorithm. We conclude this abstract in Sec. IV.

II. THE OPTIMIZATION-BASED FRAMEWORK FOR CBCT
BONE IMAGING

The proposed CBCT bone image reconstruction framework
is based on the following optimization problem

min
f

1

2
(XBwf−g)!R(XBwf−g) such that ‖f‖1 ≤ γ, (1)

where the CBCT data and image volume are represented
by an m-dimensional vector g and n-dimensional vector f ,
respectively; the m×n matrix X denotes CBCT projection; the
n×n matrix Bw is Gaussian blurring using a width parameter
w; the m×m matrix R is block-diagonal, where each block
performs ramp filtering on each projection view; and γ is the
constraint parameter on the volume image "1-norm. The ramp
filter R has two purposes: (1) it accelerates convergence as
demonstrated in Ref. [5], and (2) it can reduce artifacts due
to low-frequency inconsistencies in the projection in a manner
similar to the approach in Ref. [6]. The actual reconstructed
volume is represented by Bwf and voxel sparsity is enforced
on the underlying image f ; in this way images with smooth
transitions between tissue types can be represented with a
high-degree of voxel sparsity [7].
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Fig. 2. Progression of the volume images with iteration number for recon-
struction from a 64-view dataset spanning a 192 degree arc. The algorithm
settings are γ = 5.0 × 106, 0.0166 cm−1/voxel, and w = 0.2085 mm, 1
voxel width. The shown slice images correspond to the same slices in Fig.
1. The rows correspond to the reconstructed volume at iteration 10 (1st row),
20 (2nd row), 50 (3rd row), and 100 (4th row). The grayscale window is
[0.02,0.32] cm−1.

To solve Eq. (1), we employ the primal-dual (PD) algorithm
developed by Chambolle and Pock [8], [9]. To facilitate our
PD implementation, we absorb the filtering operation into a
combined system matrix and Eq. (1) is modified to

min
f

1

2
‖Mwf − Sg‖22 such that ‖f‖1 ≤ γ,

where

Mw = SXBw, and R = S2.

The matrix S is the square root of the the ramp filter matrix,
which can be computed readily in the frequency domain where
the ramp filtering matrix is diagonal. The resulting algorithm
has three control parameters: the iteration number, the "1-
norm constraint parameter γ, and the voxel blur width w. We
demonstrate the impact of all of these parameters on image
reconstruction from sparse-view CBCT data of an equine limb
specimen.

III. RESULTS

We apply the bone image reconstruction algorithm to a
CBCT data set acquired on an Epica Pegaso veterinary CT

Fig. 3. Impact of varying γ on the volume images for image reconstruction
from a 64-view dataset spanning a 192 degree arc. The other algorithm
parameters, the iteration number and blur kernel width, are set to 50 iterations
and w = 0.2085 mm, 1 voxel width, respectively. The γ constraint values
are set to 8.0×106 (1st row), 6.0×106 (2nd row), 4.0×106 (3rd row), and
2.0×106 (4th row). The grayscale window is set wider, at [-0.1,0.35] cm−1,
than that of the other figures in order to appreciate the numbers of non-zero
voxels.

scanner. Three sparse-view configurations are investigated
with a short-scan arc of 192 degrees; we consider 128, 64,
and 32 views evenly spaced over the short-scan arc which
corresponds to an angular spacing of 1.5, 3, and 6 degrees,
respectively. All of the sparse-view CBCT datasets are sub-
sampled from a full 720-view circular scan, and accordingly
the modeled exposure decreases with the projection view num-
ber. The detector size is 1088x896 detector pixels, where each
pixel is (0.278mm)2 in size. Image volumes are reconstructed
onto a 768x768x512 voxel grid using cubic voxels with a
width of 0.2085 mm. A reference volume is reconstructed
by use of filtered back-projection (FBP) applied to the full
720-view dataset and shown in Fig. 1. The red arrows in
the figure demonstrate subchondral bone lysis typical of a
palmar osteochondral lesion in racehorses that are of clinical
significance.

Varying the iteration number

In the first set of results for using the bone sparsity image
reconstruction algorithm, we subsample the full 720-view
dataset to a 64-view dataset over a 192 degree scanning arc.
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Fig. 4. Slice images of reconstructed volumes from the 128-view dataset
using w = 2 × 0.2085 mm (Top row) w = 0.2085 mm (Middle row), and
w = 0.0 mm (Bottom row) at 50 iterations and γ = 5.0×106. The grayscale
window is [0.02,0.32] cm−1.

Setting w = 1 and γ = 5.0 × 106, slice images of the
reconstructed volume are shown at 10, 20, and 50 iterations
in Fig. 2. Through this progression of images, there is a clear
trend of improving spatial resolution with iteration number
up to the 50th iteration. Beyond this, the volume iterates
change very little as demonstrated by the fact that there is
little difference between the images at 50 and 100 iterations.
For the remainder of the results shown in this abstract, we set
the iteration number to 50.

In comparing the bottom row of images, at 50 iterations,
to the FBP reference in Fig. 1 there is a noticeable loss in
image quality, as might be expected since the view number
is reduced by more than a factor of 10; however, features of
clinical interest, such as the lucency in the bone tissue, are
still clearly visible.

Varying the volume "1-norm constraint parameter γ

In the second parametric study, we investigate the impact of
varying γ. Using the 64-view dataset, and setting the iteration
number to 50 and w = 0.2085 mm, Fig. 3 shows reconstructed
slice images for four values of γ, decreasing from top to
bottom. The maximum value of γ = 8.0 × 106 is chosen
because at this value the "1-norm constraint is just barely
active; with no "1-norm constraint the PD iterations achieves
a volume with an "1-norm of 8.17 × 106. As by design, the
images become more voxel sparse as γ decreases; at the largest
value of γ, all of the soft-tissue is visible along with artifacts
outside of the support of the sample. As γ decreases the
non-zero voxel values outside of the object support begin to
disappear. Driving to lower γ, the voxel values all decrease in
magnitude and the soft tissue voxels also begin to disappear.

Fig. 5. Slice images of reconstructed volumes from the 64-view dataset using
w = 2×0.2085 mm (Top row) w = 0.2085 mm (Middle row), and w = 0.0

mm (Bottom row) at 50 iterations and γ = 5.0×106 . The grayscale window
is [0.02,0.32] cm−1.

At the lowest shown value of γ, only voxels containing bone
tissue remain albeit at a reduced amplitude compared with the
FBP reference of Fig. 1.

A less intuitive result of tightening the "1-norm constraint
on the volume, i.e. reducing γ, is that the image resolution
appears to improve as γ decreases. This trend runs counter
to most other forms of regularization, where increasing the
regularization strength tends to decrease spatial resolution.
The marked increase in spatial resolution with reduced γ is
a direct result of enforcing voxel sparsity on high-contrast
porous bone tissue. Furthermore, "1 regularization does not
penalize the difference between neighboring voxels, as many
regularizers do. The apparent spatial resolution of the bone
tissue improves mainly in going from γ = 8.0 × 106 to
γ = 6.0× 106. Decreasing γ further mainly impacts the bone
tissue gray level. For the final set of results, this constraint
is set to γ = 5.0 × 106, a value that does not compromise
spatial resolution and yet does not eliminate voxels at or near
the bone tissue.

Varying w and scan configuration

For the final set of results, we consider three scan con-
figurations using the 192 degree scanning arc with different
angular sampling intervals as dictated by selecting 128, 64,
and 32 evenly space projection view angles and shown in
Figs. 4, 5, and 6, respectively. For each scan configuration
image reconstruction is performed for w set to 0.417 mm
(two voxel widths), 0.2085 mm (one voxel width) and zero
mm for fixed iteration number and γ. We combine the w-
dependence together with the display of images from different
scan configurations, because the w-parameter is intended as
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Fig. 6. Slice images of reconstructed volumes from the 32-view dataset using
w = 2×0.2085 mm (Top row) w = 0.2085 mm (Middle row), and w = 0.0

mm (Bottom row) at 50 iterations and γ = 5.0×106 . The grayscale window
is [0.02,0.32] cm−1.

the main control parameter on the image quality. For all
configurations increasing w yields smoother images for the
resulting reconstructed volume. Fine-tuning w will depend on
the desired image quality metric that should be optimized. For
the present discussion, we focus on w = 1.0, the middle row
of these figures.

The 128-view scan results shown in Fig. 4 have decent
image quality for the bone tissue with minimal streak artifacts
and reasonably high spatial resolution. The lucent bone defect
is still clearly visible in the w = 1 series of images. This
scan also represents a six-fold reduction in the number of
projections from the original CBCT dataset. Shown in Fig.
5 are the resulting images for a 64-view scan, a twelve-fold
reduction in the number of views. The resolution is somewhat
degraded in comparison with the 128-view results and mild
streak artifacts overlapping the bone tissue become apparent,
although the bone lucency is still visible. In the final set of
results in Fig. 6, the view sampling is reduced by another
factor of two, and the dataset contains only 32 views. For
these images, the streak artifacts begin to seriously degrade
the image quality and spatial resolution is markedly worse
than the results for the 64-view configuration. Even so, some
bone features are still visible and there may be clinical utility
for this scan configuration.

IV. CONCLUSION

We have demonstrated an optimization-based framework for
sparse-view CBCT image reconstruction designed for bone
imaging using real CBCT data taken of an equine limb
sample. The model involves representing the image as a
blurred voxel-sparse image. The use of an !1-norm constraint

on the reconstructed volume encourages voxel sparsity, which
is useful for bone image because bone tissue takes up less
volume than the surrounding soft tissue and it can have
porous trabecular structure that is resolvable by the CBCT
system. No explicit roughness regularizations is used in the
framework other than the regularization that is afforded by
the blurring kernel of the object model. Additional roughness
regularization may not be necessary due to the high contrast
of bone tissue in X-ray imaging. The results of applying the
proposed bone imaging framework to sparse-view data show
that greatly reduced view-angle sampling has the potential to
yield clinically useful images and possibly enable new CBCT
scan configurations for equine limb imaging. The development
of new scan configurations may provide an opportunity to
develop screening techniques useful to injury prevention in
horses, potentially translating into other species.
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Abstract— Cardiac CT exams are some of the most complex 

CT exams due to the need to carefully time the scan to capture 
the heart during a quiescent cardiac phase and when the 
intravenous contrast bolus is at its peak concentration in the left 
and/or right heart. We are interested in developing a robust and 
autonomous cardiac CT exam, using deep learning approaches to 
extract contrast and cardiac phase timing directly from 
projections. In this paper, we present a new approach to estimate 
contrast bolus timing directly from a sparse set of CT 
projections. 

We present a deep learning approach to estimate contrast 
agent concentration in left and right sides of the heart directly 
from a set of projections. We use a virtual imaging framework to 
generate training and test data, derived from real patient 
datasets. We finally combine this with a simple analytical 
approach to decide on the start of the cardiac CT exam. 
 

Index Terms—bolus tracking, deep learning, enhancement 
prediction, scan timing 
 

I. INTRODUCTION 
ARDIAC CT exams such as Coronary CT Angiography 
(CCTA) are some of the most complex CT exams due to 
the need to carefully time the scan to capture the heart 

during the quiescent cardiac phase (when the heart is relatively 
still) and when the contrast bolus in the heart chambers is at its 
peak concentration to achieve good contrast enhancement. The 
overall exam duration and the complexity of performing these 
exams (combined with limited reimbursement levels) have 
limited patient access to cardiac CT to academic hospitals and 
specialized cardiac imaging centers. Timing the CT scan to 
coincide with the peak contrast concentration can be done 
using a separate ‘timing bolus’ aquisition or with ‘bolus 
tracking’. Both approaches have pros and cons and require 
highly trained operators to achieve consistent bolus 
enhancement. 
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Our overall project goal is to develop a smart cardiac CT 
scanner that autonomously determines the optimal scan time 
interval without ECG, traditional bolus tracking or timing 
bolus, using real-time deep learning analytics of sparsely 
pulsed projections [1,2]. Recent advances in X-ray tube 
technology have provided the ability to acquire pulsed-mode 
projections (PMPs) or only a few projections per gantry 
rotation. While not sufficient to perform image reconstruction, 
these PMPs can be utilized along with deep learning to predict 
the contrast agent concentration in specific compartments of 
the heart.  Here we present results of a deep learning approach 
to estimate contrast agent concentration in left and right sides 
of the heart and to determine the start of the CCTA scan.  

II. BACKGROUND 

A. Standard-of-care CCTA Protocol 
In CCTA exams, an intravenous (IV) power injector and an 

ECG monitor are connected to the patient. A scout scan is 
performed for patient positioning, followed by a low-dose CT 
scan to determine a region-of-interest for tracking the contrast 
bolus. In a first standard-of-care protocol, a timing bolus (or 
test bolus) is administered as a ‘trial run’ [3], involving a 
separate injection of a small amount of contrast agent (10–20 
ml) followed by a saline flush. After injection, a 
predetermined number of low-dose bolus timing scans are 
performed with narrow collimation and with a relatively long 
inter-scan delay (to minimize radiation dose). The 
enhancement is measured in a region of interest (ROI) to 
determine time-to-peak enhancement, which is used to 
compute the delay time between the administration of the 
main bolus and the start of diagnostic CCTA scan with wide 
collimation. 

A second standard-of-care protocol uses real-time bolus 
tracking: the timing bolus is omitted, and the time-of-peak-
enhancement is predicted in real-time. When a pre-defined 
threshold is reached, a diagnostic delay (e.g., 7-sec) is added 
to give a breath-hold command, open up the collimation, and 
re-position the patient, before starting the diagnostic CCTA 
scan [3]. The time-to-peak contrast enhancement depends on 
many factors, including target vessel, patient anatomy and 
cardiac output. The enhancement is measured in an ROI, and 
because of the necessary diagnostic delay, the threshold 

Estimation of Contrast Agent Concentration 
from Pulsed-Mode Projections to Time 

Contrast-Enhanced CT Scans 
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(usually 100–150 HU) is far below the peak enhancement 
(250–600 HU) [1-3]. As a result, a longer bolus (and hence 
larger contrast volume) is used for robust scanning, i.e.: to 
avoid missing the peak. 

B. Proposed CCTA protocol 
Our proposed CCTA protocol uses IV contrast 

administration and a scout scan for patient positioning but 
eliminates the ECG as well as the additional CT scans to track 
the bolus concentration in ROIs. The patient and collimator 
are immediately positioned in the right location for the actual 
CCTA scan. After injection of the main bolus, a X-ray tube is 
pulsed ON and OFF, using a very low duty cycle for low 
radiation dose. For example, 1, 2, 4, 8, or 16 300-μs pulses 
may be performed per 0.28 sec rotation, resulting as many CT 
projections as there were pulses. Deep learning networks 
analyze these projections in real-time and determine a running 
estimate of the current contrast agent concentration as well the 
current cardiac phase (% R-to-R-peak). A separate timing 
algorithm uses these estimates to decide on the time for the 
breath-hold command and the start of the actual CCTA scan. 
This approach promises to eliminate or greatly reduce the 
diagnostic delay since the patient and collimator are already in 
the right position, so the peak enhancement may robustly be 
identified even for a smaller bolus and a narrower plateau. The 
PMPs minimize the additional radiation dose since no full-
rotation scans are performed. The approach also leads to 
robust automation relying on deep learning algorithms to time 
the CCTA exam. 

III. MATERIALS AND METHODS 
We briefly summarize the virtual imaging framework used 

to generate training data (section III.A), we then describe the 
convolutional neural network (CNN) to predict the contrast 
level present in a PMP (section III.B), and finally we derive a 
simple scan timing algorithm (section III.C). 

A. Training data generation 
We created a virtual imaging framework for creating cardiac 
CT projections at any combinations of view angles, cardiac 
phase, and bolus contrast timing as presented in detail in [4]. 
In summary, we did this by developing five-dimensional 
cardiac CT models from multi-phase clinical cardiac (cine) CT 
scans by segmenting the heart compartments and identifying a 
blood flow propagation map in each compartment. To model 
contrast dynamics at multiple bolus time points from datasets 
that were acquired at (approximately) a single bolus time 
point, we segmented the cardiac compartments, we 
parametrized the voxels inside those compartments based on 
their location along the flow direction, and then incremented 
the voxel values to model different bolus distributions based 
on location and time point.   We then defined multiple 
instantiations of CT exams based on specific timing of cardiac 
cycle, contrast bolus, and CT scan and generated virtual CT 
projection data. The model contained segmentations for the 
right atrium (RA), right ventricle (RV), pulmonary artery 
(PA), left atrium (LA), left ventricle (LV), ascending aorta 
(AA), and descending aorta (DA). Figure 1 shows a specific 
CT exam instance as a function of time. The top row shows 
the CT gantry rotation angle. The second row shows the 
patient ECG signal. The 7 colored curves show CT number 
averaged over each of the 7 cardiac compartments. For each 
curve, we can clearly observe a rising edge, a plateau, and a 
more gradual decay. The large delay between compartments in 
the right left sides of the heart is due to the pulmonary 
circulation. We did not simulate dispersion for the left side of 
heart in this experiment. The bottom row shows the time of 
the injection, the start of the pulsed-mode projections (PMPs), 
the breath-hold command, and the actual CCTA scan. 

 
In this work, a number of sample instantiations were defined 

Fig. 1:  Example of a CT exam instance as a function of time. From 
top to bottom: gantry rotation angle, ECG signal, average CT 
number in the 7 cardiac compartments, and the timing of injection 
(INJ), pulsed-mode projections, (PMPs), breath-hold command 
(BHC), and CCTA scan. The gantry rotation angle, ECG signal, and 
PMPs are shown for illustration purpose. The spacing is not exact. 

  

 
Fig. 2: A sample input image using 2 PMPs. In this configuration, the 
presence of a reference baseline created with pre-bolus images 
means the stacked layers show the presence of the bolus as color on a 
greyscale image. 
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Fig. 4: Prediction vs Labeled contrast levels in the training and 
validation sets. For each plot, orange and blue represent the 
right and left chambers respectively. 

 
Fig. 3: Structure of the neural network. Where relevant, the number of features or nodes are shown. 

by selecting and combining different patients, heart rates and 
contrast dynamics. For each sample, a series of virtual CT 
projection data was generated along two view angles, anterior-
posterior (AP) and posterior-anterior (PA). For each series, a 
baseline reference image was defined as the average of all the 
PMPs from the matching view angle that had been estimated 
as not yet having any enhanced contrast from the bolus. 
Network input images were then created from grouping 5 
PMPs (representing the 5 “latest” PMPs in a real-time 
scenario) together in a sliding window and stacking the PMPs 
with the baseline image matching the view angle of the last 
PMP in the series for a 128x128x6 input image. A sample 
input comprised of a reference image and 2 PMPs is shown in 
Figure 2. 

Training, validation, and testing datasets were created to be 
independent of each other by separating the simulated dataset 
such that all the images from an individual cardiac model were 
assigned to only one of the sets. The training, validation, and 
testing sets comprised of 32, 4, and 4 models respectively, for 
a total of 300 simulated series of 250 PMPs each, or 61,254 
possible samples in the training set when each series was 
broken down into sets of 5 PMPs to generate input images. 
Each sample was labeled with two volume-weighted averages, 
one of the contrast in the RA-RV chambers (right half) and 
one of the contrast in the LA-LV chambers (left half). 

 

B. Neural Network Architecture and Training 
The network comprised of a CNN followed by fully-

connected layers to perform regression on the input images. In 
the CNN, pairs of convolutional layers were followed by batch 
normilization, 2x2 max pooling, and a relu activation function. 
This was repeated three times, using first a pair of 
convolutional layers with 16 features each, then 32 and 64 
features each for the second and third repetition. The output of 
the CNN was then flattened and fed through fully connected 
layers followed by a relu activation function. Fig. 3 shows the 
network architecture. The network output was a pair of values 
representing the contrast level in the right and left halves. 

 The network was trained using a MSE loss function and ran 
for 500 epochs using an Adam optimizer. Each epoch 
consisted of 1,000 random samples from the training set 
images. 

C. CCTA Scan Timing 
Each series in the validation and testing set was broken 

down into a sequence of images representing a sliding window 
over the entire series. Each image was evaluated by the 
network to create a time series of the contrast levels for both 
the right and left chambers. Each time series was fed into an 
algorithm that looped over the series. For each PMP, all the 
predictions up to that PMP were evaluated to determine if 
peak contrast levels had been reached without any further 
information, to simulate a real-time scenario where peak 
contrast levels may not be known. 

A simple timing algorithm was created to determine a trigger 
point based on thresholds defined on the predicted 
enhancement.  

IV. RESULTS 
Network training converged to a R-squared value of 0.99 for 

the training set and 0.91 for the validation set. Fig. 4 shows the 
results of network training when the labels are taken as 
individual datapoints, for the training dataset (left) and 
validation  dataset (right). The broader distribution of the 
validation dataset compared to that of the training dataset is a 
classic symptom of overfitting the data. Fig. 5 shows 
representative results of several series in the validation set 
when the predictions are plotted in a time series for each set. 
In Fig 5a, the predictions match the ground-truth labels 
closely. Figs. 5b-c show the two most common modes of 
error. In Fig. 5b, the bolus curve in the left heart is scaled to a 
lower value than the ground truth labels. In Fig 5c, the right 
heart bolus curve is confounded with the bolus curve in the 
left heart and has an additional bump in the distribution when 
the left-heart contrast is high. While the scaling error in Fig 5b 
was observed for both right heart and left heart estimates, the 
error shown in Fig 5c was exclusively seen as the right-heart 
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predictions gaining a secondary bump when the left heart 
contrast is bright. In both cases, the overall shape of the bolus 
rise time is preserved and is hence suitable for timing 
optimization algorithms. 

  
The green and black dashed lines represent the desired and 

the trigger points based on a fixed threshold, while the grey 
dashed line shows the start of the peak enhancement in the left 
side of the heart. The RMS error was 11 PMPs in the testing 
set when compared to the same threshold applied to the 
ground-truth data, which corresponds with an RMS error of 
1.6 seconds. More work is needed to optimize the trigger 
points and derive the time for the breath-hold command and 
for the start of the CCTA scan. 

V. CONCLUSION 
A neural network provides a powerful tool for analyzing the 

sparse projection data acquired with PMPs. For the purpose of 
scan timing, the rise and decay times are more critical than the 
precise levels of the contrast enhancement, which will guide 
us in designing improved networks. 

This study used a simple threshold-based timing algorithm, 
in line with similar algorithms used in more traditional bolus 
tracking. A more sophisticated timing algorithm might derive 
trigger points for the breath hold command approximately 3-4 
seconds in advance, then continuing to monitor the bolus 
curve to begin the scan once the actual peak is reached. By 
monitoring PMPs instead of an ROI, the equipment delays 
created by patient repositioning and opening the collimation is 
negated. This work shows promising results for the use of 
PMPs in optimizing timing for CCTA scans. 
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Fig. 5: Sample validation outputs of the network. Blue represents the right chamber enhancement with corresponding green predictions, 
while orange represents the left chamber enhancement with corresponding red predictions. Predictions are smoothed using a gaussian 
filter (resulting in black curves). The green and black dashed lines represent the desired and the trigger points based on a fixed threshold, 
while the grey dashed line shows the start of the peak enhancement in the left side of the heart. a.) The prediction closely matches the 
ground-truth; b.) the prediction in one chamber is off by a scaling factor; c.) the prediction in the right chambers is confounded with the 
left chambers, resulting in an addition bump after the bolus in the right chambers has reached the converged bolus level.   
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Time Separation Technique Using Prior Knowledge
for Dynamic Liver Perfusion Imaging

Hana Haseljć, Vojtěch Kulvait, Robert Frysch, Fatima Saad, Bennet Hensen, Frank Wacker, Inga Brüsch, Thomas
Werncke, and Georg Rose

Abstract—The perfusion imaging using C-arm CT could be

used intraoperatively for liver cancer treatment planning and

evaluation. To deal with undersampled data due to slow C-arm

CT rotation and pause between the rotations, we applied model-

based reconstruction methods. Recent works using the time

separation technique with an analytical basis function set have led

to a significant improvement in the quality of C-arm CT perfusion

maps. In this work we apply the time separation technique with

a prior knowledge basis function set extracted using singular

value decomposition from CT perfusion reconstructions. On C-

arm CT liver perfusion scan simulated based on the real CT

liver perfusion scan we show that the bases extracted from only

two CT perfusion scans are capable of modeling the C-arm CT

data correctly.

Index Terms—dynamic perfusion imaging, C-arm CT, prior

knowledge, singular value decomposition

I. INTRODUCTION

P
ERFUSION CT imaging is an important step in liver
cancer therapy planning, see [1]. The C-arm CT perfusion

imaging could interventionally assist in the cancer treatments
by offering the possibility to evaluate the success of performed
embolization or in ablation planning. The so far investigated
protocols for estimation of parenchymal blood flow, see [2]–
[4], would not be sufficient to capture the dynamic perfu-
sion, so ten sweep perfusion protocol was suggested in [5].
However, the problem of undersampled data due to limited
number of projections per rotation and pause times between
in between remain. In [6] it was shown that the model-based
reconstruction by applying Time separation technique (TST)
with analytical basis function set could solve these problems.
The possibility to use dedicated, so called prior knowledge,
basis function set formed from singular vectors extracted by
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applying singular value decomposition (SVD) to CT perfusion
reconstruction data was studied in [7], [8] on brain perfusion.

In this paper we extract the prior knowledge basis function
set from liver CT perfusion reconstruction data. We use this
basis function set for TST to reconstruct the simulated C-arm
CT perfusion scan of animal liver. We compare perfusion maps
of TST using prior knowledge basis constructed from two and
three CT scans, perfusion maps of TST using analytical bases
and perfusion maps of straightforward reconstruction to CT
perfusion maps.

II. MATERIALS AND METHODS

A. Animal Experiments
The CT perfusion scans of three domestic pigs were ac-

quired using SOMATOM Force CT after embolization. The
iodinated contrast material used was Imeron 300. The right
hepatic artery was embolized with tantalum-based emboliza-
tion material (Onyx) and coils. The duration and contrast
material injection details are given in Table I.

TABLE I
PERFUSION SCANS DURATION AND DETAILS OF CONTRAST MATERIAL

INJECTION

Scan
Duration Dose Flow rate Flow duration Volume

[s] [ml] [ml/s] [s] [ml]
1 65.997 14.0 3.0 7.0 20.0

2 56.997 10.43 2.8 5.07 14.9

3 41.998 10.43 2.9 5.1 14.9

B. Simulation of C-arm CT perfusion scan
We simulate the C-arm CT data by reprojecting the CT

volume as in [9]. We reproject the Scan 3, see Table I with
C-arm CT projector according the acquisition protocol of the
experimental C-arm CT perfusion scans of the liver used in
[5], [6]. The total scan time is divided in ten runs covering the
ten rotations of 200° with 248 views with pause time 412.44 s
between every two consecutive runs.

C. Prior Knowledge Extraction
Two prior knowledge basis function sets are extracted from

CT perfusion scans. First is extracted from first two CT
scans from Table I and the second one from all three by
applying SVD on time attenuation curves (TAC) of voxels
inside the organ regions as in [7]. All bones, catheters if visible
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and surrounding organs were excluded. The CT scans were
reconstructed using syngo CT VA50A software. The time-
resolved volumes of each scan were interpolated across the
time interval of shortest scan, see [9].

For the brain reconstruction it is recommended to use either
three or five basis functions since more could cause instabil-
ities in projections, see [10], [11]. In [6] five trigonometric
functions formed the analytical basis function set. Based on
the singular values, how well they fit the AIF and the Pearson
correlation of perfusion maps with CT ground truth perfusion
maps, we decide how many bases will form our basis function
set, see Figures 1 and 2.

BF BV MTT TTP
0

0.2

0.4

0.6

0.8

1
3
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7

Fig. 1. Pearson correlation coefficient with respect to CT ground truth
perfusion maps reconstructed using basis function sets of different sizes.
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Fig. 2. Arterial input function fitted using basis function sets of different size.

By the means of the SVD our bases are orthonormal and
therefore a suitable basis function set for TST. Our basis
functions sets are shown in Fig. 3 and 4. The Function 0
is a constant function and therefore left out from the graphs.

D. Time Separation Technique
The time separation technique, see [9], [10], is a model-

based reconstruction where the time attenuation development
of every voxel is modeled as a linear combination of mutually
orthonormal bases (1).

B = { 1, . . . , N}. (1)

The same way the pixels in projections can be modeled so the
reconstruction problem Ax = p becomes

A
NX

i=1

wv,i i(t) =
NX

j=1

wp,j j(t) t 2 I. (2)
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Fig. 3. Extracted prior knowledge basis function set from two animals on the
scan duration interval.
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Fig. 4. Extracted prior knowledge basis function set from three animals on
the scan duration interval.

where I is a vector of time points at which the volume was
scanned. With scalar product of both sides with bases from B
due to orthonormality of the bases, the reconstruction problem
is reduced to N static reconstruction problems, see [9], [10],
unlike the straightforward reconstruction where each rotation
is reconstructed separately.

The reconstruction is done using algebraic reconstruc-
tion developed and implemented within [8], [12]. The
voxel size is the same as in the CT scan (xv, yv, zv) =
(0.7305, 0.7305, 1.5).
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Fig. 5. Arterial input function of CT ground truth, straightforward simulated
C-arm CT and using analytical and prior knowledge basis sets.
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ba c d e

Fig. 6. Perfusion maps for scan 3. a: ground truth CT, b: simulated C-arm CT scan - straightforward reconstruction, c: simulated C-arm CT scan - TST
using five trigonometric basis, d: simulated C-arm CT scan - TST using prior knowledge basis extracted from two animals, e: simulated C-arm CT scan -
TST using prior knowledge basis extracted from three animals.

E. Perfusion Parameters Estimation

We calculate the perfusion parameters, blood flow (BF),
blood volume (BV), mean transit time (MTT) and time to
peak (TTP), using deconvolution technique, see [13]. The time
attenuation profile of every voxel is described as a convolution
of AIF with the residual function. To determine the residual
function the pseudoinverse with Tikhonov regularization is
applied to Eq. (3).

tac(t) = aif(t) ⇤ fr(t). (3)

For the calculation of the perfusion parameters, see Eq.
(4), except for the TTP, it is important to select arterial input
function (AIF) properly. This is not the case for the TTP which
is estimated as the time from the beginning of the acquisition
of the maximum value of the voxel’s attenuation. The selected
AIF for location (x, y, z) = (194, 257, 65) is shown in Fig. 5.

BF = max fr(t), BV =
nX

i=1

fr(i),

MTT =
BV

BF
, TTP = argmax

t
fr(t).

(4)

To avoid the possible instabilities of the BF we estimate the
BF only based on the first 5 s of the acquisition as advised in
[9]. The perfusion maps are calculated using [14].

III. RESULTS AND DISCUSSION

We have simulated the C-arm CT perfusion scan and
reconstructed it using model-based approach TST with prior
knowledge basis function set as explained in previous section.

First, we compare two prior knowledge basis function sets.
In the basis function set generated from two animals we
can observe the noise especially after the 15 s. In the basis
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function set extracted on three animals these instabilities are
less pronounced, see Fig. 4. However, both are fitting the AIF
better than in straightforward approach and when fitted with
trigonometric bases, see Fig. 5. It can be also observed that
the Function 1 from both basis function sets corresponds the
AIF profile as the strongest pronounced signal. Note that all
the values in AIF are lower due to introduced Gauss blur of
3.5 px.

TABLE II
PEARSON CORRELATION COEFFICIENT AND NRMSE IN RESPECT TO CT

GROUND TRUTH PERFUSION MAPS

Scan BF BV MTT TTP

Straightforward
0.9578 0.9528 0.7009 0.7741

0.1528 0.1101 0.2003 0.1725

TST 0.9336 0.8837 0.4526 0.7921

analytic basis 0.1551 0.1404 0.3257 0.1886

TST 0.8898 0.8481 0.4779 0.5425

SVD 2 animals 0.1786 0.1698 0.2728 0.2131

TST 0.9537 0.9344 0.6976 0.7045

SVD 3 animals 0.1392 0.1242 0.2213 0.1823

The perfusion maps are shown in Fig. 6. The Pearson
correlation coefficients and Normalized Root Mean Square
Error (NRMSE) between the CT perfusion maps and simulated
C-arm CT perfusion scans reconstructed by different means
are given in Table II.

In all perfusion maps it can be observed that the qualitative
information is preserved. In perfusion images we use the asist
color map, see [15]. The lowest value in perfusion maps is dark
blue. Hence, the dark blue area in BF and BV represents the
embolized area. We can observe BF relative overestimation in
TST with trigonometric basis and TST with prior knowledge
extracted from two animals compared to ground truth. A rela-
tive underestimation is observed in straightforward approach.

From the correlation coefficients, see Table II, the perfusion
maps generated using prior knowledge extracted from three an-
imals are more similar to ground truth than the perfusion maps
using prior knowledge extracted from two animals. When
compared to perfusion maps using analytical bases, the prior
knowledge using three animals is better in all considering the
normalized RMSE. The TST using prior knowledge generated
with three animals is the second best. The reason could be that
the simulated CT scan is generated using CT and therefore
better in terms of noise and sampling frequency compared to
measurements of usual CBCT systems. Due to limited number
of available CT perfusion scans of animal liver the same scan
was used to simulate the C-arm CT perfusion data and to
extract the prior knowledge. This, as well as the more scans
involved in prior knowledge extraction, could have affected
the better fitting of an AIF and better perfusion maps.

IV. CONCLUSION

From the results we see that the model-based reconstruction
by applying TST with prior knowledge bases is comparable
to CT perfusion maps and it is better than the straightforward
reconstruction for BF. We have also shown that it is possible to

extract the bases using only two CT scans and to get perfusion
maps comparable to CT ground truth. However, more scans
should be used to extract the prior knowledge. In the future
we will focus on studying if these results can be confirmed
using real C-Arm CT datasets.
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A hybrid neural network combining explicit priors
for Low-dose CT reconstruction

Xiangli Jin, Yinghui Zhang, Ran An, Hongwei Li?

Abstract—Low-dose CT reconstructions suffer from severe
noise and artifacts. Many methods have been proposed to
increase the ratio between image quality and radiation dose
through incorporating various priors. By learning priors in
labelled data-set, neural network methods have achieved great
success for this purpose . In CT applications, however, paired
training data-sets are rarely available or difficult to obtain.
Recently, unsupervised learning has attracted a lot of attention.
Along this line, Noise2Inverse, an unsupervised neural network
architecture, has shown the possibility of applying unsupervised
learning for low-dose CT reconstructions. When the training
data-sets (unlabelled) are not large enough or the training is
insufficient, however, Noise2Inverse might perform not well.
Another important issue is that network methods might suffer
from intrinsic instability. In this regard, we propose to hybrid
neural networks, especially the Noise2Inverse architecture, with
traditional optimization models such that hand-crafted priors
come into play as a remedy. Numerical experiments show that
the proposed architecture improves Noise2Inverse in terms of
both quality measures PSNR and SSIM, especially in the case of
inadequate training.

Index Terms—Low-dose CT, deep learning, image denoising,
TV regularization, primal-dual

I. INTRODUCTION

TO avoid exposing patients to more X-ray radiation, it
makes sense to reduce the X-ray dose. However, com-

pared with conventional CT, low-dose CT usually introduce
serious noise and artifacts. In recent years, low-dose CT
(LDCT) reconstruction has been a major challenge in medical
CT applications. In general, LDCT reconstruction methods can
be roughly divided into three categories. The first category
is the filtering method, which directly performs filtering and
smoothing on the projection data or the noisy reconstructions.
Popular methods include NLM [3] and BM3D [4], which
explore the structural similarity prior within a single image.
The defect of these methods is that it can not distinguish
well image structures and artifacts. The second category is
the model-based optimization approach. By combining image
priors into the objective function, noise and artifacts are
removed in the reconstruction process. However, hand-crafted
priors are often not accurate enough and might introduce
negative effects like blurring . In addition, the optimization
model usually need iterative solvers which are very time-
consuming. The third category is deep learning methods like
U-Net [9] and DnCNN [10]. Based on the powerful fitting
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novation Center for Imaging Technology, Capital Normal University, Beijing,
100048, China.
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ability of neural networks, priors or patterns concealed in
“big data” could be extracted and utilized. Neural networks
have demonstrated to be superior to traditional methods if
adequate labelled training data are available. However, for CT
applications, high quality training data are usually difficult to
acquire.

Unsupervised learning methods for image denoising gain
popularity in recent years. The X2Y series algorithms have
attracted much attention. The Noise2noise [8] method explains
the MSE loss in Bayesian framework by which noisy images
are allowed to be used as reference images, when certain
independence conditions are satisfied. Later on, by introducing
the idea of blind spot, Noise2Self [2] and Noise2Void [7]
were proposed which ruled out the need for independent
multiple snapshots of the same scene. It has been demonstrated
that these unsupervised methods could achieve competitive
denoising results compared to the supervised ones.

Based on the idea of Noise2Void, Noise2Inverse was pro-
posed in [5] for CT image reconstruction. Basically, it consists
of two procedures. The first one is to prepare the training
data-sets. The projection data are divided into non-overlapping
groups which are then used to reconstruct noisy images of the
same “scene”(object). Since the projections are independent
of each other, the noise in these images should follow the
same distribution and be independent of each other. The
second procedure is to train a denoising convolutional neural
network (CNN) with the constructed training data in the
first procedure. Noise2Inverse has shown promising results in
LDCT denoising.

In practice, the training data sets might be quite limited
available, such that under-fitting or over-fitting occurs. Another
important issue is the stability of neural networks. It has been
demonstrated that neural networks could suffer from intrinsic
instability issue [1]. In our experiments, when the training
data sets were relatively small or insufficient training were
performed, i.e. the number of training epochs was set to be
relatively small, the effectiveness of Noise2Inverse would be
compromised.

To further improve the quality of LDCT reconstructions,
we propose to combine the convolutional neural networks
(CNN) with traditional optimization models. So, the proposed
hybrid neural network (Hybrid NN) architecture consists of
two blocks: the denoising CNN block and a training-parameter
free optimization-based denoising block. Especially, in this
paper, the second block is mapped from the primal-dual [6]
algorithm for total-variation (TV) denoising, which encodes
the piecewise-constant prior of the ideal image. Since the hy-
brid neural network builds in hand-crafted priors, its stability
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should have been improved.
The main contributions of this paper are two-fold.
• A hybrid neural network that blends neural networks and

traditional optimization models is proposed. The hybrid
model could leverage both the advantages of the prior
concealed in data (through neural network learning) and
hand-crafted priors (through explicit regularization).

• A special blending mechanism is devised which allows
manually adjusting the “weights” of the neural network
block and the optimization block, such that the designed
architecture could better fit the size of the training
datasets.

The remainder of this paper is organized as follows. The
hybrid neural network is introduced and described in Section
II. In Section III, experiments are carried out to validate the
proposed hybrid neural network. We conclude the paper in
Section IV.

II. METHOD

As stated before, the proposed hybrid NN consists of
two blocks: CNN denoiser and optimization-based denoiser.
To leverage the power of unsupervised learning, we borrow
the idea of Noise2Inverse to prepare the training data-sets.
This is illustrated in Fig. 1. The backbone of the proposed
architecture, i.e. the hybrid NN, is illustrated in Fig. 2

A. Noise2Inverse for LDCT

The key idea of the Noise2Inverse method is that it parti-
tions the projection data into non-overlapping groups of equal
size, each of them are then reconstructed into noisy images.
Since there are no explicit correlations between the projection
data groups, the reconstructed images could be thought of
being independent observations, so the assumption for unsu-
pervised training is satisfied. With training data-sets prepared,
conventional convolutional neural networks like U-Net [9] and
DnCNN [10] could be utilized to achieve denoising.

B. Traditional optimization model

Let o denote the output of the first block. In the forward
pass of the proposed hybrid NN, o is fed to the second block,
i.e. an optimization model for further processing. Let A denote
the desired output of the optimization model, then by adding
TV regularizer and non-negative constraint, the optimization
model can be written as

A = argmin
A�0

⇢
1

2
ko�Ak22 + �krAk1

�
. (1)

A popular algorithm for solving the above model is the primal-
dual Chambolle-Pock method. Given A0 = 0, ⇠t = 0:

8
>>><

>>>:

⇠t+1 = ⇠t + ⌧�rAt

⌘t+1 = PB

�
⇠t+1

�

At+1 =
At+⌧(o+�div(⌘t+1))

1+⌧

At+1 = max
�
0, At+1

�

where t is the iteration number, ⌧ is the time step, and �
is the regularization parameter which controls the denoising

strength. PB is an element-wise projection operator onto l2
Ball:

PB(y) =

(
y, if kyk2  1

y
kyk2

, if kyk2 > 1
.

When performing backpropagation, one needs to calculate
the gradients regarding to the variables At. Deep learning
frameworks like Pytorch provide tools for automatic gradients
calculation. However, in our tests, automatic calculations were
rather slow. So, we use the python package cupy to wrap up
cuda kernels to serve our need. The required gradients can be
derived as below. Let ot+1 = ot = · · · o1, then we have

8
>>>>>>><

>>>>>>>:

dAt+1 = R
✓

1

1 + ⌧
+

⌧2�2

1 + ⌧
divMt+1r

◆
dAt

+R ⌧�

1 + ⌧
divMt+1d⇠t +R ⌧

1 + ⌧
dot

d⇠t+1 = d⇠t + ⌧�rdAt

dot+1 = dot

(2)

where, R denotes the derivative for the non-negative con-
straint, div is the divergence operation, and Mt+1 represents
the derivative of the projection operator PB in the (t + 1)th
iteration. The matrix form reads

0

@
dAt+1

d⇠t+1

dot+1

1

A = Vt+1

0

@
dAt

d⇠t
dot

1

A (3)

with

Vt+1 = N

0

@
1

1+⌧ + ⌧2�2

1+⌧ divMt+1r ⌧�
1+⌧ divMt+1

⌧
1+⌧

⌧�r 1 0
0 0 1

1

A ,

where
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0

@
R

1
1

1

A .

Let L denote the loss function, then

dL = Tr

"✓
@L

@o

◆T
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#
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where, Tr(Q) computes the trace of matrix Q.
Finally, the required gradient can be extracted as

@L
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Fig. 1. The flow chart of hybrid NN for LDCT. The input noisy sinogram
is split into four groups. Then, FBP is applied to reconstruct 4 noisy images
from which the training data-sets are constructed.
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Fig. 2. Illustration of hybrid NN.

C. Loss function

Clearly, there exists an interaction between the two designed
blocks, and the hyper-parameters, e.g. the number of primal-
dual iterations, the depth of the CNN block, the weighting
parameter �, etc. would affect the networks’ performance.
Particularly, the two blocks actually run for the same goal, i.e.
act as denoisers, the good performance of the second block,
i.e. the primal-dual algorithm, might inhibit the performance
of the CNN block. To combat such a negative effect, we add a
skip connection from the CNN block to the final output of the
network, which requires that the CNN block should preserve
the average gray values of its input images. This is achieved
by adding an additional term to the loss function:

lossagv = kḠinput � ḠCNNoutputk2

where Ḡ(I) means the average gray value of image I . The
final loss function is

losstotal = MSE(target, output) + ↵ · lossagv,

where MSE means the mean squared error loss, and ↵ is a
positive scalar parameter

III. EXPERIMENTS AND RESULTS

A. Datasets and settings

To verify the effectiveness of the proposed hybrid NN, a
real clinical dataset was used, which was for ”LUNA (LUng
Nodule Analysis) 16�ISBI 2016 Challenge” (https://luna16.
grand-challenge.org/download/). The dataset contains 1308

thoracic volumes from 1010 people, including 244,527 image
slices size of 512 ⇥ 512. We randomly selected 7 patients,
2270 slices, from which 200 slices were randomly chosen
as the training dataset and 10 slices as the testing dataset.
The projection data are acquired with a virtual CT system
equipped with a parallel beam source and a linear detector
consisting of 720 cells. The projection data are acquired for
360 projection views uniformly distributed in the angular range
[0,⇡]. To simulate low-dose radiation, Poisson noise with
incident intensity I0 is added to the raw data as follows

pnoisy = �ln

✓
I0 ⇥ e�p

I0

◆
, (4)

where p and pnoisy denote the noise-free and noisy sinogram
data, respectively. In our tests, we set I0 = 3 ⇥ 104. As
Fig.1 shows, we split the sinogram into four non-overlapping
groups in the way that each group consists of projection angles
uniformly distributed in [0,⇡].

The proposed hybrid NN is implemented with the PyTorch
framework. All the experiments are executed on a a single
graphic processing NVIDIA card RTX 2080Ti with 11GB
video memory. The gradient @L

@o is computed by cuda kernels
wraped by cupy https://github.com/cupy/cupy.

B. Hyperparameters selection

For the proposed hybrid NN, the hyperparameters include
the number of layers of the CNN, the number of primal-
dual iterations, the scalar parameters ⌧ , � for the optimization
layer and ↵ for the loss function. Considering the convergence
requirement of the primal-dual iterations, We set ⌧ = 1

2� . In
our tests, the CNN has 12 layers, and ↵ is set in a trial and
error manner.

C. The effect of the explicit prior on the performance of CNN

To verify whether the second block, i.e. the explicit regular-
ization has an influence on the performance of the CNN block,
the following experiments were carried out: training the hybrid
NN with increasing number of the primal-dual iterations
t =10, 30 and 50, then testing the first block, i.e. CNN along
with the learned weights. The results shown in Fig.3 indicate
that, with increasing t, the performance of the CNN block
becomes poorer and poorer. This coincides with our intuition.
By increasing t, the performance of the optimization model
(second block) is improved, so the importance of the CNN
block gets weaken.

As Section II-C has stated, to preserve the performance of
the CNN block, the contrast-preserving loss lossagv is added
to the loss function. The experimental results shown in Fig.4
suggest that, to some extent, the lossagv is indeed helpful to
bring back the performance of the CNN block.

D. Comparison with the Noise2Inverse model

To verify the superiority of the proposed hybrid NN, exper-
iments against the Noise2Inverse model are performed. For
both methods, the training runs for 150 epochs. Even though
there are many perspectives for comparison, in this experi-
ment, we check how the two methods behave against noise
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(a) t = 10 (b) t = 30 (c) t = 50

Fig. 3. Testing results of the CNN block, with iteration number t = 10, 30, 50
for the primal-dual algorithm, respectively.

(a) Reference (b) without lossagv (c) with lossagv

Fig. 4. Results without and with lossagv , t = 50. The upper right corners
show the zoomed-ins for the red-framed regions.

change. Two tests with different noise levels, i.e. I0 = 3⇥104

and I0 = 1 ⇥ 104 are performed, and the results are shown
in Fig.5. For the low level noise case (I0 = 3 ⇥ 104), the
two methods achieve similar quality. As Fig.5 (b) and (c)
show there are little visual differences. The quantitative PSNR
indices are 32.522 and 33.820, and the SSIM values are
0.735 and 0.799, respectively, which might weakly indicate
the advantages of the proposed hybrid NN. When checking
the results with higher noise level (I0 = 1 ⇥ 104), however,
the advantages of the proposed hybrid NN become apparent.
As shown in Fig.5(e) and (f), there are remaining noise within
the result of Noise2Inverse, while hybrid NN still achieve high
quality denoising, similar to the low level noise case.

(a) FBP, I0 = 3⇥ 104 (b) Noise2Inverse (c) Hybrid NN

(d) FBP, I0 = 1⇥ 104 (e) Noise2Inverse (f) Hybrid NN

Fig. 5. Comparison with Noise2Inverse. The two rows show the results with
noise levels corresponding to I0 = 3⇥ 104 and I0 = 1⇥ 104, respectively.

IV. CONCLUSION

Deep learning based methods achieve state-of-the-art results
for low-dose CT reconstructions. The required training data-
sets, however, might not be available for real applications.
Another important issue is that neural networks usually suffer
from intrinsic instability. In this paper, we propose a hybrid
NN aiming to leverage the power of both learning based
methods and conventional optimization based methods. By
adding an average contrast preserving loss, the two blocks,
i.e. CNN and optimization algorithm, could work in harmony
such that the hybrid NN performs better than any of them
alone.

Even though the hybrid NN in this paper consists of a CNN
block and a TV denoising algorithm, the basic idea actually
allows for any possible combinations of a neural network
architecture and a optimization model.
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Abstract—Cerebral perfusion computed tomography (CPCT) 

imaging provides a rapid and accurate noninvasive measurements 
of the acute stroke by generating hemodynamic parameter maps 
with a qualitative and quantitative way. However, due to it 
performs a multiple consecutive scanning protocol at one area of 
the head, the radiation exposure is relatively higher than a routine 
protocol. And lowering radiation dose in CPCT protocol would 
increase the amount of noise and hence influence hemodynamic 
parameters for patients with acute stroke. Some advanced 
methods have been proposed and show a great potential in noise 
suppression for low-dose CPCT imaging. And most of them 
assume that the embedded noise obeys an independent and 
identically distribution (i.i.d), but the noise may be more 
complicated in practical scenarios. In this work, we first analysze 
the noise properties in low-dose CPCT images. And then present a 
novel perfusion deconvolution method with a self-relative 
structure similarity information and a mixture of Gaussians (MoG) 
noise model (named SR-MoG) to accurately estimate the 
hemodynamic parameters directly at the low radiation exposure. 
Experiments implemented on digital brain perfusion phantom 
verify that the presented SR-MoG method can achieve promising 
gains over the existing deconvolution approaches.   
 

Index Terms—Cerebral perfusion CT, mixture of Gaussian 
model, noise properties, deconvolution. 

I. INTRODUCTION 
EREBRAL stroke is an acute cerebrovascular disease, it 

has a high incidence rate, high mortality rate, and high 
disability rate [1]. Cerebral perfusion computed tomography 
(CPCT) is an imaging modality that provides detailed 
information about blood flow to the brain in a rapid, 
noninvasive, and quantitative way for cerebral stroke diagnosis. 
Specifically, the CPCT measures the temporal changes for each 
voxel through a series of repeating CT scanning, which is used 
to improve detection of acute infarction and help assess the 
degree of collateral circulation by providing hemodynamic 
parameters maps (HPMs), i.e., cerebral blood flow (CBF), 
cerebral blood volume (CBV), and mean transit time (MTT). 
[2]. However, CPCT performs repeated scans on the same 
region, so it is associated with high radiation dose. And 

 
S. Li, Z. Bian, and D. Zeng are with the School of Biomedical Engineering, 

Southern Medical University, Guangzhou 510515, China, and also with 
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lowering radiation dose in CPCT imaging would increase the 
amount of noise and hence influence HPMs’ accuracy. 

To reduce radiation dose in CPCT imaging while 
maintaining HPMs’ accuracy, various algorithms have been 
proposed. Generally, related algorithms can be grouped into 
two categories. The first category is to reduce noise in the 
reconstructed CPCT images at low-dose measurements and to 
estimate HPMs via standard deconvolution process [3-5], e.g., 
image-based restoration algorithms, statistical iterative 
reconstruction algorithms. However, since noise distribution 
characteristics are not considered accurately, these methods 
might suffer from resolution loss, thereby degrading the HPMs’ 
accuracy. The second category is to directly calculate HPMs via 
design strong prior information to stable the residue function 
with an iterative deconvolution procedure [6-7]. These models 
can improve the HPMs’ accuracy in the case of low-dose 
measurement. However, most of models are based on the 
assumption that the embedded noise in the CPCT images is an 
independent and identically distribution, and this would deviate 
from the practical scenarios wherein the noise distributions 
among different frames could be significantly different from 
each other.  

Therefore, supposing the noise in CPCT imaging is complex 
and does not obey an i.i.d, in this work, we present a novel 
framework to estimate HPMs by characterizing the noise 
distribution properly. Specifically, a non-independent and 
identically distributed mixture of Gaussians (MoG) noise model 
is utilized to modeling the residue function in the perfusion 
deconvolution procedure.  In addition, we introduce the self-
relative structure similarity information of CPCT images as a 
prior term, which can be easily integrated into the MoG model 
to further improve the HPMs’ results. Finally, the fast iterative 
shrinkage-thresholding algorithm (FISTA) [8] is developed to 
solve this model. The experimental results of the digital brain 
perfusion phantom simulation demonstrate the presented 
algorithm can greatly achieve promising gains over the existing 
deconvolution approaches. 
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II. METHODOLOGY 

A. The noise properties for low-dose CPCT image 
Fig. 1 shows the normal-dose CPCT images, the low-dose 

CPCT images, and the corresponding difference maps at three 
different frames (the 1st, 12th, and 20th frames, respectively). 
As depicted in Fig. 1(d), it shows the corresponding histograms 
of the noise maps in Fig. 1(c). It can be observed that the peak 
of histogram at the 12th frame is lower than those at the 1th and 
20th frames. The possible reason is that the 12th frame contains 
more contrast than the other frames, and it would suffer much 
more noise-induced artifacts due to the contrast agent. Fig. 2 
further illustrates the different types of noise at different areas 
at a single frame. It can be observed that different areas contains 
different noise distribution at a single frame. Therefore, it can 
be concluded that the noise distribution in low-dose CPCT 
images is complex, and in this work, we exploit the mixture of 
Gaussian (MoG) to model the noise E of low-dose CPCT image 
as follows: 

𝑃𝐸(𝐸|Π, Σ) = ∑ 𝜋𝑘𝒩(𝐸|0, Σ𝑘)
𝐾

𝑘=1

, 

                   (1) 
where 𝜋𝑘 ≥ 0 is the mixing coefficient with ∑ 𝜋𝑘 = 1𝑘 . And 

𝒩(⋅ |0, Σ𝑘) represents a Gaussian distribution with zero mean 

and variance Σ𝑘.  

 
Fig. 1. Installation of (a) the normal-dose CPCT images at frame 1, 12 and 20, 
(b) the low-dose CPCT images at frame 1, 12 and 20, (c) the difference images 
from (a) and (b), and (d) the histogram map of the difference images from (c).. 

 
Fig. 2. (a) Illustration of the noise at the 12th CPCT frame and its histogram. 

(b)-(d) Illustration of three different Gaussian components and their histograms, 
obtained by MoG model with three Gaussian components of the noise in (a). 

B. SR-MoG deconvolution model 
The CPCT images can be considered as the combination of 

the background component with temporal similarity and the 
foreground component with spatial contiguity and noise [9]. 
Meanwhile, the concentration maps are obtained by subtracting 
the baseline image wherein the baseline image equals the 
average of early CPCT frames before the contrast agent enters 
the blood vessel actually. Moreover, the residue function data 
reflects the relative concentration of contrast agent in the blood 
vessels over time. Therefore, it can be concluded that the 
residue function can also be considered as the combination of 
the background component and foreground component as well. 
Motivated by these observations, the residue function data X 
consists of background component U, foreground component F, 
and embedded noise component E, which can be modeled as 
follows: 

𝑋 = 𝑈 + 𝐹 + 𝐸 
                                 (2) 

According to Eq. (2) and the noise model in Eq. (1), we can 
obtain following likelihood distribution for 𝑈 and 𝐹: 

𝑃𝑋(𝑋|𝑈, 𝐹, Π, Σ) =  𝑃𝐸(𝑋 − 𝑈 − 𝐹|Π, Σ) 

= ∑ 𝜋𝑘𝒩(𝑋 − 𝑈 − 𝐹|0, Σ𝑘)
𝐾

𝑘&=1

 

       (3) 
To estimate the underlying variable 𝑈, we introduce a we 

introduce self-relative information B to provide prior 
information for U, , then, we provide following prior 
distribution for 𝑈: 

𝑃𝑈(𝑈) =  𝒩(𝑈|𝐵, 𝜎1) 
(4) 

where 𝜎1 denotes the variance of the inevitable noise in 𝛣.  
Moreover, since the foreground component 𝐹 is variant and 

sparse over time, it is rational to introduce a sparse prior 
distribution 𝑃𝐹(𝐹)  on it. This prior can be express as a 
regularization term when estimating 𝐹. By combining the priors 
and the likelihood in Eq. (4), it can be then expressed as 
following posteriori distribution: 

𝑃(𝑈, 𝐹, Π, Σ|𝑋) ∝ 𝑃𝑋(𝑋|𝑈, 𝐹, Π, Σ) × 𝑃𝑈(𝑈) × 𝑃𝐹(𝐹)

= ∑ 𝜋𝑘𝒩(𝑋 − 𝐹 − 𝑈|0, Σ𝑘)
𝑘

× 𝒩(𝑈|𝐵, 𝜎1) × 𝑃𝐹(𝐹) 
         (5) 

Therefore, by integrating the perfusion deconvolution 
procedure with the likelihood model as aforementioned, the 
perfusion deconvolution model can be rewritten as: 

𝑋̂ = argmin
1
2

‖𝐴𝑋 − 𝐶‖2
2 

+ log ∑ 𝜋𝑘𝒩(𝑋 − 𝑈 − 𝐹|0, Σ𝑘)
𝐾

𝑘=1

 

+log𝑁(𝑈|𝐵, 𝜎1) + 𝛽log𝑃𝐹(𝐹) 
𝑠. 𝑡. 𝑋 = 𝑈 + 𝐹 + 𝐸  

(6) 
where the  log𝑃𝐹(𝐹) = ‖𝐷(𝐹)‖𝐹

2  and the operator 𝐷(∙) is the 
first order difference matrix. Then we can estimate the 
underlying background and foreground, as well as other 
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involved parameters. By incorporating the self-relative 
structural similarity information and MoG noise distribution 
latent in CPCT images into a perfusion deconvolution model, 
we can define the self-relative structural-information-induced 
mixture of Gaussian (SR-MoG) model. 

III. EXPERIMENTS 

A. Data 
To validate and evaluate the performance of the presented 

SR-MoG perfusion deconvolution model at low-dose cases, a 
digital brain perfusion phantom package [10] was used in this 
work. The specific digital brain perfusion phantom consists of 
infarct core and ischemic penumbra in the white and gray 
matters, as well as the healthy tissue with 40 temporal frames 
at size 256 × 256. Fig. 3 shows the phantom and the 
corresponding time-density curves of penumbral, strike core, 
tissue and vessel. Additionally, to simulate low-dose CPCT 
images under different dose levels, the simulate strategy is 
based on the previous study [11], and two dose levels were 
simulated with 50% and 25% of normal-dose. 

 
Fig. 3 Illustration of digital CPCT phantom (a) and the corresponding 

TDCs (b). The display window is [10, 65] HU. 

B. Comparison methods 
To validate and evaluate the performance of the presented 

SR-MoG method, five deconvolution methods were compared 
against: block-circulant truncated SVD (bSVD) [12], Tikhonov 
regularization [13], the tensor total variation regularized 
approach (TTV) [6], the structure total variation regularized 
approach (STV) [7] and the SR-MoG with a single Gaussian 
noise component (SG). Extensive experiments with different 
parameter settings were conducted for all competing methods, 
and the appropriate parameters are selected based on the 
optimal visual inspection. 

IV. RESULT  
Fig. 4 shows the estimated HPMs, i.e., CBF, CBV, and MTT 

generated by different algorithms of digital brain perfusion 
phantom with 50% dose level. The reference HPMs obtained 
by the digital brain perfusion phantom package directly, thus it 
can be as the “golden standard” in this comparison. The 
remaining HPMs all estimated from the FBP reconstructed low-
dose CPCT images by the competing deconvolution methods 
for comparison. It can be observed that several noise is evident 
in the traditional deconvolution methods, i.e., bSVD, Tikhonov, 
especially in healthy region of brain. And for the TTV and STV 

algorithms, the results shows more improvement by visual 
inspection, while the detailed structure of the stroke-core region 
is still corrupted by the noise-induced artifacts, as shown by the 
red arrows at CBF maps in Fig. 4. Moreover, the results from 
SG and SR-MoG are remarkable over that from TTV and STV 
in terms of noise reduction and structure information 
preservation. However, by careful visual inspection, the values 
of SG at penumbra region, indicated by yellow arrows in Fig. 4, 
are lighter than that in reference, and results of SR-MoG are 
closer than other deconvolution approach.  

 
Fig. 4 Perfusion maps of the digital brain perfusion phantom estimated by 

bSVD, Tikhonov, TTV, STV, SG and SR-MoG approaches, respectively, under 
the 50% dose. CBF in unit of mL/100 g/min, CBF in mL/100 g, MTT in sec. 

Fig. 5 illustrates the performance of all competing methods 
on digital phantom with 25% dose, respectively. With the 
radiation dose further reducing, all compared methods fail to 
remove all noise, especially at 25% dose. While the presented 
SR-MoG performed better than other compared methods in 
terms of noise suppression, structure preservation and value 
consistency, especially for the penumbra and stroke-core 
regions. 

 
Fig. 5 Perfusion maps of the digital brain perfusion phantom estimated by 

bSVD, Tikhonov, TTV, STV, SG and SR-MoG approaches, respectively, under 
the 25% dose. CBF in unit of mL/100 g/min, CBF in mL/100 g, MTT in sec. 

To further demonstrate the performance of the presented SR-
MoG method, RMSE and SSIM measurements are utilized and 
corresponding comparison results of the different methods at 50% 
dose and 25% dose, and the result is listed in Table. 1. It can be 
seen that the presented SR-MoG method outperforms the other 
competing methods by a large margins in terms of the RMSE 
and SSIM measurements at the two dose levels. Thus results 
demonstrate the presented SR-MoG deconvolution algorithm 
achieve significant ability compared with other algorithm for 
noise suppression and structure consistent. 
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Table 1. RMSE and SSIM for HPMs (CBF, CBV, MTT) estimated using 
the different competing methods at 25% and 50% of normal dose. Bold font 

indicates the best performance. 
  

CBF CBV MTT 

Methods Dose RMSE SSIM RMSE SSIM RMSE SSIM 

bSVD 

25% 

2.9152 0.9123 0.4537 0.9955 2.4328 0.9213 

Tikhonov 4.6676 0.9143 1.8534 0.9790 3.4193 0.8510 
TTV 2.8414 0.9236 0.4288 0.9960 2.3473 0.9301 
STV 2.9210 0.9502 0.5705 0.9944 1.7319 0.9564 
SG 2.0843 0.9978 0.5974 0.9946 2.9620 0.9321 

SR-MoG 1.9456 0.9963 0.1405 0.9990 1.6187 0.9718 

bSVD 

50% 

1.4844 0.9741 0.2280 0.9988 1.3656 0.9730 

Tikhonov 4.1308 0.9690 1.7753 0.9849 2.6510 0.9158 

TTV 1.2916 0.9828 0.2190 0.9990 1.3018 0.9765 

STV 1.7399 0.9868 0.4508 0.9969 1.2121 0.9793 

SG 1.0834 0.9978 0.5960 0.9947 11.1994 0.8917 

SR-MoG 0.7962 0.9988 0.1616 0.9990 0.8843 0.9889 

V. CONCLUSION 
In this work, we analyze the noise properties in low-dose 

CPCT images and then we find that the noise latent in CPCT 
images can be modeled as MoG distribution. Meanwhile, based 
on the analysis, we present a novel CPCT deconvolution 
method using the self-relative structure similarity information 
and MoG distribution latent in CPCT images to estimate the 
HPMs directly. Specifically, the self-relative structure 
similarity information is obtained through pre-processed low-
dose CPCT images. Digital brain perfusion phantom simulation 
is used to evaluate the deconvolution performance of the 
presented SR-MoG method qualitatively and quantitatively. 
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Abstract—Deep learning-based image denoising and 

reconstruction methods have shown promising results for low-
dose CT. When high-quality reference images are not available for 
training the network, researchers found a powerful and effective 
counterpart called Noise2Noise, which trains the neural network 
using paired data with independent noise. However, it is 
uncommon to have paired CT scans with independent noise (e.g., 
from two scans). In this paper, a method is proposed to generate 
such paired data for potential usage in deep learning training by 
simultaneously simulating a low-dose image at arbitrary dose level 
and an image with independent noise from a single CT scan. Their 
independence is investigated both analytically and numerically. In 
our numerical study, a Shepp-Logan phantom was utilized in 
MATLAB to generate the ground-truth, normal-dose, and low-
dose images for reference. Noise images were obtained for analysis 
by subtracting the ground-truth from the noisy images, including 
the normal-dose/low-dose images and the paired products of our 
proposed method. Our numerical study matches the analytical 
results very well, showing that the paired images are not 
correlated. Under an additional assumption that they form a 
bivariate normal distribution, they are also independent. The 
proposed method can produce a series of paired images at 
arbitrary dose level given one CT scan, which provides a powerful 
new method to enrich the diversity of low-dose data for deep 
learning. 
 

Index Terms — low-dose CT, synthetic CT, neural network  
 

I. INTRODUCTION 
ow-dose computed tomography (CT) is one of the most 
direct and effective ways to reduce the radiation dose to 

patients. However, a trade-off between image quality and 
patient dose always exists. Many efforts have been put into this 
area to find better ways of balancing the trade-off. Deep 
learning methods are one of the most recent and promising 
developments in reducing noise in CT imaging. When high-
quality images are accessible for training, neural networks 
trained either in image domain [1], [2] or during the 
reconstruction process [3], [4] showed promising performance. 

On the other hand, there are several works attempting to 
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tackle the problem without the presence of high-quality images 
by exploiting the Noise2Noise pipeline[5]. Wu et al [6] showed 
that a denoising network with Noise2Noise training is 
equivalent to training with clean labels (high-quality images) 
when a few conditions are satisfied. One of the four conditions 
is that the network should have paired noisy data with zero-
mean, independent noise. For Noise2Noise application in CT 
imaging, it is crucial to find such paired data. While such data 
could be acquired with two scans of the same patient, this 
exposes the patient to additional dose and will have 
misregistration artifacts. Pairing simulated low-dose images 
with the original normal-dose images does not satisfy this 
condition since some of the noise in the simulated low-dose 
image comes from the normal-dose image, so the two images 
do not have independent noise. In one Noise2Noise approach, 
Wu et al [7] constructed the independent image pairs via 
random projection splitting. Yuan et al [8] proposed a 
Noise2Noise based denoising method named ‘Half2Half’. In 
their training pair construction, binomial selection was applied 
to the projection data, splitting it into two pseudo half-dose 
scans.  

For the aforementioned methods, the dose allocation is fixed, 
and both of them split dose evenly to the paired images. In this 
paper, we propose a method to simulate arbitrary dose levels 
and independent noise from an existing CT scan. Paired images 
can be generated at any desired dose reduction level from a 
single CT scan, which provides more diversity in training data 
given the same normal-dose CT scans. 

II. METHODS 
For simplicity, the normal-dose projection domain 

measurements (raw data) 𝑃𝑁𝐷 can be modeled as the sum of a 
Poisson and Gaussian random variable [8]:   

 
 𝑃𝑁𝐷 ~ Poisson(𝜆) + Gaussian(0, 𝜎𝑒

2), (1) 
 
where 𝜆 is the mean counts and 𝜎𝑒 is the standard deviation of 
electronic noise. If we denote the photon counts from the source 
as 𝐼0 and the object pathlength as 𝑙, the mean counts can be 
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formulated as 
 

 𝜆 = 𝐼0 exp(−𝑙). (2) 
 
Hence, the expectation and variance of 𝑃𝑁𝐷 can be given by 

equations (3) and (4): 
 

 𝐸[𝑃𝑁𝐷] = 𝜆, (3) 
 Var(𝑃𝑁𝐷) = 𝜆 + 𝜎𝑒

2. (4) 
 
For a specified dose level 𝑑 (0 < 𝑑 < 1), according to 

equation (1) the measured counts 𝑃𝐿𝐷
(𝑑) ~ Poisson(𝑑𝜆) +

Gaussian(0, 𝜎𝑒
2). Similarly, the expectation and variance of 

𝑃𝐿𝐷
(𝑑) are 𝐸[𝑃𝐿𝐷

(𝑑)] = 𝑑𝜆 and Var(𝑃𝐿𝐷
(𝑑)) = 𝑑𝜆 + 𝜎𝑒

2, respectively.  
For the low-dose simulation process, we want to emulate the 

behavior of 𝑃𝐿𝐷
(𝑑) at dose level d from normal-dose scan 𝑃𝑁𝐷. For 

conventional low-dose simulation, this is a well-known process 
to insert noise in the projection data. Detailed steps are listed in 
Table 1.  

TABLE 1. CONVENTIONAL NOISE INSERTION 
Step Operation 

1 Generate 𝑄 ~ Gaussian(0, 𝜆) and E ~ Gaussian(0, 𝜎𝑒
2).    

2 
Let 𝑃𝑠𝐿𝐷

(𝑑) = 𝑑(𝑃𝑁𝐷 + 𝑎(𝑄 + 𝑏𝐸)), where 𝑎 = √1
𝑑

− 1, 𝑏 = √1
𝑑

+ 1. 

Then 𝐸[𝑃𝑠𝐿𝐷
(𝑑)] = 𝑑𝜆, Var(𝑃𝑠𝐿𝐷

(𝑑)) = 𝑑2((𝜆 + 𝜎𝑒
2) + 𝑎2(𝜆 + 𝑏2𝜎𝑒

2))= 
𝑑𝜆 + 𝜎𝑒

2. 

3 𝑃𝐿𝐷
(𝑑) and 𝑃𝑠𝐿𝐷

(𝑑) are independent and identically distributed random 
variables. 

 
The conventional noise insertion adds additional quantum 

noise 𝑄 and electronic noise 𝐸, which are scaled by a factor 
depending on the dose level. In practice, when generating 𝑄, we 
use 𝑃𝑁𝐷 as a surrogate for variance 𝜆 since the true 𝜆 is 
unknown from a single realization. The result is defined as: 

 
 𝑃𝑠𝐿𝐷

(𝑑) = 𝑑(𝑃𝑁𝐷 + 𝑎(𝑄 + 𝑏𝐸)), (5) 
 
which can be viewed as a synthetic projection acquired at dose 
level d as it shares the identical probability distribution (noise 
properties) as 𝑃𝐿𝐷

(𝑑). While this enables a simulated low-dose 
image, we still need a paired zero-mean, independent noise 
realization for Noise2Noise training. To this end, we define 
𝑃𝐼𝑁

(𝑑) as: 
 

 𝑃𝐼𝑁
(𝑑) = 𝑑 (𝑃𝑁𝐷 − 1

𝑎
(𝑄 + 1

𝑏
𝐸)). (6) 

 
As is shown in the Appendix, we prove that 
  

 𝐸[𝑃𝑠𝐿𝐷
(𝑑)𝑃𝐼𝑁

(𝑑)] = 𝑑2𝜆2 = 𝐸[𝑃𝑠𝐿𝐷
(𝑑)]𝐸[𝑃𝐼𝑁

(𝑑)], (7) 
 
which means that they are uncorrelated. On the assumption that 
(𝑃𝑠𝐿𝐷

(𝑑), 𝑃𝐼𝑁
(𝑑)) form a bivariate normal distribution, they are 

independent if they are uncorrelated. This is a reasonable 
assumption for any modest number of photon counts, where the 
Poisson distribution is approximately Gaussian, and the other 

noise (electronic, added noise 𝑄, 𝐸) are all Gaussian. 
Importantly, both 𝑃𝑠𝐿𝐷

(𝑑) and 𝑃𝐼𝑁
(𝑑) use the same noise realizations 

of 𝑄 and 𝐸, but they are scaled inversely and subtracted in 𝑃𝐼𝑁
(𝑑) 

as compared to 𝑃𝑠𝐿𝐷
(𝑑), which leads to the uncorrelated property. 

We thus have 𝑃𝐼𝑁
(𝑑), which has zero-mean, independent noise 

of 𝑃𝑠𝐿𝐷
(𝑑). In the Noise2Noise conditions, independent noisy 

image pairs are required. The proposed method can generate 
such paired data (𝑃𝑠𝐿𝐷

(𝑑), 𝑃𝐼𝑁
(𝑑)), where 𝑃𝑠𝐿𝐷

(𝑑) simulates data 
acquired at arbitrary dose level d. Note that 𝑃𝐼𝑁

(𝑑) does not 
correspond to any specific dose level, but rather is designed to 
satisfy the Noise2Noise conditions. This enables a diversity of 
dose levels, which may be beneficial to training CT denoising 
networks. 

III. NUMERICAL SIMULATION 
To validate the proposed method, numerical simulation was 

carried out in MATLAB with the built-in Shepp-Logan 
phantom and Radon projection method for a monoenergetic 
source. 

 

 
Fig.  1. Reconstructed image and noise image of Shepp-Logan phantom. (a) 
ideal image, noiseless ground-truth. (b) reconstructed image using normal dose, 
flux of source 𝐼0= 5e4 photons, 𝜎𝑒= 5 counts. (c) noise image, subtracting (a) 
from (b). The display window for (a) and (b) is [0, 0.4] cm-1. The display 
window for (c) is [-0.02, 0.02] cm-1. 
 

In the simulation, the x-ray source flux was set to 5e4 
photons per ray and 𝜎𝑒= 5 counts, which is referred to as normal 
dose for the remainder of the paper.  

The projections were reconstructed with filtered 
backprojection (FBP), and the images are illustrated in Fig. 1. 
We include the ideal image with noiseless projections [using 
equation (2)] in Fig. 1(a), which is the ground-truth image. Fig. 
1(b) is the reconstructed image under normal dose [using 
equation (1)]. By subtracting Fig. 1(a) from Fig. 1(b), we obtain 
the noise image as shown in Fig. 1(c).  

From the normal dose projections, it is possible to synthesize 
projections at a specific dose level following the conventional 
noise insertion steps in Table 1. We can also simulate a real 
low-dose scan acquired at the same dose level. Fig. 2 displays 
the results of both reconstructed and noise images for normal 
dose, real low-dose (𝑅𝐿𝐷

(0.3), the reconstructed image from 𝑃𝐿𝐷
(0.3) 

), and synthetic low-dose (𝑅𝑠𝐿𝐷
(0.3), the reconstructed image from 

𝑃𝑠𝐿𝐷
(0.3)), respectively, for dose level 𝑑=0.3, or 30% of the normal 

dose. Standard deviations of the phantom region are labeled on 
the noise images, where we find good correspondence between 
the synthetic low-dose image and the real low-dose image, as 
well as the increased noise in the low-dose images compared 

(a) Ideal (b) Normal 
dose

(c) Noise image
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with the normal dose. 
 

 
Fig.  2. Noise insertion results. (a), (b) and (c) are reconstructed and noise 
images for normal dose, real low-dose, and synthetic low-dose, respectively. 
Noise images are determined by subtracting the ground-truth image in Fig. 1(a). 
The display window for the first row (a-c) is [0, 0.4] cm-1 and is [-0.02, 0.02] 
cm-1 for the second row (d-f).  

 

 
Fig.  3. Independent noise images at 30% dose level. Image 𝑅𝑠𝐿𝐷

(0.3) is at simulated 
low dose 𝑑=0.3, and 𝑅𝐼𝑁

(0.3) has noise that is independent of 𝑅𝑠𝐿𝐷
(0.3) (𝜌𝑅𝑠𝐿𝐷

(0.3),𝑅𝐼𝑁
(0.3) =

−0.0015), although it has a different noise magnitude. The display window is 
[0, 0.4] cm-1 for the first row and [-0.02, 0.02] cm-1 for the second row. 
 

Equations (5) and (6) guide us in the generation of 
independent noise images from normal dose images. Fig. 3 
shows a realization of the (𝑅𝑠𝐿𝐷

(0.3), 𝑅𝐼𝑁
(0.3)) pair at 30% dose level. 

Correlation 𝜌𝑅𝑠𝐿𝐷
(0.3),𝑅𝐼𝑁

(0.3) between the noise images of 𝑅𝑠𝐿𝐷
(0.3) and 

𝑅𝐼𝑁
(0.3) was calculated across all pixels in the phantom and across 

10 realizations and was found to be near zero, which supports 
the independence we desire. As expected when 𝑑 < 0.5, the 
noise magnitude in 𝑅𝐼𝑁

(𝑑) is lower than that in 𝑅𝑠𝐿𝐷
(𝑑)  since more 

noise is added into 𝑅𝑠𝐿𝐷
(𝑑)  than is added to 𝑅𝐼𝑁

(𝑑) according to the 
inverse scaling of the added quantum and electronic noise. 

For other dose levels, the processing can be easily repeated, 
which forms the curves in Fig. 4. The horizontal axis denotes 
the relative dose levels from 5% to 95% of normal dose. The 

vertical axis is the noise in image domain. The blue squares are 
the real low-dose images 𝑅𝐿𝐷

(𝑑) at corresponding dose levels. The 
red dots are noise levels of synthetic low-dose images 𝑅𝑠𝐿𝐷

(𝑑)  
from the normal dose image 𝑅𝑁𝐷. Again, they fit the blue 
squares very well at all dose levels. The orange dots are noise 
levels of images 𝑅𝐼𝑁

(𝑑) with independent noise from the synthetic 
low-dose images 𝑅𝑠𝐿𝐷

(𝑑) . At lower dose, the independent 𝑅𝐼𝑁
(𝑑) 

image tends to have lower noise level, showing different noise 
behaviors to real or synthetic low-dose images. 

  
Fig.  4. Noise at different dose levels. The average correlation between images 
𝑅𝑠𝐿𝐷

(𝑑)  and 𝑅𝐼𝑁
(𝑑) across all dose levels is 𝜌𝑅𝑠𝐿𝐷

(𝑑) ,𝑅𝐼𝑁
(𝑑) = 0.001. 

 
In general, the independent noise image 𝑅𝐼𝑁

(𝑑) does not 
correspond to a specific dose level, even though the noise levels 
appear approximately symmetric to that of the low-dose images 
about 𝑑 = 0.5. For example, the noise level in 𝑅𝐼𝑁

(𝑑) at 80% dose 
level is generally not equal to that in 𝑅𝑠𝐿𝐷

(𝑑)  at 20%. However, for 
the special case of no electronic noise (𝜎𝑒 = 0), it can be shown 
that this is the case, and the 𝑅𝐼𝑁

(𝑑) image represents a dose level 
of 1 − 𝑑. 

 
Fig.  5. Noise level difference between 𝑅𝑠𝐿𝐷

(0.5) and 𝑅𝐼𝑁
(0.5) at 50% dose level 

 
We demonstrate this assertion with a simple test. For the 50% 

dose level, we plot the difference in noise between the 𝑅𝑠𝐿𝐷
(0.5) 

and 𝑅𝐼𝑁
(0.5) images (Fig. 5). When there is no electronic noise 

(𝜎𝑒 = 0), the noise levels are indeed identical, but for 𝜎𝑒 > 0, 
more electronic noise is added to the synthetic 50% dose image 
𝑅𝑠𝐿𝐷

(0.5) than the independent noise image 𝑅𝐼𝑁
(0.5). Therefore, in 

general we are not splitting dose or creating another low-dose 

(a) Normal 
dose

(b) Real 
low-dose 
( )

(c) Synthetic 
low-dose
( )

(d) (e)

STD = 0.0165 cm-1STD = 0.0167 cm-1STD = 0.0090 cm-1

(f)

(a) (b) 

(c) 

STD = 0.0165 cm-1 STD = 0.0107 cm-1

(d) 

Electronic noise 
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image. Instead, we have created an additional image with 
independent noise, which satisfies the Noise2Noise conditions. 

In Fig. 6, the correlations between (𝑅𝑠𝐿𝐷
(𝑑)  , 𝑅𝐼𝑁

(𝑑)) and (𝑅𝑠𝐿𝐷
(𝑑)  , 

𝑅𝑁𝐷) are plotted in blue and red. As expected, the correlations 
between (𝑅𝑠𝐿𝐷

(𝑑)  , 𝑅𝐼𝑁
(𝑑)) at different dose levels are close to 0. On 

the contrary, the correlations between (𝑅𝑠𝐿𝐷
(𝑑) , 𝑅𝑁𝐷) increases 

with higher dose (red curve) since more of the noise in the 
synthetic low-dose image comes from the original normal-dose 
image. At lower dose, the increased amount of inserted noise 
leads to lower correlations with the original image. 
 

 
Fig.  6. Correlation at different relative dose levels 
 

We also list the correlation coefficients under different 
electronic noise (𝜎𝑒) levels in Table 2. The correlation between 
synthetic image 𝑅𝑠𝐿𝐷

(𝑑)  and independent noise image 𝑅𝐼𝑁
(𝑑) is 

generally near zero, which agrees with the theoretical analysis 
in equation (7). 
 

TABLE 2. CORRELATION COEFFICIENTS 
 
𝜎𝑒 

𝜌𝑅𝑠𝐿𝐷(𝑑) ,𝑅𝐼𝑁
(𝑑) 

Mean STD 
0 0.0003 0.0023 
5 0.0011 0.0022 

10 0.0014 0.0023 
20 0.0008 0.0028 

IV. DISCUSSION AND CONCLUSION 
In this paper, a simulation tool was demonstrated for 

simultaneously synthesizing low-dose images at arbitrary dose 
level and independent noisy images. The method extends the 
conventional noise insertion procedure and creates a byproduct 
image with independent noise along with the low-dose image at 
a specific dose level. Correlation between the synthetic and 
independent noise images was investigated both analytically 
and numerically, which verified that they are uncorrelated. 
Thus, they are independent under the assumption that they form 
a bivariate normal distribution. 

For now, we only carried out preliminary validation with a 
simple simulation in MATLAB. Future work will extend these 
concepts to a more accurate forward projection model with 
polychromatic spectrum and non-ideal detector response 
(energy integrating or photon counting). Also, we are using a 
linear FBP reconstruction algorithm so that projection domain 
analysis can be transferred directly to the image domain 
(although this does include a non-linear log step). Iterative 

reconstruction methods may violate our linearity assumptions 
in the image domain, even if the projection domain noise 
properties hold. Another challenge might be the accuracy of our 
noise models in severely attenuated areas with photon 
starvation, such as behind metal. Lastly, we plan to demonstrate 
the utility of our independent noise simulation on CT denoising 
networks by fully leveraging the Noise2Noise principle. Our 
belief is that training with a wide range of simulated dose levels 
paired with independent noise will outperform other training 
methods like Half2Half or pairing simulated low dose images 
with normal dose images. 

APPENDIX 

In this section, we prove that (𝑃𝑠𝐿𝐷
(𝑑) , 𝑃𝐼𝑁

(𝑑)) are uncorrelated 
(𝐸[𝑃𝑠𝐿𝐷

(𝑑)𝑃𝐼𝑁
(𝑑)] = 𝐸[𝑃𝑠𝐿𝐷

(𝑑)]𝐸[𝑃𝐼𝑁
(𝑑)]). Given the definitions of 𝑃𝑠𝐿𝐷

(𝑑) 
and 𝑃𝐼𝑁

(𝑑), it is straightforward to show 
 𝐸[𝑃𝑠𝐿𝐷

(𝑑)]𝐸[𝑃𝐼𝑁
(𝑑)] = (𝑑𝜆)(𝑑𝜆) = 𝑑2𝜆2. (8) 

On the other side:  
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 (9) 

where the independence of added noise 𝑄 and 𝐸 from the 
measured data 𝑃𝑁𝐷 gives us 𝐸[𝑃𝑁𝐷𝑄] = 0, 𝐸[𝑃𝑁𝐷𝐸] = 0. 
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Dark-Field Imaging on a Clinical CT System:
Sample Data Processing and Reconstruction

Jakob Haeusele, Clemens Schmid, Manuel Viermetz, Nikolai Gustschin, Tobias Lasser, Frank Bergner,
Thomas Koehler, Franz Pfeiffer

Abstract—Grating-based phase-contrast and dark-field X-ray
imaging is a promising technology for improving the diagnosis
and imaging capabilities of breast cancer and lung diseases.
While traditional X-ray techniques only consider the attenuation
coefficient, phase-contrast and dark-field imaging are also capable
of measuring the refractive index decrement and the so-called
linear diffusion coefficient, a measure of a sample’s small-
angle scattering strength. Consequently, the technique provides
additional information about the micro-structure of a sample.
While it is already possible to perform human chest dark-field
radiography, it is assumed that its diagnostic value increases
when performed in a tomographic setup. The thereby acquired
three-dimensional mappings of the three modalities yield detailed
information about morphological changes without being obscured
by overlaying structures.

This work presents the sample data processing and reconstruc-
tion pipeline of the first human-sized clinical dark-field CT system.
In this novel setting we require a processing concept which is
(1) compatible with continuous rotation, (2) can compensate for
perturbances induced by system vibrations, and (3) still enables
short processing and reconstruction times. An advanced sliding
window approach was chosen for the sample data extraction
to meet requirements (1) and (3). Furthermore, we present the
corrective measures that have to be applied in the employed
processing and reconstruction algorithms to mitigate the effects
of vibrations and deformations of the interferometer gratings.
The developed techniques are shown to successfully reduce the
emergence of artefacts in the reconstructed images.

Index Terms—x-rays, computed tomography, image reconstruc-
tion, signal analysis, parameter estimation

I. INTRODUCTION

X -RAY imaging is an invaluable technique in medical
imaging that enables fast measurements of a sample’s

attenuation coefficient. However, it is limited to attenuation
based contrast and cannot exploit additional information of
the X-ray wavefront like its phase and small-angle scattering.
Grating-based X-ray dark-field imaging is capable of measuring
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all three effects by introducing a Talbot-Lau interferometer in
the beam path [1], [2].

Due to the added diffraction gratings the X-ray wavefront
is modulated to create a reference pattern on the detector.
As the sample interacts with the incident wavefront the
observed pattern is distorted: Porous materials induce small-
angle scattering that smears out the observed interference
pattern. A proper analysis of this pattern thus yields additional
information about the sample’s microstructure.

The so-called dark-field signal measured by this procedure
has proven a promising new tool in the diagnosis of lung
diseases as it can show micro-structural changes in the lung
parenchyma [3], [4].

As a first step in transferring this technology to clinical
usage a prototype human dark-field scanner is already in use
in the university hospital München rechts der Isar. In a first
clinical study it could show the potential of dark-field imaging
for the diagnosis of COPD and COVID-19 [5].

However, this system is only capable of measuring chest
radiographs. For an unobstructed 3D-view of a patients lung
a tomographic setup is needed, as demonstrated for living
mice [6]. Therefore, in a next step we installed a Talbot-Lau
interferometer in a clinical CT. The design of this first human
sized dark-field CT prototype is presented in [7].

Previous lab-based dark-field CT systems were designed to
meet the stability requirements of the interferometric method.
In contrast, our goal was to fit a Talbot-Lau interferometer into
an existing clinical CT system with minimal hardware changes.
This implies, in particular, a higher level of vibrations than
desired, which we address by more complex data processing.
Furthermore, the continuous rotation of the gantry prohibits
the use of conventional phase demodulation techniques since
the detector is positioned differently in each shot.

This work presents the second part of the data processing
pipeline of the setup – the processing of sample scans covering
the detectors full field of view. The prerequisite reference
processing of air scans is discussed in [8]. A schematic
overview of the full processing pipeline is depicted in Fig. 1.

II. MODEL

The basic forward model of grating-based phase-contrast
and dark-field X-ray imaging is given by [1]

y = T · I · [1 +D · V · cos (�+ �)] , (1)

where the state of the interferometer is described by the
parameters I , V and � which denote the mean intensity,
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the fringe amplitude (visibility), and the interferometer phase,
respectively. Once a sample is introduced it attenuates, small-
angle scatters, and phase-shifts the incident wave which alters
the measured fringe pattern. These changes can be modeled
by three sample parameters: the sample transmission T , the
dark-field D, and the (differential) phase �.
For a data acquisition scheme utilizing a continuously rotating
gantry and in the presence of vibrations and other fluctuations,
all of the introduced parameters generally depend on the
individual detector pixel x and time t.
For the presented dark-field CT prototype the effects of the
observed fluctuations are described by linear combinations of
per-pixel correction arrays R that describe the impact of the
main modes of grating deformations on the measured fringe
pattern and their respective per-shot strength coefficients c.
These perturbations alter the flatfields I0, V0, and �0 of the
three interferometer parameters as follows:

I(x, t) = I0(x) ·
 
1 +

NiX

n=1

ci,n(t)Ri,n(x)

!
(2)

V (x, t) = V0(x) ·
 
1 +

NvX

n=1

cv,n(t)Rv,n(x)

!
(3)

�(x, t) = �0(x) +

NpX

n=1

cp,n(t)Rp,n(x). (4)

While the flatfields I0, V0, and �0 and the correction arrays Ri,
Rv , and Rp are determined during the reference processing of
an air scan (see Fig. 1a, b), the fluctuation strength coefficients
of the sample scan ci, cv , and cp have to be determined during
sample processing. Subsequently, the sample parameters T , D
and � can be extracted.

III. FLUCTUATION ESTIMATION

The observed fluctuations described by ci, cv, and cp are
caused by periodic processes happening during the measure-
ment. These include, most importantly, the gantry rotation,
the change of the X-ray focal spot due to induced magnetic
fields, and vibrations caused by motors on the gantry. While
the effects of the gantry movement lead to a reproducible
low frequency change in the coefficients, the other effects
result in high frequency oscillations. It is therefore possible
to extract the low frequency components of the coefficients
LF
⇥
cref
n (t)

⇤
from the reference scan by low-pass filtering the

reference coefficients. Only high frequency effects are estimated
separately during sample processing.
By analyzing multiple reference scans it was found that the
high frequency components of the fluctuation coefficients can
be approximated well by a sum of a few sinusoidals. These
oscillate at characteristic frequencies of the setup which can be
assigned to different components on the gantry. The most
important frequencies are two dominant frequencies from
the X-ray tube asynchronous motor which drives the anode
rotation: the stator frequency is 189Hz and the rotor frequency
approximately 176Hz. Moreover, vibrations induced by the
cooling unit at 117Hz are included in our model.
It was further found that the amplitudes of these oscillations

stay constant from scan to scan and can therefore also be
extracted from the respective reference coefficient. Additionally,
the phase relationship of the oscillations between different
coefficients stays constant. These two facts can be illustrated
nicely by using pairs of coefficients to plot Lissajous curves
which can then be compared between scans. An example
is given in Fig. 1f: Here it can be seen that all values of
the intensity fluctuation coefficients lie on a well defined
Lissajous ellipse. This ellipse stays constant between scans,
which indicates a constant amplitude and phase relation of the
coefficients oscillations.
Based on this analysis each coefficient cn is expressed as

cn(t) =

NfX

k=1

Aref
n,k sin(2⇡fkt+ �ref

n,k + �k) + LF
⇥
cref
n (t)

⇤
,

(5)

where Aref
n,k and �ref

n,k are the reference amplitude and oscillation
phase of the respective reference coefficient cref

n and frequency
fk which were retrieved during processing of an air scan.
Employing this model has the advantage that only the global
phase offsets of each frequency �k have to be found for
the sample scan. They are extracted via Fourier-analysis and
subsequent fitting of initial guesses of the total flux and
interferometer phase. These are acquired by conventional
processing algorithms. Then, all coefficients can be synthesized
from parameters extracted during the reference processing.

IV. SIGNAL EXTRACTION AND RECONSTRUCTION

Once the fluctuation strengths have been estimated, per-shot
references can be generated by applying equations (2), (3),
and (4). Next, the measured interference pattern has to be
demodulated to retrieve the three sample channels T , D, and
�. This is achieved by first applying a change of variables to
equation (1) which is defined by

A = T, B = TD cos(�), C = TD sin(�) (6)
MA = I, MB = IV cos(�), MC = �IV sin(�). (7)

The forward model is now linear in the new set of sample
parameters A, B, and C:

y = AMA +BMB + CMC . (8)

Demodulation is performed by defining patches of pixels on
the detector and consecutive shots in the measured sinogram
ymeas. For each of these patches a least squares optimization
is performed to minimize a cost function Cpatch and find the
sample parameters. The cost function is defined as

Cpatch =

X

x,t2patch

[ymeas(x, t)� ypatch(x, t)]
2

w(x, t)
, (9)

with weights w that can be used to introduce a distance
weighting in the patch to weight pixels and shots less towards
the borders of the patch.
To account for a continuously rotating gantry and spatial
changes of the sample parameters, in each patch they are
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Fig. 1. Processing pipelines for reference and sample scans. a, Reference processing pipeline to extract scan-to-scan persistent system characteristics from an
air scan. Here we introduce local intensity fluctuation corrections and information compression using principal component analysis (PCA). b, Interferometer
performance and correction array results from reference processing. c, Sample processing pipeline, based on sliding window processing. As the high frequency
oscillations differ from the reference scan, we use an optimization step to identify the optimal linear combination of the correction arrays to estimate the
current sample free fringe parameters and thus to suppress vibration artefacts. d, Results of the correction coefficient optimization using prior knowledge
from the reference scan. e, Coefficients of the three intensity correction arrays. The angular position dependent drift (orange) is scan-to-scan consistent and is
utilized as prior knowledge in the correction optimization step. f, Three-dimensional scatter plot of the three intensity correction coefficients after subtraction of
the low-frequency component shown in e. A correlation can be observed which also is used during the optimization step as prior knowledge. Figure and
caption adapted from [7].

represented as linear combinations of known basis functions
and their a priori unknown coefficients:

A =

X

m

am↵m(x, t), B =

X

n

bn�n(x, t), C =

X

k

gk�k(x, t)

(10)

For simplicity the basis functions ↵, �, and � were chosen to
be polynomials of x and t. Consequently, the model function
ypatch assumed in each patch is given by:

ypatch(x, t) =
X

m

am↵m(x, t)MA(x, t)+

+

X

n

bn�n(x, t)MB(x, t)+

+

X

k

gk�k(x, t)MC(x, t). (11)

This model is linear in the basis function coefficients. Therefore,
the least squares optimization is a linear regression and pos-

sesses an analytical solution that yields the optimal coefficients:

aopt
m , bopt

n , gopt
k = argmin

am,bn,gk

Cpatch. (12)

The full demodulation of the measured sinogram is achieved
by iterating over all pixels and at each step processing the
patch with the current pixel positioned in its center. The sample
parameters at the current position are then given by evaluating
equations (10) at the center of the patch using the least squares
optimization results.
After performing this patch-wise sliding window phase retrieval
the variables are transformed back using:

T = A, D =

p
B2 + C2

A
, � = arctan2(B,C). (13)

This yields the three sinograms T (x, t) , D(x, t) and �(x, t).
After transforming T and D into line integrals by applying the
negative logarithm function they can be reconstructed using a
filtered backprojection. For the dark-field a weighting has to
be performed during reconstruction to account for sensitivity
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Fig. 2. Processing results of a measurement of a human thorax phantom.
Sub-figure a shows the reconstructed attenuation channel (-1000, 160) [HU]
while sub-figure b depicts the dark-field. It can be observed that dry wool,
powdered sugar, and the large porous neoprene insert simulating the lung show
a strong dark-field signal, while the dense POM cylinder vanishes fully.

differences depending on the sample’s position within the
interferometer [9]. Lastly, post processing steps are applied
to enhance the image quality and correct for dark-field beam
hardening effects.

V. RESULTS

The results of applying the processing pipeline to a mea-
surement of a human thorax phantom are depicted in Fig. 2.
The phantom was filled with a neoprene insert to simulate the
scattering behavior of lung tissue. Additionally, three Falcon
tubes filled with dry wool, wet wool, and powdered sugar as
well as a POM cylinder were placed inside the neoprene insert.

The attenuation channel reconstruction appears artefact free.
In the dark-field, there are minor streak artefacts, and noise
is corrupting the image quality slightly. However, this could
be mitigated by employing further post-processing and filter
algorithms.

It can be observed that the neoprene insert, dry wool,
powdered sugar and bones, show a strong dark-field signal,
while the POM cylinder and the soft tissue surrounding the ribs
vanish fully in the dark-field reconstruction. This demonstrates
the system’s capability to differentiate between porous and
dense materials. Moreover, it shows the possibility of analyzing
the scattering strengths of the different materials quantitatively.

VI. CONCLUSION

This work presented the sample processing pipeline of the
first clinical dark-field CT scanner. The two main processing
challenges in translating grating-based dark-field imaging to a
clinical CT system are addressed and solutions are proposed.

The first challenge lies in describing the interferometer
state accurately for each shot in spite of vibrations. This was
addressed by analyzing and adapting measurements of an empty
reference scan to the sample measurement.

The second challenge lies in the demodulation of the signal.
A continuous tomographic data acquisition shows the sample
under a different angle for each projection. This leads to
movement artefacts when trying to demodulate the signal with
a conventional sliding window approach. To mitigate the effects
of sample movement, an advanced patch-wise sliding window
algorithm is presented that estimates the sample movement
locally using continuous basis functions. Since the proposed
model leads to a linear optimization problem, demodulation
can be performed fast, while only minor artefacts related to
noise are present in the final reconstruction.
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�
Abstract—Photon counting spectral CT (PCCT) can produce

reconstructed attenuation maps in different energy channels,
reflecting energy properties of the scanned object. Due to the
limited photon numbers and the non-ideal detector response of
each energy channel, the reconstructed images usually contain
much noise. With the development of Deep Learning (DL)
technique, different kinds of DL-based models have been
proposed for noise reduction. However, most of the models
require clean data set as the training labels, which are not always
available in medical imaging field. Inspiring by the similarities of
each channel's reconstructed image, we proposed a
self-supervised learning based PCCT image enhancement
framework via multi-spectral channels (S2MS). In S2MS
framework, both the input and output labels are noisy images.
Specifically, one single channel image was used as output while
images of other single channels and channel-sum image were used
as input to train the network, which can fully use the spectral data
information without extra cost. The simulation results based on
the AAPM Low-dose CT Challenge database showed that the
proposed S2MS model can suppress the noise and preserve details
more effectively in comparison with the traditional DL models,
which has potential to improve the image quality of PCCT in
clinical applications.
Index Terms—Spectral CT, denoising, Noise2Noise, deep

learning

I. INTRODUCTION
HOTON counting spectral CT (PCCT) can separately
collect the incident photons in different energy bins, which

has high energy resolution and can generate more accurate
material decomposition [1], [2]. Nevertheless, with the increase
number of energy bins, counting rate is limited in each
individual channel, which results in a relatively low
signal-to-noise ratio (SNR). Moreover, there are complicated
noises caused by non-ideal response of detector, such as
fluorescence x-ray effects, K-escape, charging sharing, and
pulse pileups [3]. Noise in the reconstructed CT images will
seriously affect diagnosis of doctors.
To reduce noise in CT images, recent deep learning (DL)

technique has been widely developed in the field of CT image
denoising and shows the potential in applications. Yang et al.
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used the generative adversarial network (GAN) with
Wasserstein distance and perceptual similarity to reduce the
noise in CT images [4]. Lv et al. proposed an PCCT image
denoising method via fully convolutional pyramid residual
network, which suppresses noise in each single energy channel
image [5].
However, traditional DL methods require high-quality clean

images as training labels to achieve high performance, which
are difficult to obtain especially in medical imaging field. To
solve this problem, Lehtinen et al. introduced the Noise2Noise
model (N2N), where the network was trained to map one noisy
realization to another noisy realization [6]. In addition, photon
counting spectral CT (PCCT) provides an opportunity to
produce reconstructed attenuation maps in different energy
channels, which reflect energy properties of the scanned object.
Using the similarity of images in different energy bins, we
proposed a self-supervised learning driven PCCT image
denoising method via multi-spectral channels based on the
N2N network model (S2MS). In our framework, the input are
images from multi-channels and a channel-sum image, while
the output is image of one single channel. Both input and output
are noisy PCCT images. Compared with N2N, our proposed
S2MS fully used all the reconstructed images in different
energy bins at the same time, rather than processing images in
each channel separately. All the simulated experiments were
carried out and the results show the S2MC model is effective
and accurate in noise reduction and detail preservation.

II. MATERIALS AND METHODS

A. Basic Principle of PCCT
Compared with the traditional energy integration detector,

photon counting detector (PCD) can separately count out the
number of photons in each energy channel, which can be used
to obtain the projection in different energy bins. Fig. 1 shows an
example of PCCT images in four energy channels. The
similarity between images in different energy bins can be used
for noise reduction.

Fig. 1. An example of reconstructed PCCT images in different energy bins. The
display window is [0,0.4] cm-1.

S2MS: Self-Supervised Learning Driven
Multi-Spectral CT Image Enhancement

Chaoyang Zhang, Shaojie Chang, Ti Bai, and Xi Chen
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B. Deep-Learning based Denoising
In deep learning based denoising method, the input of the

network is generally regarded as the following:
i i ix y n � (1)

where ix is the corrupted input, iy is the clean target and

in denotes the corresponding noise. According to the type of
training target, DL-based denoising can be divided into the
following two types：
1) Supervised Learning-N2C

Traditionally, supervised learning is always used for
deep-learning based CT image denosing, which means training
a regression model with pairs l( , )i ix y and minimizing the
function:

l* 1arg min ( )i i
i

f x y
N T

T
T  �¦ (2)

where l( )if xT is the denoising convolutional neural network
(CNN), T is weight, N is the total number of training samples.
In this paper, the image denoising based on supervised learning
is referred as Noise2Clean (N2C).
2) Self-Supervised Learning-N2N

Opposite to Noise2Clean, Noise2Noise (N2N) is a
self-supervised learning framework where input and target are
both corrupted. It can be expressed as:

*
1 2

1arg min ( ) ( )i i i i
i

f y n y n
N T

T
T  � � �¦ (3)

where 1in and 2in are two independently noise realizations. It
has been assumed that the Noise2Noise training is equivalent to
Noise2Clean training under certain mild conditions [6], [7]:

2

1 2

1. ;
2. Conditional expection { | } 0;
3.  and  are independent;
4. ,  ( ) .

i i
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i i

N
E n y

n n
i f y nT

o f
 

� � � f

Since filter in the convolutional neural network is
shift-invariant, different parts of the image may be served as
multiple training samples. Even if the size of training data is
small, the actual number of training samples is large enough to
satisfy condition 1. After reconstructing, the noise in image
domain is zero-mean and independent in different energy
channels [8], which means condition 2 and condition 3 are both
satisfied in our method. Condition 4 can be easily satisfied by
choosing the meaningful parameters of the network.

C. Noise2Noise Network for PCCT Image Denoising
By using the similarities of reconstructed images in different

energy bins, we proposed a noise2noise network-based PCCT
image denoising framework based on self-supervised learning
via multi-spectral channels (S2MS). The basic process of our
framework is shown in Fig. 2.

In S2MS, L-1 reconstructed images in single channel and a
channel-sum image (linear attenuation map) were divided by
the mass attenuation coefficient of each channel (Attenuation
2Density), converted into density images before training, which
were used as the input of L channels. Then, the left single
channel image was also converted into density image as the
target. The S2MS network can be described as:

*
1 1 ( 1)

( 1)

1arg min ( , ,

         , ) ( )

i i i E
i

i E isum isum iE iE

f y n y
N

n y n y n

T
T

T �

�

 �

� � � �

¦ "
(4)

Fig. 2. The noise2noise network-based PCCT image denoising framework with self-supervised learning via multi-spectral channels (S2MS). The attenuation
images were divided by the mass attenuation coefficient, converted into density images.
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where l( )if xT is the denoising convolutional neural network
(CNN) with L inputs, isumy is the clean channel-sum image,

isumn is the noise in channel-sum image, 1 2{ , , , }i i i iLy y y y "
are the clean reconstructed images in different single energy
channel and 1 2{ , , , }i i i iLn n n n " are the corresponding noise.
After training, S2MS can denoise the PCCT image in single

channel. The denoised density image was multiplied by mass
attenuation coefficient (Density2Attenuation), converted into a
linear attenuation image (Fig. 3).

Fig. 3. The denoised process of the trained S2MS network.

D. Experiment Setup
1) Dataset Establishment
In this study, CT images from the 2016 Low-dose CT Grand

Challenge dataset [9] were used to simulate the PCCT images.
1000 slices of 7 patients were randomly divided into training
dataset, validation dataset and test dataset according to the ratio
of 8:1:1. An equal spatial fan-beam geometry was assumed to
simulate the projecting process. The distance from the source to
the system origin was 142 cm, the distance from the source to
the detector was 180 cm, and there were 512 detector elements
with the width of 0.1 cm per element. A total of 512 projections
were acquired in an angular range of 360 degrees. The
projection data were collected in four different energy bins
30-45keV (channel 1), 45-60keV (channel 2), 60-80keV
(channel 3), and 80-100keV (channel 4). In each energy
channel, 1000 PCCT images were acquired which had 512*512
pixels. Poisson noise was introduced in the simulation process.
Totally 51 10u photons emitted along each x-ray path and the
number of photons per energy channel was proportional to the
normalized spectrum of each channel. Finally, the PCCT
images can be reconstructed by FBP algorithm. Before training,
the reconstructed images divided by the mass attenuation
coefficient to convert into the density images which were used
as the input and target of S2MS.
2) Network Implementation
U-Net architecture in [6] was used in our study (Fig. 2). The

encoder-decoder network includes a shrinking multi-scale
decomposition path and a symmetric expansion path, with skip
connections on each layer. Adam optimizer was used with a
learning rate of 0.0003. The loss function was designed based
on Mean Squared Error (MSE):

2

1 1

1( , ) ( , ) ( , )
m n

i j
MSE x y x i j y i j

mn   

 �¦¦ (7)

where x is input and y is target of the network.
The training was performed on a server with Intel Xeon

Silver 4214 CPU and GeForce RTX 3090 24G GPU. The

network was coded in Pytorch1.9.1 using Ubuntu20.04.
3) Comparison Study
To evaluate the performance of our proposed method, the

Noise2Clean (N2C) and traditional Noise2Noise (N2N) were
used for comparison. In N2C network, PCCT image
reconstructed from the projections without noise was used as
the target. In N2N network, two independent projections were
simulated and the corresponding reconstructed images were
used as input and output, respectively. Since our study focused
on a denoising method rather than the network structure, the
U-Net architecture in Fig. 2 was also used for N2C and N2N.
4) Evaluation Metrics
In our study, structure similarity (SSIM) and Root Mean

Squared Error (RMSE) were used as the evaluation metrics.
SSIM measures the structural similarity by comparing both the
mean value and distribution relevance between denoised image
and reference, and RMSE measures the L2-norm error between
the estimated image and the ground truth.

III. RESULTS
Denoised images generated by our proposed method S2MS,

N2C and N2C were shown in Fig. 4. Our proposed method can
effectively reduce noise in each PCCT channel image.
Especially in channel 3 and channel 4, our proposed method is
able to retain richer structural information while suppressing
most noise. Four regions of interest (ROIs) were selected (red
rectangles) to show the detail preservation performance (Fig.5).
In comparison with other methods, the proposed S2MS can
remove more noise while preserving more details.
We selected a fixed size (200*200) ROI (blue rectangle in

Fig. 4) and calculated the SSIM and RMSE (Table I). Our
proposed S2MS achieved the highest SSIM and the lowest
RMSE in each energy channel, which indicated that S2MS
made a better performance on image denoising for PCCT in
comparison with N2N and N2C.

Fig. 4. Four example reconstructed slices in four energy channels (30-45keV,
45-60keV, 60-80keV, 80-100keV). The display windows for linear attenuation
from the top to the bottom rows are [0,0.4] cm-1, [0,0.4] cm-1, [0,0.35] cm-1, and
[0,0.35] cm-1, respectively.
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TABLE I
DENOISING RESULTS OF DIFFERENT METHODS ON TEST DATASET

Energy Method SSIM RMSE

30-45 keV
N2N 0.9754 0.0131
N2C 0.9765 0.0130
S2MS 0.9800 0.0117

45-60 keV
N2N 0.9738 0.0087
N2C 0.9750 0.0085
S2MS 0.9853 0.0061

60-80 keV
N2N 0.9697 0.0072
N2C 0.9719 0.0070
S2MS 0.9825 0.0048

80-100 keV
N2N 0.9442 0.0081
N2C 0.9479 0.0077
S2MS 0.9737 0.0046

Fig. 5. Details of reconstructed images in Fig.3. The first and second rows are
PCCT images in channel 3 (60-80 keV), the third and fourth rows are PCCT
images in channel 4 (80-100 keV), and the display window for all images is
[0,0.35] cm-1.

Fig. 6. A reconstructed PCCT image in channel 3, the noisy image and the
outputs of different network. The shading in the red rectangle is the region of
lesion which is magnified and shown. The display window is [0,0.35] cm-1.

To further validate the performance of the proposed method
in PCCT clinical application, CT images with lesion is shown
in Fig. 6. Denoised reconstructed images in channel 3 (60-80
keV) of different methods are illustrated and the lesion region
(red arrow) is magnified. The lesion is hardly observed in the
noisy image while it can be clearly in the reconstructed image
by S2MS. The lesion area was blurred in the reconstructed
images denoised by other methods. This result indicated that
our method has potential in clinical application.

IV. DISCUSSIONS AND CONCLUSION
In particular, in the output of N2N and S2MS, a gray circular

shadow can hardly be seen in the air area (Fig. 7). There is no
anatomic structure in this area, which makes the noise
distribution and background signal in this part are totally

different from those in human part. Therefore, the output of the
network may get wrong values in non-human regions. The
shadow is hard to see and has little influence in diagnosis.

Fig. 7. The magnified image of ROI (green rectangle in Fig. 3). The display
window is [0,0.1] cm-1.

In conclusion, we have proposed a Noise2Noise-based
PCCT image denoising framework via multi-spectral channels
(S2MS). In this study, noisy PCCT images were used as both
the input and the output to train the network. To make full use
of the spectral data in L channels, the reconstructed images in
L-1 single channels and channel-sum image were used as the
input and the left single channel image was used as the output.
Compared with the traditional DL denoising method,
simulation results show that the proposed method can obtain a
reconstructed image with high quality: noise is reduced
remarkably and detail features is well remained. No clean
image needed makes the proposed S2MS has potential in
practical application. In the future work, our S2MS will be
regarded as a priori information to be combined with the
material decomposition framework and the experimental data
will be used to test the network.
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Abstract—Often, the artifacts caused by high-density objects 

degrade the quality of the image with streaks and information loss 
in CT imaging. In recent years, machine learning has proven itself 
a powerful tool to resolve some of the challenges faced in reducing 
metal artifacts. In this work, a novel method of metal artifact 
reduction (MAR) without metal segmentation by using a CNN 
network is proposed. The approach focuses on removing the need 
for the sensitive metal segmentation step to improve robustness 
and aims to tackle beam hardening directly in the sinogram 
domain. In the proposed method, we trained the network with 
sinogram pairs that include metal objects and those that include 
virtual non-metal (VNM) replacement objects. A VNM object is 
designed to be less dense than metal but more dense than soft 
tissue. The novelty of this method lies in the 
sinogram-to-sinogram training without the need for metal 
segmentation by replacing the metal object to a virtual non-metal 
object in the sinogram to reduce beam hardening and successfully 
compensate for the information loss.  
 

Index Terms—Computed tomography (CT), convolutional 
neural network (CNN), metal artifact reduction (MAR), deep 
learning  
 

I. INTRODUCTION 
igh density materials cause degradation of the CT image 
quality via factors such as beam-hardening, photon 

starvation and scatter. Metal artifact is the overarching term 
referring to the resulting artifacts observed as many streaks, 
loss of image information, structural deformation and more 
[1-2]. For decades, researchers devised multitude of methods to 
tackle metal artifacts. The most common and analytic MAR 
methods are sinogram interpolation based, such as linear MAR 
and Normalized MAR (NMAR). These methods aim to replace 
the metal trace in the sinogram with neighboring information. 
In doing so, the essential step for these methods is metal 
segmentation [3-5]. However, for cases with severe beam 
hardening and photon starvation, segmenting the metal 
accurately is a great challenge.  
 The prowess of CNN shines in medical imaging when it 
comes to segmentation and solving complex problems by 
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finding patterns and training features [6-8]. In recent years, new 
methods that incorporate CNN for metal segmentation to aid in 
interpolation have been proposed. For instance, CNN-MAR 
proposed by Zhang et al. train the network to synthesize an 
artifact reduced image based on the non-corrected, beam 
hardening corrected (BHC) and linear interpolated images [9]. 
The CNN result is used as the prior image in the NMAR 
process. The DuDoNet proposed by Lin et al. takes advantage 
of the CNN to enhance the sinogram while retaining geometric 
consistency and to improve the reconstructed image based on 
the linear interpolated images [10]. While both methods 
improved image quality, for metal artifacts of different shapes 
and sizes, the result image is sensitivity to metal segmentation 
and to soft tissue smoothing and deformation. 

Since metal artifact and prior image generation are sensitive, 
more approaches that do not require metal segmentation are 
published. However, most utilize reconstructed images for 
training. As a result, metal artifacts that are not fully taken care 
of in the MAR processed and labeled data used for training 
remain in the test result. Thus, the quality of the image domain 
training is limited by the MAR preprocessing implemented to 
the training dataset. To overcome this limitation, Park et al. 
trained U-net with metal-corrupted sinogram and metal artifact 
corrected sinogram with metal mask for hip prosthesis replaced 
by air [11].  

In this work, we propose to train a sinogram-to-sinogram 
CNN to tackle the effect of beam hardening without the need 
for metal tracing. The common tactic to replace the metal trace 
via interpolation of the neighboring pixels or to replace the 
metal object with air is not desirable in that the metal trace not 
only contain the metal but also soft tissue. We propose to 
reduce metal artifact by tackling the beam hardening effect in 
the sinogram region. This method aims to replace the metal 
sinogram regions with objects with significantly less density 
than metal. The resulting sinogram, when reconstructed will 
restore soft tissue information in the shading artifact region and 
reduce streak artifacts. The feasibility of the proposed method 
is tested by a simulation study. The image quality of the result 
is evaluated qualitatively and quantitatively against the 
conventional NMAR algorithm. 

 

II. MATERIALS AND METHODS 

A. Dataset preparation 
Attaining a large set of projection data of clinical volumes 

was found difficult. Thus, this study was performed with a 
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simulation data set. To obtain a more realistic simulation data, a 
material map is generated by applying thresholds to the human 
body CT image without metal implants attained from NIH 
Clinical Center [12]. The thresholds are set to divide the object 
into bone, soft tissue, and fat. Then, elliptical objects of random 
size, number and position were added to the material map. The 
position of the elliptical objects was limited to the body. The 
elliptical objects were then given a material value for either 
titanium for metal and carbon for VNM substitute. Finally, the 
projection data was generated using a polynomial energy 
forward projection simulator with the parameters shown in 
Table 1. An example of the material map and the simulator 
results are shown in Fig. 1. 

 

 
Fig. 1.  a) CT image, b) Material map, c) material map with metal, d) sinogram 
simulated with metal, e) sinogram simulated with VNM-material 

 
TABLE I 

FAN-BEAM PARAMETERS FOR SIMULATED DATA 
Parameters Values 

Views per rotation 720 
Detector pixel number 512 x 1 
Detector pixel pitch 0.8 mm 
Distance of source to detector 1300 mm 
Distance of source to object 900 mm 
X-ray source 120 kVp 

 

B. U-Net Training 
The U-Net architecture implemented for this experiment is 

similar to the original U-Net published by Ronneberger et al. 
and is shown in Fig. 2 [13]. The last output channel is adjusted 
to be a single channel since the goal of this network is not to 
segment but produce a new sinogram image. The training input 
is the metal-inclusive sinogram set generated in the simulator 
and the label is the VNM-inclusive sinogram set generated in 
the simulator. From the total of 2351 data pairs, 80% was used 
for training and 10% was used for validation and test. In order 
to increase the variety in the dataset, data augmentation was 
performed by shifting the sinograms randomly for each epoch. 
The batch size was 4. The network was optimized with ADAM 
optimizer and the MSE loss function. The network was trained 
for 400 epochs with learning rate of 10-4, coming to a 
convergence.  
 

 
Fig. 2.  U-Net structure with the input as a metal-inclusive sinogram and the 
output image as the VNM-inclusive sinogram pair.  

III. RESULTS 

For testing, 235 sinogram pairs were synthesized in the same 
manner as the training data using the simulator. The 
metal-inclusive sinograms were loaded to the trained network 
and the resulting output sinograms were reconstructed with an 
FBP algorithm. The simulated VNM-inclusive sinograms were 
set as the reference. Fig. 3 shows an example of the test cases. A 
metal masked image that was extracted with thresholding 
during NMAR were added to the reconstructed images of the 
proposed method in order to compare the results qualitatively. 

 

 
Fig. 3.  Image reconstructed from the sinograms of the simulator (Reference 
and FBP), NMAR with and without metal, and proposed method with and 
without metal. 
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Root mean square error (RMSE) and structured similarity 
index (SSIM) values in the four ROI were calculated to assess 
the effectiveness of the MAR algorithm in not only removing 
metal artifacts but also in retaining the anatomical structures 
[14]. The four ROIs were selected to assess the performance of 
the NMAR algorithm and the proposed method pertaining to 
different metal artifacts. ROI 1 aims to evaluate the reduction of 
dark streaks and the recovery of the soft tissue.  ROI 2 focuses 
on the bone structure near a large metal object. While ROI 3 
does not show noticeable metal artifacts, streak artifacts 
degraded the contrast and the structure of the soft tissue. ROI 4 
has streak artifacts on boneless soft tissue. ROI 5 includes all 
pixels except the metal mask. The ROIs were selected such that 
the metal replacements are not included but the neighboring 
pixels are. Table II shows the result of the quantitative 
calculation performed on the different ROIs marked and 
displayed on Fig. 4.  

 

IV. DISCUSSION 
Depending on the ROI, the difference is significant. The 

proposed method excels in recovery of the soft tissue and bone 
information even when there is harsh beam hardening since no 
prior metal mask is required and the sinograms are substituted 
not only in the metal mask region but throughout. This can be 
observed in ROI 1 and 2. In ROI 1, the dark region marked with 
the red arrow is the neighboring region of a large metal object. 
Since NMAR tries to recover the lost information with the prior 
image, the bone information is not recovered fully. This may be 
due to the fact that the dark region was masked as air instead of 
tissue in the prior image due to the low pixel value. The 
proposed method does not require a well-defined prior image 
and the beam hardening effects are corrected in the sinogram 
domain. As a result, the marked region is  

Similarly, in ROI 2, the proposed method successfully 
retrieves the bone and the neighboring soft tissue information 
that are almost lost in the FDK result (red arrow). The success 
of the proposed method in retrieving the soft tissue information 
even for those pixels with values close to air poses speculation 
on the simplicity of the soft tissue model and possible 
overfitting. However, being that the sinograms for the training 
set and the test set were simulated from material maps of 
different patient sets with varying anatomical details, it is 
unlikely. This can be further investigated by testing clinical 
data with more complex soft tissue and bone structures to the 
same network. 

The SSIM values of FBP and NMAR are similar for ROI 2 
and 4 while that of the proposed method is significantly better. 
These two ROIs are contaminated with dark and white streaks 
and have a great potential for creating misleading NMAR priors. 
For the case of ROI 4, the streaks are prevalent in the soft tissue 
even after NMAR. Furthermore, beam hardening artifact at the 
perimeter of the metal objects were not corrected properly and 
the remaining streaks are observed. The proposed method not 
only reduces streaks better but also improves the visibility and 
details of the soft tissue structure. 

As for ROI 3, the streaks were reduced well by both NMAR 

and the proposed method. Yet, the reconstructed NMAR lacks 
contrast and suffers from soft tissue deformation in multitude of 
areas. An example of structural degradation is noted by a red 
arrow. This is quantitatively reflected in the low SSIM value for 
NMAR compared to the proposed method: 0.7694 compared to 
0.9353.  

 

 
Fig. 4.  The four ROIs are marked on the reference image. Each odd row shows 
the according ROI. The window level of each ROI is [0.001, 0.035], [0.01, 
0.025], [0.01, 0.025], and [0.01, 0.015]. Every even row shows the difference 
image from the reference and the window level is [0 0.005]. The window levels 
are adjusted to observe the artifacts and their reduction with ease. The columns 
show the enlarged images at the ROI in the order of reference, FBP, NMAR and 
proposed method result.  
 

Finally, to compare the effectiveness of the MAR algorithm 
in general for all areas, ROI 5 was evaluated. The RMSE of all 
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three results are negligible since large part of the RMSE 
computes air region which are similar for all cases. However, 
the performance of MAR on the overall image can be noted 
significantly from the improved SSIM value. Overall, the 
proposed method is successful in reducing the metal artifact in 
the sinogram domain. The quality of the reconstructed image 
improves as the beam hardening artifacts and streak artifacts 
are corrected. Significantly, unlike methods that require metal 
segmentation or depend on the quality of the prior images, the 
proposed method has merit in working without the need for 
metal segmentation. Furthermore, the proposed method 
replaces the metal-inclusive sinogram with a virtual non-metal 
sinogram. In doing so, the discontinuity of the sinogram is 
reduced compared to air replacement and streak artifact 
improvement.  
 

TABLE II 
QUANTITATIVE ANALYSIS OF THE ROI 

ROI Parameters RMSE SSIM 

1 

FBP 2.514E-3 0.8289 

NMAR 1.747E-3 0.8655 

Proposed 5.058E-4 0.9521 

2 

FBP 4.574E-3 0.6053 

NMAR 3.093E-3 0.6529 

Proposed 6.471E-4 0.8612 

3 

FBP 1.230E-3 0.5928 

NMAR 8.113E-4 0.7694 

Proposed 3.600E-4 0.9353 

4 

FBP 1.532E-3 0.4031 

NMAR 1.476E-3 0.5753 

Proposed 2.265E-4 0.8705 

5 

FBP 2.6283E-6 0.6368 

NMAR 2.9660E-6 0.7062 

Proposed 4.7452E-7 0.9556 

 

V. CONCLUSION 
Overall, the propose method outperforms FBP and NMAR in 

reducing metal artifacts and appropriately constructing the soft 
tissue and bone information. Through this simulation study, we 
have successfully demonstrated the feasibility of the proposed 
method. The result of the preliminary simulation study shows 
promise for further exploration of the method. We are 
interested in testing the method with datasets with greater 
complexity. It could be done by increasing the number of 
materials and types of metals used to create the sinogram pairs. 
Additionally, the shape of the metal objects used for the 
feasibility study were simply elliptical. Metal objects with 
sharp corners and complex shapes can be added to assimilate 
screws and needles. Finally, noise and photon starvation effect 
can be added to the data simulator to test the algorithm under 
exacerbated metal artifact conditions. 
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Attenuation Image Guided Effective Atom Number 
Image Calculation Using Image-domain Neural 

Network for MeV Dual-energy Cargo CT Imaging 
Wei Fang, Liang Li, IEEE Senior Member

 Abstract–Traditional inspection technology for cargo or 
container in customs and harbours is MeV X-ray radiography. 
The biggest limitation of radiography imaging is the overlapping 
problem. While MeV dual energy CT can provide cross-section 
image, which is free of the overlapping problem. Besides, the 
recorded dual-energy projection data provides the ability for 
material decomposition. Electron density image and effective 
atom number image can be further calculated from the material 
decomposition coefficients. However, the quality of effective atom 
number image can be very poor and the behind reasons are 
multifaceted. First of all, MeV dual-energy CT material 
decomposition is much more difficult than keV dual-energy CT 
since the mass attenuation coefficients of different materials are 
very close in MeV energy range. Besides, metals in the cargo or 
container may cause strong beam hardening artefacts, further 
degrading the image quality of material decomposition results. 
Last but not least, the way of calculation effective atom number 
image also tends to bring noise. In this paper, we proposed a deep 
learning framework for effective atom number image calculation. 
The network was input with low and high-energy reconstructions 
and the effective atom number image that was directly calculated 
using the derived formula and output with the estimated effective 
atom number image. The simulation results show the 
effectiveness of the proposed deep learning framework. 

I. INTRODUCTION 

HE routine security screening of cargos and containers in 
airports, stations and harbors is very important for the 

protection of homeland security. The container is large in size 
and the contents of these cargos are very complicated. It will 
be a very labour-intensive work if performing manual 
inspection. Currently, the dominant technique for performing 
this kind of security screening is X-ray radiography. The 
biggest limitation for X-ray radiography technology is the 
overlapping problem. If many objects are stacked along the X-
ray, the projection information of different objects will be 
stacked and it will be difficult to discriminate one object from 
another by judging from the generated radiography image. CT 
imaging can provide the attenuation coefficients map of a 
cross-section without object overlapping. MeV dual-energy 
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CT can be recognized as the next-generation tool for 
performing routine screening of cargos and containers [1].   

MeV dual-energy CT can also provide the ability for 
material discrimination. In MeV material decomposition, the 
quality of the generated atom number image is usually worse 
than the reconstructed low and high-energy attenuation images. 
However, the low and high-energy attenuation images and the 
atom number image share similar image structures. The 
attenuation reconstructions can be used to improve the 
effective atom number image within the deep learning 
framework. 

In this paper, we proposed a deep learning framework for 
calculating the effective atom number image for MeV 
container CT imaging. The deep neural network model has 
three channels as input. The first two channels are the low and 
high attenuation images. The third channel is the effective 
atom number image that calculated by directly using the 
derived formula. The output of the network is the network 
estimated effective atom number image. The network was 
trained with simulated MeV dual-energy container CT dataset. 
The simulation was performed using the shape of XCAT [2] 
model but filled with materials that often exist in container 
and cargo. The model was validated on simulation data. The 
results and quantitative analysis showed the effectiveness of 
the proposed method. 

II. PHYSICAL MODEL  
Compared to traditional single-energy CT, dual-energy CT 

can provide the capability of material decomposition. The 
reason why dual-energy CT can perform material 
decomposition is that the attenuation of materials decays as 
energy rises and different materials have different decay 
curves. To be more specific, the decay curves are decided by 
two aspects of factors. The first aspect is material-related 
properties, such as mass density, atomic number and mass 
number. The second aspect is the energy of incident photons. 
The feasibility that these two aspects of factors can be 
decoupled is the foundation for material decomposition. 
Because the objective of material decomposition is to estimate 
the first aspect of factors, which are material-related properties. 
In keV clinical dual-energy CT, decomposition coefficient 
images are calculated to indicate bone-like and soft tissue-like 
structures. While in MeV container CT, the decomposition 
coefficient image is more like a medium-result and the electon 

T 
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density image and the effective atom number image are more 
of physical meanings in security inspection.  

The ability of material for attenuating X-ray is mostly based 
on three physical effects, which are photoelectric effect, 
compton scattering effect and pair production effect. These 
three effects can all be decomposed into material-related and 
energy related factor. In MeV energy range, The photoelectric 
effect caused attenuation is very small and can be neglected. 
So currently we only consider compton scattering and pair 
production as two main effects. For compton scattering part of 
attenuation, it can be decomposed as the product of material-
related factor and energy-related factor as 
 

𝜇𝑐𝑠 ≈ 2𝜌
𝑍
𝐴
∙
1
2
𝑁𝐴𝜎𝑐𝑠 = 𝑎2 ∙ 𝑓2, (1) 

 
where 𝜌 is the mass density, 𝑍 is the atomic number and 𝐴 is 
the mass number. 𝑁𝐴  represents the avogadro constant. 𝜎𝑐𝑠 
represents the single electron compton scattering cross section, 
which is a function of energy 𝐸 and can be depicted by using 
Klein-Nishima formula. Similarly, the pair production caused 
part of attenuation can be represented as  
 

𝜇𝑝𝑝 = 2𝜌
𝑍2

𝐴
∙
1
2
𝐾𝑝𝑝𝑁𝐴𝐸 = 𝑎3 ∙ 𝑓3, (2) 

 
where 𝐾𝑝𝑝 is a constant irrelevant to material or energy.  

Material basis and effect basis are just two types of basis for 
attenuation representation in material decomposition. By 
listing the equality of the two types of representation, we can 
figure out that they are totally equivalent. Formula (3) and 
formula (4) show that coefficients of double effect basis can 
be represented with the coefficients of double material basis, 
 

𝑎2 = 2𝜌
𝑍𝑒𝑓𝑓
𝐴

= 𝑏1 ∙ 2𝜌1
𝑍1
𝐴1

+ 𝑏2 ∙ 2𝜌2
𝑍2
𝐴2

(3) 

𝑎3 =  2𝜌
𝑍𝑒𝑓𝑓2

𝐴
= 𝑏1 ∙ 2𝜌1

𝑍12

𝐴1
+ 𝑏2 ∙ 2𝜌2

𝑍22

𝐴2
, (4) 

 
where 𝜌𝑖 represents the mass density of the basis material 𝑖, 𝑍𝑖 
and 𝐴𝑖  respectively represent the atomic number and mass 
number of material 𝑖 . The objective of material basis 
decomposition is to get the material-specific coefficient 𝑏1 and 
𝑏2 . In this work, we use post-processing as material 
decomposition method. After we get the decomposition 
coefficients 𝑏1  and 𝑏2 , the electron density 𝜌𝑒  and effective 
atomic number 𝑍𝑒𝑓𝑓  can be calculated by using the following 
formulas. The definition of electron density is just the 
coefficient of compton scattering. It can be represented with 
basis material coefficients as 
 

𝜌𝑒 = 𝑎2 = 2 (𝑏1𝜌1
𝑍1
𝐴1

+ 𝑏2𝜌2
𝑍2
𝐴2
) . (5) 

 
The effective atomic number can be calculated by dividing the 
coefficient of pair production 𝑎3 with the coefficient of 
compton scattering 𝑎2 [3]. 

𝑍𝑒𝑓𝑓 =
𝑎3
𝑎2

= [𝑏1𝜌1
(𝑍1)2

𝐴1
+ 𝑏2𝜌2

(𝑍2)2

𝐴2
] 𝜌𝑒⁄ , (6) 

 
The effective atom number image is prone to have noise 

because there is a 𝜌𝑒  at the denominator in the formula (6). 
This will cause strong noise in area that electron density is 
extremely low or air area where theoretically electron density 
is zero but practically is a extremely small value due to noise 
or discretization error. In practice, the effective atom number 
image is extremely noisy and very sensitive to the beam 
hardening artefacts.  

III. THE EXPERIMENTAL SETTINGS 
To cope with the strong noise and artefacts in effective 

atom number image, we proposed a deep learning framework 
for the calculation of effective atom number image. The 
network was input with three channels. The first two channels 
are low and high energy attenuation reconstructions. The third 
channel is the directly calculated effective atom number image 
using formula (6). The low and high-energy attenuation 
images are related to the effective atom number and have good 
quality of image structure details, which can be used to guide 
the restoration process of the effective atom number image in 
the information flow of neural networks. Similar ideas have 
already existed in some traditional image denoising algorithms, 
such as guided image filtering [4] and HYPR framework [5]. 
Here we try to extend this idea in the framework of deep 
learning. The diagram of the proposed method was illustrated 
in Figure 1. 

 

 
Fig. 1. The schematic plot of the method. 

 

 
Fig. 2. One phantom image sample used for simulation. 

 
For the training data, we have built an in-house simulation 

tool for MeV dual-energy CT imaging. The simulation uses 
Monte Carlo generated 6/9 MeV spectra. The phantom is with 
the shape of XCAT model but is filled with materials that 
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frequently appear in security CT inspection, such as iron, 
carbon, wood and Teflon. The total photon counts for 
simulation is 107 . For the scanning protocol, the angle of 
views is 5701. The number of detector elements is 3701. The 
size of the reconstructed image is 256×256. One sample 
phantom image is shown in Figure 2.  

There are 300 phantom images used for simulation. For the 
simulation process, the input is the spectra and phantom and 
the output is the dual-energy projections. Since we know the 
material that was practically used for simulation, we can 
calculate the real effective atom number image as label. Of the 
300 phantom images, 240 of them were used for training, 30 
of them were used for validation and 30 of them were used for 
validation. 

IV. THE SIMULATION RESULTS 

 
Fig. 3. The first row shows the phantom images. The second row is the 
directly calculated effective atomic number image using formula (9). The 
third row is the network output. The fourth row is the ground truth. 
 

The results of simulation dataset on the testing set were 
shown in Figure 3. The first row shows the corresponding 
phantom images and the legend is the same with that in Figure 
2. The second row shows the directly calculated effective 
atom number image using formula (6). We can see that the 
directly calculated image is severely corrupted by beam 
hardening artefacts. The noise in the air area is also very 
strong because there is a 𝜌𝑒  term at the denominator of 
formula (6). The third row shows the effective atom number 
images that produced by using the proposed deep learning 
framework. We can figure out that the proposed framework 
can significantly reduce beam hardening artefacts and avoid 
the noise in air area well. The result produced by proposed 
deep learning framework does not come with no flaws. Some 
low-contrast structure details were not fully restored compared 
to the ground truth images shown in the fourth row. 

Quantitative analysis was performed on the simulation results. 
Figure 4 and Figure 5 respectively show the calculated Root of 
Mean Square Error (RMSE) and Structural Similarity (SSIM) 
[6] of the simulation results on different materials.  
 

 
Fig. 4. RMSE of the simulation result on different materials. 

 

 
Fig. 5. SSIM of the simulation result on different materials. 

 
We also evaluate the proposed method on manually 

designed phantoms, which are more like real cases in actual 
container CT imaging. Figure 6 and Figure 7 show the truck 
and car phantom.   
 

 
Fig. 6. The truck phantom. 

 

 
Fig. 7. The car phantom. 
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Fig. 8. The results on the manually designed phantoms. The first row shows 
the directly calculated effective atom number images. The second row shows 
network produced images. The third row shows the ground truth images. 
 

 
Fig. 9. RMSE of the results on the manually designed phantoms. 

 
Figure 8 shows the simulation results on manually designed 

phantom images. We can see the strong beam hardening 
artefacts and severe noise in air area in the directly calculated 
effective atom number images in the first row. The second row 
shows the results produced by the proposed neural network. 
We can see that the beam hardening artefacts have been 
significantly reduced and the noise was suppressed well in 

network produced results. The third row shows the ground 
truth images. Figure 9 and Figure 10 show the RMSE and 
SSIM of the results on the manually designed phantoms. 

 
Fig. 10. SSIM of the results on the manually designed phantoms. 

 
Due to the space limit, the experimental results on actual 

commercial MeV dual-energy CT system were not reported in 
this abstract. 
 

V. CONCLUSION  
In this paper, we proposed a deep learning framework for 

calculating the effective atom number image. The network is a 
modified U-net and was input with three channels and output 
with the estimated effective atom number image. The input 
three channels include low and high-energy attenuation 
reconstruction images and directly calculated effective atom 
number image. The network uses the guidance from low and 
high-energy reconstruction to improve the quality of effective 
atom number image. A MeV dual-energy CT simulation was 
performed using XCAT phantom’s shape but filled with 
materials that frequently exist in container CT imaging. The 
simulated dataset was used as training dataset. The proposed 
method was validated on the simulation dataset, including the 
XCAT model and two manually designed phantoms. The 
quantitative analysis indicates the effectiveness of the method. 
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Abstract—Deep learning has achieved great success in many 

medical imaging tasks without explicit solutions. In this work, 
learning method was applied to dual-energy cone-beam CT imag-
ing. We proposed a Residual W-shape Network (ResWnet). 
ResWnet consists of three modules: scatter correction module �, 
material decomposition module � , decomposition denoising 
module �. Both � and � use ResUnet architecture, and this light-
weight model fuses multi-level features, achieving satisfied perfor-
mance with a small number of parameters. � acts on dual-energy 
attenuation projections to reduce the scatter contaminations, and 
� acts on material composition projections to suppress the noise. 
� links the modules � and �, and is used for domain transform 
from attenuation projections to material projections. This process 
could be approximated by polynomials with pre-calibrated pa-
rameters, that is, � is a known operator in proposed network 
with no trainable parameters. This helps to reduce model param-
eters and improve the performance with small training dataset. 
Using public head CT dataset, we simulated dual-energy cone-
beam CT projections and material projections. Proposed ResWnet 
was trained, validated and tested on this simulated dataset, verify-
ing its effectiveness in projection-domain scatter correction and 
low-noise decomposition.  
 

Index Terms—Cone-beam CT, Dual Energy CT, Resnet, Deep 
Learning 
 

I. INTRODUCTION 
ONVENTIONAL CT measures the spatial distribution of 
x-ray linear attenuation coefficient (LAC) [1]. Dual-energy 

CT (DECT) [2], which scans object with two different x-ray 
spectrums, extends the measurement to the energy dimension, 
and the quantitative information provided by DECT facilitates 
various new applications, including but not limited to electron 
density/stopping power calculation [3], synthesis of monochro-
matic images [4], virtual-non-enhanced images [5]. After sev-
eral decades development, DECT has become a powerful tool 
in clinical diagnosis [6]. Another widely used CT is cone-beam 
CT (CBCT) [7]. Taking advantages of high spatial resolution, 
large volume coverage and open structure, CBCT provides flex-
ible image guidance in image-guided radiotherapy [8] and im-
age-guided intervention [9], and the flexible geometry is also 
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well suitable for some dedicated clinical tasks, such as breast 
CT, extremity CT and dental CT [10].  
 Recently, some groups investigated the feasibility of dual-
energy cone-beam CT [11-13] that combines the advantages of 
DECT and CBCT. Our group implemented a rotation filter [14] 
configuration to acquired dual-energy data within single rota-
tion. We further proposed a joint bilateral filtering-based algo-
rithm to suppress the image streaks and amplified decomposi-
tion noise [15]. However, photon scatter, a major issue in CBCT 
imaging [16], was not taken into consideration in our previous 
research. The scatter contamination could severely degrade the 
imaging accuracy, hampering quantitative dual-energy imaging. 
Moreover, according to the dual-energy imaging theory [17], 
image-domain decomposition cannot provide accurate material 
composition, as well as cannot eliminate beam-hardening ef-
fects. Polynomial fitting-based projection-domain decomposi-
tion [18] tackles this issue but it is sensitive to projection noise 
[19].  
 This work aims to perform projection-domain scatter correc-
tion and material decomposition. To this end, we designed a 
Residual W-shape Network (ResWnet), which consists of two 
cascade ResUnets. In order to reduce the model parameters and 
achieve satisfied performance using small training dataset, a 
known decomposition operator was used to link the two 
ResUnet. 

II. METHODOLOGY  

A. Dual-Energy Cone-Beam Projection Model 
The polyenergetic forward model for dual-energy cone-beam 

projections is written as: 

��/� = ��/� ���/�(�) exp �−��(�, �)d�� d� (1) 

where �/ℎ means physical quantities under low/high incident x-
ray spectrum, � represents transmission photons, � represents 
spectrum, � stands for LAC. Due to low scanning dose and 
large volume coverage, CBCT projections suffer high noise 
level (��/� ) and severe scatter contamination (��/� ). Conse-
quently, the actual measurements are modeled as: 
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��/��� = ��/� + ��/� + ��/� (2) 

The superscript �, �  represent noise and scatter, respectively. 
After log normalization, the line integrals with and with scatter 
and noise are: 

��/� = − log ���� �⁄ (�) exp �−��(�, �)d�� d�� (3) 

��/��� = − log ���� �⁄ (�) exp �−��(�, �)d�� d� +
�� �⁄ + �� �⁄

�� �⁄
� (4) 

  

B. Projection-Domain Material Decomposition 
According to the dual-energy CT theory [17], the LAC could 

be decomposed as: 
�(�, �) = ��(�)��(�) + ��(�)��(�) (5) 

��/� is energy-dependent basis function, which could be inter-
preted as mass attenuation coefficient of two basis materials, 
then ��/� is the density of the basis material correspondingly. 
Plug Eq. (5) into Eq. (3), we obtain: 

�� �⁄ = − log ���� �⁄ (�) exp(−��(�)�� − ��(�)��) d�� (6) 

where �� = ∫��(�)d�, �� = ∫��(�)d�. Given incident spectrum 
�� �⁄  and two basis functions ��/�, the material decomposition 
is an inverse problem which recovers ��/� from ��/�. Since no 
explicit expression for this inversion, A commonly used analyt-
ical decomposition method is polynomial approximation [18]: 

�� = � ��,�
�

�,���

�����
� , �� = � ��,�

�

�,���

�����
� (7) 

where ��,�, ��,� are pre-calibrated coefficients using calibration 
phantom. Although this method could achieve high accuracy 
via increasing the polynomial order � , previous research 

revealed that this decomposition is sensitive to projection noise 
[19]. 

C. Residual W-shape Network 
Figure 1 presents the ResWnet Architecture, which consists 

of scatter correction module, material decomposition module 
and decomposition denoising module. For simplicity, projec-
tions represent log-normalized projections hereafter. 
1) Scatter Correction Module (�: ��/��� ↦ ��/�) 

Scatter correction module aims to remove the noise and scat-
ter signal in projections. In this work, scatter correction module 
� employs a Residual U-shape network (ResUnet) [20]. The 
paired ����, ����  are concatenated as two-channel input, which 
then passes six encoder blocks and five decoder blocks succes-
sively. To avoid gradient vanishing and exploding [21] in very 
deep networks, each encoder and decoder block adopts residual 
architecture [22] with a shortcut connection from input to out-
put. Considering that ��/���  and ��/�  share the same structure 
with only numerical difference, a global shortcut connection is 
applied to directly add raw projections to the output projections. 
Different from the conventional Unet, the last two encoder 
blocks in � keep the same number of features to reduce model 
parameters without compromising the performance.  
2) Material Decomposition Module (ℳ:��/ℎ ↦ �1/2):  

Material decomposition module ℳ aims to recover the ma-
terial composition projections  ��/� from the dual-energy pro-
jections ��/�. As discussed in Sec.Ⅱ.B, this inversion could be 
approximated by polynomials functions, and the parameters  
��,�, ��,� could be determined by pre-calibration. Thus, there is 
no need to train a sub network for decomposition. In proposed 
network, ℳ acts as depicted in Eqs. (7). � was set to 4 and 
there is no trainable parameter in this module. 
3) Decomposition Denoising Module (�:��/�� ↦ ��/�):  

Since the module � cannot reduce the noise level to zero and 

Fig. 1. ResWnet architecture. Gray, blue and yellow boxes represent scatter correction, material decomposition, decomposition denoising module, respectively.  
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the polynomial-based decomposition is sensitive to noise, the 
output of ℳ would be noisy. Decomposition denoising module 
� was used for further suppress the noise. Same as the scatter 
correction module, � also employs the ResUnet architecture.  

D. Data Generation and network Training  
To obtain the training, validation and testing datasets, we first 

download 22 head CT scans from public dataset in  
https://wiki.cancerimagingarchive.net/pages/viewpage.ac-
tion?pageId=39879146. These CT images were decomposed 
into four tissues: fat, muscle, 200mg/cc bone and 800mg/cc 
bone using multi thresholds segmentation. We performed poly-
energetic forward projection of each volume using two spec-
trums generated by Spektr [23]. These are the label projections 
��/� for scatter correction. The input projections ��/�

��  were then 
obtained via adding scatter and noise signals generated by 
Monte Carlo simulation. Muscle and 800mg/cc bone were se-
lected as basis materials in this work, and fat and 200mg/cc 
bone were decomposed onto these two basis. The label projec-
tions of material decomposition ��/� were generated by forward 
projecting the muscle and 800mg/cc composition images. Each 
head produced 100 projections, and the projection angles 
equally distributed between 0 and 2�. 

 During the model training, network � were firstly optimized 
by: 

�∗ = argmin
�

������� �⁄
�� � − �� �⁄ �

�
            

+�� �ℳ ����� �⁄
�� �� − ℳ��� �⁄ ��

�
(8)

 

The second term was added because we hope � could not only 
reduce the scatter signal, but also produce a projection noise 
distribution that minimizes the decomposition noise. In this 
work, ��, ��  were set to 0.9 and 0.1, respectively. Using the 
trained network �∗, the network � was finally trained by:  

�∗ = argmin
�

�� �ℳ ��∗��� �⁄
�� ��� − �� �⁄ �

�
(9) 

Parameters of both � and � were optimized by Adam opti-
mizer with an initial learning rate of 0.0004 which decay 8% 

after each epoch. Batch size was set to 4 and training stopped 
after 100 epochs. 

III. RESULTS 
Corrected projections and decomposed material projections 

are obtained after the simulated cone-beam projections pass the 
first and the second ResUnet, respectively. Tomographic im-
ages are reconstructed via conventional  FDK algorithm [24]. 

Figure 1 displays the dual-energy CT images. As in the left 
column, scatter contamination leads to obvious shading arti-
facts on soft tissue. The bone tissue, although clearly visualized, 
has a numerical error more than 10%. Proposed network suc-
cessfully removes the image shading, with preservation of small 
bones and details in intracranial soft tissues. On both soft tissues 
and bone tissues, proposed network reduced the error to less 
than 0.5%.  

Figure 2 displays the material composition images. As dis-
cussed above, polynomial-fitting based decomposition in the 
left column suffers terrible noise, especially on the soft tissue 
images. Without significantly compromising the spatial resolu-
tion, proposed network suppresses the noise of bone composi-
tion and muscle composition images by 32.7% and 65.6%, re-
spectively. Subtle details around nasal cavity are faithfully re-
covered by proposed method as well. 

CONCLUSION AND DISCUSSION 
In this work, we proposed a ResWnet for dual-energy cone-

beam CT imaging. Three modules were designed for scatter 
correction, material decomposition and decomposition de-
noising, respectively. To reduce the model complexity and op-
timize the performance using small training dataset, both two 
trainable modules perform transform between the same domain, 
and the domain transform from attenuation projection to mate-
rial composition projection is achieved by a known operator, 
i.e., polynomial-based decomposition.  Simulation study pre-
liminarily demonstrated the performance of proposed methods 
on scatter correction and low-noise decomposition. 

Fig. 2. Dual-energy CT images. Top and bottom rows are low-energy and high-
energy CT images, respectively. Mean values of two boxed areas are listed be-
low each image. Display window: [0.15,0.25]cm-1  

Fig. 3. Material composition images. Top and bottom rows are bone and muscle 
images, respectively. Std values of two boxed areas are listed below each im-
age. Display window: bone: [0,0.8], muscle: [0.6 1.2] 
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Furthermore, some details lost in the material images, espe-
cially on the soft tissue images, sharp bone edges were also 
blurred to some extent.   More complex model is needed to im-
prove the performance. However, current study only used 2000 
projections for training and validation, which is not capable of 
training more complex models. More cone beam projections 
will be simulated in the next step. Another issue is that current 
simulated projections only account for the primary signal, pho-
ton scatter and noise., and other factors such as off focus and 
detector glare are not considered. More accurate forward pro-
jector is needed to simulate real projections, then trained model 
could be applied to physical measurements acquired in the real 
system.  

REFERENCES 
 
[1] J. Hsieh, Computed tomography: principles, design, artifacts, and 

recent advances. SPIE press, 2003. 
[2] A. Graser, T. R. Johnson, H. Chandarana, and M. Macari, "Dual 

energy CT: preliminary observations and potential clinical 
applications in the abdomen," European radiology, vol. 19, no. 1, p. 
13, 2009. 

[3] L. I. R. Garcia, J. F. P. Azorin, and J. F. Almansa, "A new method 
to measure electron density and effective atomic number using dual-
energy CT images," Physics in Medicine & Biology, vol. 61, no. 1, 
p. 265, 2015. 

[4] L. Yu, S. Leng, and C. H. McCollough, "Dual-energy CT–based 
monochromatic imaging," American journal of Roentgenology, vol. 
199, no. 5_supplement, pp. S9-S15, 2012. 

[5] L.-J. Zhang et al., "Liver virtual non-enhanced CT with dual-source, 
dual-energy CT: a preliminary study," European radiology, vol. 20, 
no. 9, pp. 2257-2264, 2010. 

[6] M.-J. Kang, C. M. Park, C.-H. Lee, J. M. Goo, and H. J. Lee, "Dual-
energy CT: clinical applications in various pulmonary diseases," 
Radiographics, vol. 30, no. 3, pp. 685-698, 2010. 

[7] D. Jaffray and J. Siewerdsen, "Cone‐beam computed tomography 
with a flat‐panel imager: initial performance characterization," 
Medical physics, vol. 27, no. 6, pp. 1311-1323, 2000. 

[8] X. Liang, Y. Jiang, and T. Niu, "Quantitative cone-beam CT 
imaging in radiotherapy: Parallel computation and comprehensive 
evaluation on the TrueBeam system," IEEE Access, pp. 2169-3536, 
2019. 

[9] M. Maybody, C. Stevenson, and S. B. Solomon, "Overview of 
navigation systems in image-guided interventions," Techniques in 
vascular and interventional radiology, vol. 16, no. 3, pp. 136-143, 
2013. 

[10] R. Fahrig, D. A. Jaffray, I. Sechopoulos, and J. W. Stayman, "Flat-
panel conebeam CT in the clinic: history and current state," Journal 
of Medical Imaging, vol. 8, no. 5, p. 052115, 2021. 

[11] R. Cassetta et al., "Fast-switching dual energy cone beam computed 
tomography using the on-board imager of a commercial linear 
accelerator," Physics in Medicine & Biology, vol. 65, no. 1, p. 
015013, 2020. 

[12] L. E. Schyns et al., "Optimizing dual energy cone beam CT 
protocols for preclinical imaging and radiation research," The 
British Journal of Radiology, vol. 90, no. 1069, p. 20160480, 2017. 

[13] L. Shi et al., "Characterization and potential applications of a dual‐
layer flat‐panel detector," Medical physics, vol. 47, no. 8, pp. 3332-
3343, 2020. 

[14] C. Fang, G. Xu, and L. Zhu, "Single scan dual energy cone beam 
CT using a rotating filter," in Medical Imaging 2020: Physics of 
Medical Imaging, 2020, vol. 11312, p. 113123S: International 
Society for Optics and Photonics. 

[15] X. Jiang, C. Fang, P. Hu, H. Cui, L. Zhu, and Y. Yang, "Fast and 
effective single-scan dual-energy cone-beam CT reconstruction and 
decomposition denoising based on dual-energy vectorization," 
Medical Physics, vol. 48, no. 9, pp. 4843-4856, 2021. 

[16] L. Zhu, Y. Xie, J. Wang, and L. Xing, "Scatter correction for cone‐
beam CT in radiation therapy," Medical physics, vol. 36, no. 6Part1, 
pp. 2258-2268, 2009. 

[17] R. E. Alvarez and A. Macovski, "Energy-selective reconstructions 
in x-ray computerised tomography," Physics in Medicine & Biology, 
vol. 21, no. 5, p. 733, 1976. 

[18] P. Stenner, T. Berkus, and M. Kachelriess, "Empirical dual energy 
calibration (EDEC) for cone ‐ beam computed tomography," 
Medical physics, vol. 34, no. 9, pp. 3630-3641, 2007. 

[19] M. Petrongolo, X. Dong, and L. Zhu, "A general framework of noise 
suppression in material decomposition for dual ‐ energy CT," 
Medical physics, vol. 42, no. 8, pp. 4848-4862, 2015. 

[20] Z. Liu and H. Yuan, "An Res-Unet Method for Pulmonary Artery 
Segmentation of CT Images," Journal of Physics: Conference Series, 
vol. 1924, no. 1, p. 012018 (6pp), 2021. 

[21] S. Al-Abri, T. Lin, M. Tao, and F. Zhang, "A Derivative-Free 
Optimization Method With Application to Functions With 
Exploding and Vanishing Gradients," IEEE Control Systems Letters, 
vol. PP, no. 99, pp. 1-1, 2020. 

[22] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for 
image recognition," in Proceedings of the IEEE conference on 
computer vision and pattern recognition, 2016, pp. 770-778. 

[23] J. Punnoose, J. Xu, A. Sisniega, W. Zbijewski, and J. Siewerdsen, 
"spektr 3.0—A computational tool for x‐ray spectrum modeling and 
analysis," Medical physics, vol. 43, no. 8Part1, pp. 4711-4717, 2016. 

[24] L. A. Feldkamp, L. C. Davis, and J. W. Kress, "Practical cone-beam 
algorithm," Journal of the Optical Society of America A, vol. 1, no. 
6, pp. 612-619, 1984. 

 

The 7th International Conference on Image Formation in X-Ray Computed Tomography

265



Dark-Field Imaging on a Clinical CT System:
Modelling of Interferometer Vibrations

Clemens Schmid, Manuel Viermetz, Nikolai Gustschin, Jakob Haeusele, Tobias Lasser, Thomas Koehler,
Franz Pfeiffer

Abstract—X-ray computed tomography (CT) is an invaluable

imaging technique for non-invasive medical diagnosis. However,

for soft tissue in the human body the inherent small difference

in attenuation limits its significance. Grating-based X-ray phase-

contrast is a relatively novel imaging method which detects

additional interaction mechanisms between photons and mat-

ter, namely refraction and small-angle scattering, to generate

additional images with different contrast. The experimental setup

involves a Talbot-Lau interferometer whose susceptibility to

mechanical vibrations hindered acquisition schemes suitable for

clinical routine in the past. We present a processing pipeline to

identify spatially and temporally variable fluctuations occurring in

the first interferometer installed on a continuously rotating clinical

CT gantry. The correlations of the vibrations in the modular

grating setup are exploited to identify a small number of relevant

vibration modes, allowing for an artifact-free reconstruction of a

sample.

I. INTRODUCTION

G
RATING-based X-ray differential phase-contrast [1] uses
the Talbot effect to retrieve additional information about

the sample from the X-ray wavefront. Besides the conventional
attenuation coefficient, the refractive index decrement and ultra-
small-angle scattering as the linear diffusion coefficient [2]
can be obtained. This is achieved by generating a periodic
interference pattern by a modulation grating G1, creating self-
images at specific distances. The “intensity” is the local mean
of the pattern, the relative magnitude of the modulation is
called “visibility”, and the position of the pattern is the “phase”.
These quantities are altered by the presence of a sample, where
attenuation leads to an overall intensity reduction of the pattern,
refraction shifts its lateral position and coherent small-angle
scattering (diffusion) reduces the visibility. As the interference
pattern is usually too small to be resolved directly, an analyzer
grating G2 is placed in front of the detector to sub-sample
the wavefront [3]. One of the gratings is moved in small
increments to obtain the convolution of the G2 modulation
with the interference pattern at multiple positions. From these
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data points the three signals transmission, dark-field contrast,
and differential phase shift can be retrieved. This procedure
is called “phase stepping”. The method was developed with
highly coherent synchrotron radiation and brought to laboratory
setups by including a third grating G0 in the interferometer
[4]. Placed between G1 and a conventional X-ray source, it
transforms the latter into many narrow slit sources which are
mutually incoherent but produce individual G1 interference
patterns adding up constructively at the detector plane. The
combination of G0, G1, and G2 gratings is called a Talbot-Lau
interferometer. Fig. 1 shows a sketch of the experimental setup
of such an interferometer with inverse geometry [5], in which
the sample is placed between G1 and G2.

The first Talbot-Lau interferometer mounted in a continu-
ously rotating clinical gantry is presented in [6]. It is a modified,
commercial CT platform with 80 cm bore size, operated in a
standard clinical scan protocol and with sufficient field-of-view
for imaging a human. The sampling of the stepping curve relies
on vibrations intrinsic to the system, meaning no explicit phase
stepping is performed. These vibrations also cause fluctuations
of the interference pattern (intensity, visibility, and fringe phase)
independently from the sample properties.

For artefact-free reconstruction, it is required to separate
changes of the interference pattern caused by vibrations from
those caused by the sample. The goal of the presented work
is to model the vibration-induced changes in such a way that
this separation is possible.

II. METHODS

The experimental setup of interest in this work is a commer-
cial clinical gantry platform (Brilliance iCT, Philips) which
has been retrofitted with gratings to enable human CT scans
giving dark-field contrast. A schematic of the interferometer
and the expected modes of vibrations is shown in Fig. 1. The
system design is presented in [6]. The gantry is operated in
a continuously rotating manner and the acquisition utilizes
the vibrations intrinsic to the system which generate sufficient
sampling of the stepping curve to perform phase retrieval.

The general approach for separating the changes of the
interference pattern induced by vibrations from those induced
by the sample is to derive a parametric model from an air
scan, which describes the interference pattern generated by the
gratings and its variability. The goal is to minimize the number
of parameters related to the actual vibration state, as they need
to be determined for each subsequent sample scan due to their
limited reproducibility. The process is set up in two steps: In
the first step, polynomial variations for phase and visibility
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Fig. 1. Schematic depiction of the setup. It is an inverse Talbot-Lau
interferometer with the sample placed between G1 and G2. G0 and G1 are
close to the X-ray source and consist of a single grating, respectively. The
G2 consists of multiple smaller gratings which are tiled to cover the whole
detector. The G0-G1 combination vibration creates phase fluctuations globally
on the detector. The individual G2 tile vibration creates additional tile-wise
variations. The focal spot movement creates global intensity and visibility
fluctuations due to shadowing. The interference pattern amplitude is further
reduced by grating movement during an exposure.

are assumed. In a second step, the number of parameters is
reduced using a principal component analysis.”

A. Forward model

The canonical forward model for the measured intensity
using a stepped Talbot-Lau interferometer is [4]

ysimple
pt = Ip (1 + Vp cos (�p + �t)) , (1)

with the expected intensity ysimple
pt in detector pixel

p 2 {1, . . . , P} at stepping position index t 2 {1, . . . , T}, flat-
field intensity Ip, flat-field visibility Vp, flat-field phase �p, and
the global phase shift �t induced by moving one of the gratings
perpendicular to the grating bars. The flat-fields (Ip, Vp,�p)
are intrinsic to the interferometer setup and usually assumed
to be constant during a scan and between scans. In laboratory
setups it is assumed that �t is known and exactly the same for
air scan and sample scan.

As indicated in Fig. 1 we expect various vibrations which
will lead to a pixel- and time-dependent change of the intensity,
visibility, and phase of the interference pattern. The forward
model (1) is extended to

ypt = Ip
�
1 + Ivib

pt

� ⇥
1 + Vp

�
1 + V vib

pt

�
cos

�
�p + �vib

pt

�⇤
,
(2)

with Ivib
pt , V vib

pt , and �vib
pt representing spatial and temporal

fluctuations over p and t.

B. Phase fluctuations

As indicated in Fig. 1 we assume translations and rotations
of the G0 grating, G1 grating, the G2 carrier, and the individual
G2 tiles. We initially treat each G2 tile as an independent
interferometer, so p refers to a pixel behind one G2 tile.

According to [7], the resulting changes of the phase can be
accurately modeled by low-order two-dimensional polynomials
over the detector. We define a two-dimensional polynomial term
P ij = (Pijp) of order i along the width and order j along the
height of the interferometer in pixel p as Pijp = w(p)ih(p)j .

w(p) is the w coordinate along the width and h(p) the h
coordinate along the height of the interferometer in pixel p.
Each term of the polynomial is multiplied with a coefficient
�ijt to give �vib

pt

�vib
pt =

X

i,j

�ijtPijp . (3)

A maximum order of one is chosen along the grating bars (in
j here) and two perpendicular to them (in i here) [7].

C. Visibility fluctuations

According to [8] change in total phase (i.e. the terms inside
the cosine) during an exposure leads to a visibility drop
proportional to the first time-derivative of the total phase.
Besides movement of the gratings, changes of the X-ray
focal spot location can also cause visibility fluctuations as
the gratings are bent to a cylindrical surface and carefully
focused onto the intended source position. It is assumed that
both can be approximated by two-dimensional polynomials.
We formulate a general model for the visibility fluctuation

V vib
pt =

X

i,j

�ijtPijp , (4)

with the maximum polynomial order in i and j doubled in
comparison to (3), such that the first time-derivative of the
phase vibrations can be modeled.

D. Principal vibration components

Instead of modeling each G2 tile independently, it is desirable
to approximate the fluctuations with a small number of
dominant shared modes to reduce the amount of free parameters
per exposure.

We use principal component analysis (PCA) to reduce the
number of parameters. Let X 2 RP⇥T be a data matrix with
P variables in the rows and T observations in the columns. The
singular value decomposition on X is given as X = U⌃V T,
with the orthogonal matrix U 2 RP⇥P , the diagonal matrix
⌃ 2 RP⇥T , and the orthogonal matrix V 2 RT⇥T . ⌃
contains the singular values of X on its diagonal which are
defined to be in descending order. The rows of ⌃V T are
the “principal components” of X and the columns of U are
the “principal directions” of X , i.e. the magnitude of each
principal component per observation. Let the function PCA be
defined as acting on a matrix X and returning ⌃V T and UT:
PCA(X) ! (⌃V T,UT).

To apply PCA on the combined fluctuations from all G2 tiles,
their terms V vib

pt and �vib
pt are concatenated along the width of

the interferometer and the index p is changed from locally on
a G2 tile to globally on the detector. With this definition of
PCA, the joint principal components B = (Bkp) and C = (Ckp)
(both 2 RP⇥T ) over all G2 tiles of the visibility and phase
fluctuations are determined via

PCA(V vib
pt ) ! (Bkp,�

?
kt) ; PCA(�vib

pt ) ! (Ckp, �?
kt) . (5)

The coefficients �?
kt and �?

kt correspond only to the magnitude
of principal component k at exposure t, not to the original
polynomial model.
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Fig. 2. The most dominant principal components of the spatial fluctuations in intensity, visibility, and phase (left). All images are scaled to [-1, 1]. Gray
vertical lines correspond to G2 tile boundaries. The size of each principal component is equal to the number of detector columns times rows. The number of
principal components used for processing is determined by the scree plots of the respective (normalized) eigenvalues of XTX obtained by the PCA (right).
Two dominant components in intensity and visibility are identified based on the first “knee” in the scree plots. For the phase channel there is no distinct knee
and a number of four principal components are chosen based on the impact on the reconstruction of the refractive index decrement. The vibrations in visibility
and phase are a combination of global and tile-wise characteristics.

The fluctuations can now be approximated with a reduced
number B? and C? of modes:

V vib
pt ⇡

B?X

k=1

�?
ktBkp ; �vib

pt ⇡
C?X

k=1

�?
ktCkp . (6)

The dominant modes of the intensity fluctuations
A = (Akp) 2 RP⇥T are determined by applying PCA
on the normalized residuum

Ivib
pt =

ŷpt
ypt

� 1 ; PCA(Ivib
pt ) ! (Akp,↵

?
kt) , (7)

with the measured values ŷpt and the predicted signal ypt
including only visibility and phase fluctuations. Again we
approximate Ivib

pt with a reduced number A? of modes:

Ivib
pt ⇡

A?X

k=1

↵?
ktAkp . (8)

III. RESULTS

We show the results from processing an air scan with the
proposed PCA method in Fig. 2. The number of eigenvalues of
XTX before the first “knee” in the scree plots of the principal
components in intensity and visibility are used as A? and B?,
i.e. the number of vibration modes to keep for processing a
sample scan. Because of the lack of a distinct knee in the phase
channel, the number of modes C? are increased until there is
no noticeable difference in the reconstructed refractive index
decrement. We obtain A? = B? = 2 and C? = 4. Especially

the phase vibrations show tile-wise behavior, while substrate
structure is visible in the intensity. The vertical gray lines
correspond to the gaps between G2 tiles.

The main goal of the vibration modeling is to facilitate
artefact-free reconstruction. This requires a simultaneous
estimation of vibration parameters and sample parameters,
which is in general a difficult task and described in a different
paper [9]. Here, we disentangle these two estimations by the
following approach for demonstrating the accuracy of the
model: The selected sample is small so that only the central
part of the detector is covered. This allows us to fit the vibration
parameters robustly by a least-squares fit to the outer parts of
the detector for each exposure. Subsequently, object parameters
are estimated using a sliding-window phase-retrieval [10].

The vibration modes in Fig. 2 are used on the scan of an
object consisting of a Polyoxymethylene (POM) cylinder of
5 cm diameter and six falcon tubes with 3 cm diameter each,
filled with wool at three different levels of dampness, chocolate
chips, water, and neoprene, respectively.

One scan consists of 2400 exposures over a full 360� gantry
rotation which takes 1 s. The X-ray tube is operated at 80 kVp
and 550 mA. A subsequent air scan is used with the proposed
reference processing method to extract the PCA vibration model
shown in Fig. 2.

The results are compared with a simplified pipeline in which
fluctuations in all channels are only modeled with polynomials
Pijp up to second order along width and height of the whole
detector. Also in intensity, polynomials P replace the dominant
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Fig. 3. Reconstruction of a phantom in attenuation coefficient (top), linear
diffusion coefficient (middle), and refractive index decrement (bottom) with
a global polynomial fluctuation model (left) in all channels and principal
vibration components obtained via the proposed pipeline (right). All channels
are free of artifacts when processed with the PCA model as shown in (B),
(D) and (F). The materials of the cylinders are (clock-wise starting with the
large cylinder) Polyoxymethylene (POM), dry wool, moist wool, soaked wool,
chocolate chips, water, and neoprene. No beam-hardening correction is applied
which leads to POM and water showing a non-zero diffusion coefficient. The
windowing is (A), (B): [-0.05, 2.2] ⇥ 10-1 cm-1; (C), (D): [-2, 8] ⇥ 10-2 cm-1;
(E), (F): [-4, 2] ⇥ 10-1 cm-1. Small window in (A), (B): [-3, 3] ⇥ 10-3 cm-1.

components A from PCA. This simplified pipeline does not
handle tile-wise vibrations nor the intricate details of the
intensity fluctuations shown in Fig. 2.

We show the central slices of the resulting volumes in
attenuation, diffusion coefficient [11], and refractive index
decrement [12] in Fig. 3. The reconstruction is performed via
filtered back-projection [13]. The simplified pipeline using
global polynomials suffers from artifacts in all channels.
The attenuation and linear diffusion coefficient show roughly
circular fringe artifacts. The refractive index decrement is
dominated by concentric rings and a bright/dark blob structure
in the center. None of these artifacts appear in the volumes
reconstructed with vibrations from PCA.

IV. CONCLUSION

We proposed a processing scheme to identify and correct
for vibrations of a Talbot-Lau interferometer mounted inside a
rotating clinical CT gantry. The tile-wise vibrations are coupled
by applying principal component analysis (PCA) and only
the first few dominant components are used for processing
a sample scan. In the intensity channel dominant fluctuation
components are identified by PCA on the normalized residual.
The resulting vibration model has few parameters per exposure
for the intricate fluctuations, still allowing for an artifact-free
reconstruction of a sample. A comparison with a vibration
model using global polynomial fluctuations in all channels
shows that they are not sufficient to capture the system’s
dynamics and lead to artifacts in the reconstruction of a sample.
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Abstract— Based on well-established X-ray physics in computed 

tomography (CT) imaging, the spectral responses of different 
materials contained in lesions are different, which brings richer 
contrast information at various energy bins. Hence, obtaining the 
material decomposition of different tissue types and exploring its 
spectral information for lesion diagnosis becomes extremely 
valuable. The lungs are housed within the torso and consist of 
three natural materials, i.e., soft tissue, bone, and lung tissue. To 
benefit the lung nodule differentiation, this study innovatively 
proposed to use lung tissue as one basis material along with soft 
tissue and bone. This set of basis materials will yield a more 
accurate composition analysis of lung nodules and benefit the 
following differentiation. Moreover, a corresponding machine 
learning (ML)-based computer-aided diagnosis framework for 
lung nodule classification is also proposed and used for evaluation. 
Experimental results show the advantages of the virtual 
monoenergetic images (VMIs) generated with lung tissue material 
over the VMIs without lung tissue and conventional CT images in 
differentiating the malignancy from benign lung nodules. The gain 
of 9.63% in area under the receiver operating characteristic curve 
(AUC) scores indicated that the energy-enhanced tissue features 
from lung tissue have a great potential to improve lung nodule 
diagnosis performance. 

 
Index Terms—Multi-energy CT reconstruction, Computer-

aided diagnosis, Machine learning, Malignant and benign 
differentiation 

I. INTRODUCTION 
N the conventional single energy CT, different tissue types 

can be represented by the linear attenuation coefficients 
(LACs). LACs are not unique for any given material and 
depend on the photon energies interacting with the material and 
the mass density of the material. Therefore, two different tissues 
may share similar intensity values, making it challenging to 
perform material decomposition based on the segmentation 
with the intensity values alone. Compared to the conventional 
single energy CT, additional measurements with a second or 
more energy (called multi-energy) allow the identification of 
two or three materials. Multi-energy CT also enables multiple 
materials (composition) analysis within the same region of 
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interest, e.g., lesion. Based on well-established X-ray physics 
in CT imaging, the spectral responses of different materials 
contained in lesions are different, which brings richer contrast 
information at different energy bins. Hence, obtaining the 
material decomposition of different tissue types and exploring 
its spectral information for lesion diagnosis becomes extremely 
valuable.  

The lungs as the primary organs of the respiratory system are 
essential for humans to breathe. Lung cancer is the leading 
cause of cancer death in the US. According to the report from 
World Health Organization, there are around 2.20 million 
deaths in 2020. CT has been recommended as an advanced non-
invasive tool for cancer screening in the early stage, which 
provides fully three-dimensional (3D) information for 
volumetric-based lesion detection. Torso CT images consist of 
three natural materials, which are lung, bone, and soft tissue. To 
benefit the lung nodule differentiation, this study innovatively 
proposed to use lung tissue as one basis material along with soft 
tissue and bone. This set of three basis materials will yield a 
more accurate composition analysis of lung nodule and benefit 
the following differentiation.  

In dual-energy CT (DECT), the scanned object can be 
decomposed into two basis materials (e.g., bone and soft tissue) 
with two datasets, one at high and the other at low energy [1]. 
To analyze more than two materials, one straightforward 
strategy is to obtain an additional measurement at one more 
energy, which we called triple energy CT (TECT). And it could 
provide three decomposed materials reconstructed from the 
three datasets. In the previous application, when using triple 
spectrums to decompose three materials, two materials are 
natural and the third is usually injected contrast agent (e.g., 
bone, soft tissue, and iodine) [2]. In this study, we use triple 
spectrums to decompose all-natural tissues: lung tissue, soft 
tissue, and bone. In addition, we also explore using two 
spectrums to decompose three materials, which can further 
lower the radiation dose. This paper will describe the material 
decomposition with the novel set of basis materials in detail. 
Moreover, a machine learning (ML)-based computer-aided 
diagnosis (CADx) framework for lung nodule classification is 
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also proposed, which is based on the data-driven deep learning-
based convolutional neural network (DL-CNN) method. 

The remainder of this paper is organized as follows.  Section 
II will describe the material decomposition method and the 
proposed computer-aided diagnosis framework. Section III 
presents the experiment design and results.  Discussion and 
conclusions are drawn in Sections IV and V. 

II. METHODS 
A. Material Decomposition 

Considering the material composition, a linear attenuation 
coefficient (LAC) can be represented by 𝑅  types of basis 
materials, e.g. soft tissue, bone, and so on.  The LAC function 
𝜇𝑗(𝜀) at the 𝑗𝑡ℎ pixel of the image is decomposed as[3]: 

𝜇𝑗(𝜀) = ∑ 𝑚𝑟(𝜀)𝜌𝑟𝑗
𝑅
𝑟=1 ,                        (1) 

where 𝜌𝑟𝑗  denotes the density of material 𝑟  at the 𝑗𝑡ℎ  pixel, 
𝑚𝑟(𝜀) represents the mass attenuation coefficient of material 𝑟 
at energy 𝜀. 

By the use of DECT, two basis materials of bone and soft 
tissue are usually considered as the basis materials in the 
material composition. From the decomposed basis materials of 
bone and soft tissue, a series of virtual monoenergetic images 
(VMIs) can be generated. As lungs become a major clinical 
concern, where the lung tissue has a distinct feature from the 
soft tissue, it is desirable to consider the lung tissue as a basis 
material in addition to the bone and soft tissue. This is the major 
motivation of this study. The material decomposition can be 
performed directly in the sinogram data domain or the image 
domain after the images are reconstructed from the sinogram 
data, where the image reconstruction is usually performed by a 
linear operator, such as FBP. 
1) Image-domain material decomposition 

Regarding the material decomposition in the image domain, 
Eq. (1) can be rewritten as, 
𝜇𝑗(𝜀) = ∑ 𝑚𝑟(𝜀)𝜌𝑟𝑗

𝑅
𝑟=1 = ∑ 𝑚𝑟(𝜀)𝜌𝑟𝑓𝑟𝑗

𝑅
𝑟=1 = ∑ 𝜇𝑟(𝜀)𝑓𝑟𝑗

𝑅
𝑟=1 ,             

(2) 
where 𝜌𝑟  is the density of the material 𝑟  and 𝜇𝑟(𝜀)  denotes 
linear attenuation coefficient of material 𝑟 at energy 𝜀. Notation 
𝑓𝑟𝑗 is a unitless tissue fraction that quantifies the contribution 
of material 𝑟 to attenuation in pixel 𝑗, which needs to be solved 
by the image domain decomposition methods. Theoretically, 
more unknowns need more equations to find the solution.  For 
a conventional single energy spectral CT image, we only have 
one FBP CT image.  For DECT, we have two FBP images from 
each of the two energy spectral data, respectively. From the two 
FBP images, we can obtain two basis material images.  For 
TECT, e.g. 60kVp, 100kVp, and 140 kVp, we have three FBP 
images correspondingly. 

By setting 𝑅 = 3 for Eq. (2), we have three linear equations 
for three basis materials with the triple energy CT FBP images 
𝜇𝐸𝑞  (Tube voltage = 𝐸𝑞, 𝑞 = 1,2,3) as follows [4], 

𝜇𝑗
𝐸1 = 𝜇1(𝐸1

𝑒𝑓𝑓)𝑓1𝑗 + 𝜇2(𝐸1
𝑒𝑓𝑓)𝑓2𝑗 + 𝜇3(𝐸1

𝑒𝑓𝑓)𝑓3𝑗,     (3a) 

𝜇𝑗
𝐸2 = 𝜇1(𝐸2

𝑒𝑓𝑓)𝑓1𝑗 + 𝜇2(𝐸2
𝑒𝑓𝑓)𝑓2𝑗 + 𝜇3(𝐸2

𝑒𝑓𝑓)𝑓3𝑗,     (3b) 
𝜇𝑗

𝐸3 = 𝜇1(𝐸3
𝑒𝑓𝑓)𝑓1𝑗 + 𝜇2(𝐸3

𝑒𝑓𝑓)𝑓2𝑗 + 𝜇3(𝐸3
𝑒𝑓𝑓)𝑓3𝑗,     (3c) 

where 𝐸𝑞
𝑒𝑓𝑓  denotes the effective energy of the corresponding 

X-ray spectrum at each selected tube voltage 𝐸𝑞 . 𝜇1(𝐸𝑞
𝑒𝑓𝑓) , 

𝜇2(𝐸𝑞
𝑒𝑓𝑓) , and  𝜇3(𝐸𝑞

𝑒𝑓𝑓)  describes the linear attenuation 
coefficient for basis material soft tissue, bone, and lung tissue 
at each effective energy, respectively.  

Hence, the fractions 𝑓  of each material can be solved by 
minimizing the mean squared difference between the calculated 
attenuation coefficients with (3a)-(3c) and the reconstructed 
attenuation coefficients at each energy as follows, 

∅(𝑓) = ∑ ∑ (𝜇𝑗
𝐸𝑞 − ∑ 𝜇𝑟(𝐸𝑞

𝑒𝑓𝑓)𝑓𝑟𝑗
3
𝑟=1 )2𝐽

𝑗=1
3
𝑞=1 ,          (4) 

Similar to  [4], a grid search method can be utilized to optimize 
the objective function (4) to obtain the decomposed three 
materials. 

B. Virtual Monoenergetic CT images Generation 
From the three basis material images obtained by the image-

domain or pre-log data domain, a series of VMIs at selected 𝑛 
energies are generated with the corresponding tissue mass 
attenuation coefficients as follows. For example, we can choose 
𝑛 = 10 with the energy values of 5, 8, 10, 12, 15, 20, 25, 30, 
35, 40 and 45 keV, where the HU values in this energy range of 
5-45 kVp have the maximum differences among the tissues to 
generate the tissue contrast features for CADx.  Hence, the 
virtual monoenergetic CT images or VMIs in the range can be 
expressed by, 

𝜇𝑗
𝑣𝑖𝑟𝑡𝑢𝑎𝑙(𝜀) = ∑ 𝜇𝑟(𝜀)𝑓𝑟𝑗𝑟 ,                               (5) 

where 𝜀 = [5,8,10,15,20,25,30,35,40,45], 𝜇𝑟(𝜀) represents 
the linear attenuation coefficient of 𝑟 tissue type. 

C. Machine Learning (ML)-based CADx 
1) Deep learning (DL)-based CNN model: 

For the DL-based model, a 3D CNN architecture is designed, 
which has a multi-channel input with each energy image, as 
shown in Fig. 2. We first use four convolutional layers to extract 
the features, which are then pooled together with a global 
average pooling (GAP3D) layer such that the final features have 
a global receptive field.  Then, we use a fully connected (FC) 
layer-based classifier to distinguish the malignant and benign 
lesions.  Specifically, each convolutional layer consists of three 
operators: 3D convolution (Conv3D), 3D average pooling 
(Avgpooling3D), and rectified linear unit (ReLU).  We adopt 

 
Fig. 2:  The 3D CNN architecture of CADx for lung nodule diagnosis. 
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the binary cross-entropy loss to train the model. The details of 
the CNN model are listed in Table I. 

Based on the above model, the final classification result will 
show the lung nodule diagnosis performance with the explored 
lung tissue material spectral information in VMIs. 

III. EXPERIMENTS AND RESULTS 

A. Datasets 
114 patients were scheduled for CT-guided lung nodule 

needle biopsy with X-ray exposure of clinical dose at 120 kVp, 
100 mAs in Stony Brook University Hospital, USA.  With the 
pathological report, a total of 114 lung nodules with 50 benign 
and 64 malignant were confirmed. Each CT scan covers a 
portion of the patient's entire chest volume, resulting in 100–
200 image slices of 512 × 512 array size, and each image voxel 
is nearly cubic with an edge size of 1 mm. 

B. Multi-energy CT Scan Simulation 
In this study, we simulated the DECT and TECT scans with 

the above dataset. First, each slice image in the datasets was 
segmented as basis materials (soft tissue/bone for DECT, soft 
tissue/bone/lung tissue for TECT) with a simple threshold 
method and transferred the linear attenuation coefficient to 
density by dividing the corresponding material linear 
attenuation coefficient at 75 keV, which is the equivalent energy 
of 120 kVp X-ray spectrum. Hence, the material fractions 
images 𝑓𝑟 were obtained. Next, a poly-energetic forward model 
was used to simulate the DECT scan at 80/140 kVp and TECT 
scan at 60/100/140 kVp by (19): 
 𝑁̄𝑤𝑖 = ∑ 𝑆𝑤𝜀 (𝜀) 𝑒𝑥𝑝(−∑ 𝐴𝑖𝑗𝑗 ∑ 𝜇𝑟(𝜀)𝑓𝑟𝑗𝑅

𝑟=1 ). (6) 
An equidistant fan-beam geometry was assumed for a DECT 

scanner.  The distance from the X-ray source to the isocenter is 
570 mm and the distance from the source to the detector (SDD) 
is 1040 mm. 1160 projections from a full angle were acquired 
with 672 detector elements with a width of 1.4 mm per element.  
The X-ray spectrum at 60-, 80-, 100- and 140-kVp were 
generated by the SpekCalc software with 3mm Al filtration. 
Then, the multi-energy CT scan simulation was done. In this 
paper, all the reconstructed basis material fraction image slices 
have an array size of 512 × 512 with each pixel in the image 
slices covering an area of 1 mm × 1 mm.  The value of 𝛽 in the 
cost function (14) was empirically set to be 0.5 for the pre-log 
reconstruction. 

C. CNN Training Implementation 
For the input to the CNN-based implementation, we first 

converted each n-energy data with the resolution of 64×64×64 
voxels.  And these converted energy volumetric images were 
fed into the multi-channel 3D CNN as shown in Fig. 4 for 

training.  And the target is the results from the pathological 
reports of the malignant and benign lesions.  The k-fold (k=5) 
cross-validation was implemented to test the robustness and 
avoid data bias. The procedure is as follows.  We firstly shuffled 
the dataset randomly and split it into 5 folds.  For each fold, we 
randomly divided the dataset into training and testing datasets.  
And then we trained a model on the training dataset and 
evaluated it on the testing dataset. Finally, we retained the 
evaluation score for each fold and the average score was 
calculated.  In this study, the CNN model was trained for 100 
epochs with a learning rate of 0.001 and batch size of 8 using 
Adam optimizer [5]. 

D. Lung tissue material decomposition  
Fig.4 shows the lung tissue material decomposition images 

from the TECT in the image domain. The result indicates that 
lung tissue can be reconstructed as one basis material with 
multi-energy CT data.  

E. Classification Performance 
With the three decomposed material fraction images from the 

above, the contrast-enhanced 10-energy VMIs data are 
generated by (18) and incorporated into the CADx part of our 
proposed ML-based methods. Meanwhile, to further verify the 
significance of lung tissue as the basis material, the traditional 
decomposed materials (soft tissue/bone) from DECT are also 
adopted to generate the VMIs for ML-based CADx. The 
conventional single CT data is also applied to CADx for 
comparison. For simplicity, we define the material 
decomposition methods in the image domain of  DECT as DE-
FBP, the corresponding methods of TECT as TE-FBP. To 
illustrate the effectiveness and the generality of our ML-based 
CADx, the AUC of each dataset was calculated. 
1) DL-based CNN model 

For the DL-based CNN model, the conventional CT and the 
enhanced 10-energy VMI data w/ and w/o lung tissue basis 
material generated by different multi-energy data were 
incorporated into our 3D-CNN network, respectively. We 

  
Fig. 4:  Axis slice of CT images in one dataset: (a) 60 kVp, (b) 100 kVp, (c) 
140kVp. Results of TECT image domain decomposition: (d) soft tissue, (e) 
bone, (f) lung tissue. CT images display window: [0,0.5] cm-1, Tissue fraction 
images display window: [0,1.2].  

TABLE II:  MEAN AUC VALUES FOR DL-BASED CNN DIAGNOSIS MODEL  
Data METHOD Lung tissue  

as basis 
material 

AUC 

Conventional CT (120kVp) FBP - 59.54 
DECT images DE-FBP 8 65.53 
TECT images TE-FBP ✓ 69.17 
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calculated the mean values of AUC scores, which are shown in 
Table II.  We have the following observations. First, the CADx 
outcome from the conventional CT is consistent with the 
expectation that all the nodules are undifferentiable to be benign 
or malignant by human experts who recommended biopsy on 
these nodules.  By the reports of their biopsies as the ground 
truth, the CADx with 59.54% AUC score performed slightly 
better than human experts, whose score would be random or 
50%.  Using the outcome from the conventional CT as the 
baseline, the CADx outcome from multi-energy CT data 
achieves higher mean AUC values than the conventional 120 
kVp data, which verifies the effectiveness of the contrast 
enhancement brought from the VMIs. Second, by considering 
the lung tissue as a basis material, the results show that the mean 
AUC values improved 3.64% for lung nodule characterization 
in comparison with the image-domain method by multi-energy 
CT. The main reason why the VMIs with lung tissue perform 
well is that the lung tissue has a distinct feature from the soft 
tissue and brings richer information for DL-based diagnosis. 

IV. DISCUSSION 
In this study, we proposed to use lung tissue as one basis 

material along with soft tissue and bone with the multi-energy 
CT material decomposition for lung nodule characterization. 
The proposed CADx framework with lung tissue basis material 
fully utilizes the contrast enhancement at each energy bin and 
improves the diagnosis performance. However, there are 
opportunities for further refinements. First, how the 
decomposed image quality affects the CADx performance 
would be a very interesting future research. Second, for the 
VMIs generation, we selected 10 energies as an example. 
Ideally, when the basis material fraction images are well 
reconstructed, an arbitrary number of VMIs could be generated.  
Hence, it remains an interesting topic to analyze the effect of 
the selected energy number on the CADx performance and 
optimize the range and number of energies in the range. Third, 
the feature quality of enhanced energy images varies among 
each other and not all of them are guaranteed to contain 
meaningful features to improve the CADx performance. 
Exploring the meaningful features from the VMIs and 
developing an adaptive learning model should also be further 
investigated as future work. Finally, clinical evaluations with 
more human lung data sets are needed to test the robustness of 
the proposed method. 

V. CONCLUSIONS 
In conclusion, this study proposed an end-to-end computer-

aided diagnosis framework for lung nodule characterization by 
multi-energy CT, which fully utilizes contrast enhancement on 
lung tissue as a basis material in reconstruction. Experimental 
results demonstrated that the lung tissue is able to be 
decomposed by multi-energy CT data with either the image-
domain. The results also indicated the advantages of the VMIs 
generated with lung tissue material over the VMIs without lung 
tissue and conventional CT images in ML-based lung nodule 
classification. 
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Abstract—Phase-contrast CT (PCCT) is an emerging tool
that has found numerous applications, including applications
to preclinical imaging. There remains a need for reducing the
imaging time in current PCCT. One approach to reducing
imaging time is to reduce the scanning angular range in PCCT.
However, accurate image reconstruction from data collected over
a limited angular range (LAR) is challenging because it poses a
problem of accurate inversion of the PCCT imaging model that
can be highly ill-conditioned in LAR scans. In this work, we con-
duct an investigation of accurate image reconstruction through
inverting the imaging model for LAR scanning configurations in
propagation-based (PB) PCCT. We have developed a directional-
total-variation (DTV) algorithm for image reconstruction from
knowledge of the discrete X-ray transform (DXT) over a LAR
for CT imaging. Observing the mathematical similarity between
the DXT in CT and the imaging model in PB-PCCT, we develop
and tailor the DTV algorithm for image reconstruction from LAR
data in PB-PCCT. Results of our study show that the tailored
DTV algorithm can yield image reconstruction with reduced LAR
artifacts that can be observed otherwise in images reconstructed
by use of the existing algorithm in PB-PCCT imaging. For a
given LAR, it can be divided into sub arcs of LARs. We also
investigate a scanning configuration with two orthogonal arcs
of LARs separated by 90�, and observe that the two-orthogonal-
arc scanning configuration may allow image reconstruction more
accurately than does a single-arc scanning configuration even
though the total angular ranges in both scanning configurations
are identical. While boundary images can be reconstructed
from data, we develop the DTV algorithm for reconstruction
of the image, i.e., the refractive index distribution, instead of
its boundary image from data in PB-PCCT. Once the image is
obtained, the Laplacian operator can be applied to it for yielding
its boundary image.

Index Terms—limited-angular range (LAR), directional total
variation, primal-dual algorithm, phase contrast CT (PCCT)

I. INTRODUCTION

Physical quantities such as the refractive index within an
object scanned can be estimated in phase-contrast CT (PCCT)
for yielding unique contrast mechanisms differing from that in
conventional CT. It is believed that PCCT may hold potential
value for certain preclinical and clinical applications. However,
a number of issues need to be addressed adequately before its
wide adoption in preclinical and clinical applications. One of
the practical constraints that PCCT faces is its considerably
long imaging time. There exist studies on the minimization of
the total imaging time by reducing the number of scanning
views while maintaining the imaging time unchanged at each
view in PCCT [1]–[3]. In this study, we investigate a different

approach to reducing the imaging time in PCCT by lowering
its scanning angular range to a limited angular range (LAR)
that is less than the full angular range of ⇡. A PCCT scan
over a LAR can readily be implemented in PCCT without
invoking any hardware changes simply by stopping X-ray
illumination and data collection beyond the LAR prescribed.
However, accurate image reconstruction from such LAR data
is challenging because it poses a problem of accurate inversion
of the PCCT imaging model that can be highly ill-conditioned
under LAR conditions.

In this work, we conduct an investigation of accurate
image reconstruction from LAR data by inverting the imaging
model in propagation-based (PB) PCCT. We have developed
a directional-total-variation (DTV) algorithm [4] for image
reconstruction from knowledge of the discrete X-ray transform
(DXT) over a LAR for CT imaging. Observing the mathe-
matical similarity between the DXT in CT and the imaging
model in PB-PCCT, we develop and tailor the DTV algorithm
for image reconstruction from LAR data in PB-PCCT. For a
given LAR, it can be divided into sub arcs of LARs. We thus
also investigate a scanning configuration with two orthogonal
arcs of LARs [5]–[7], which are of equal angular ranges but
their centers are separated by 90�. For simplicity, we refer to
a configuration with two orthogonal arcs of LARs as the two-
orthogonal-arc configuration, whereas the configuration with
a single arc of LAR as a single-arc configuration.

In many of the existing works in PB-PCCT, algorithms
have been developed only for reconstruction of the image
boundaries, as shown in Fig. 1b, instead of the image itself in
Fig. 1a. Unlike these existing algorithms, the DTV algorithm
developed in this work reconstructs the image, i.e., the refrac-
tive index distribution, from LAR data in PB-PCCT. From the
reconstructed image, one can then readily obtain the boundary
image.

II. MATERIALS AND METHODS

A. Imaging model in PB-PCCT

In PB-PCCT, assuming the object’s attenuation of X-ray is
weak, the 2D imaging model can be expressed as [1], [8]

g = H�f , (1)

where vector g of size M denotes model data in PB-PCCT;
vector f of size N denotes a 2D discrete image of the refractive
index within the imaged object; � = @2

@x2 +
@2

@y2 is the discrete
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Fig. 1. (a) A numerical, realistic plant-seed phantom, i.e., truth image f [truth],
from which PB-PCCT data are generated. Display window: [0.0, 5⇥10�7]
arbitrary units (AU); (b) a boundary image generated by applying the discrete
Laplacian operator to the plant-seed phantom in panel (a). Display window:
[-5⇥10�8, 5⇥10�8] AU; (c) single-arc configuration with LAR of ↵⌧ , and
(d) two-orthogonal-arc configuration in which the two sub-arcs of LARs are
symmetric, respectively, relative to the y- and x-axis, covering equal angular
ranges ↵1 and ↵2, where ↵⌧ = ↵1 + ↵2.

Laplacian operator on the image space; and system matrix
H of size M ⇥ N represents a discrete Radon transform
from image space to data space. In this work, element hij

of H denotes the intersection between ray j and pixel i.
For given H corresponding to a LAR scanning configuration
discussed below, we use Eq. (1) to generate model data g
from numerical, realistic plant-seed phantom f on a grid of
190⇥ 200 square pixels of size 0.12 mm in Fig. 1a [9].

B. Scan configuration

We consider a single-arc and a two-orthogonal-arc scanning
configurations [7], as shown in Figs. 1c and 1d, with a parallel-
beam projection geometry, and the discrete Radon transform
is used as the imaging model in PB-PCCT. We also assume
that the former covers LAR of ↵⌧ and that the latter includes
two sub-arcs of LARs of ↵1 and ↵2, symmetric relative,
respectively, to the y- and x-axis. In the work, without loss
of generality, we consider the case with ↵⌧ = ↵1 + ↵2 and
↵1 = ↵2. Furthermore, the detector array consists of 512
bins of size 0.046 mm. We generate noiseless data from the
plant-seed phantom (i) with the single-arc configurations of
↵⌧ = 60�, 90�, 120�, and 150�, with an angular interval of
0.5� per view, and (ii) with the two-orthogonal-arc configu-
rations of 2↵1 = 2↵2 = 60�, 90�, 120�, and 150�. Based
upon the noiseless data, we also generate noisy data which is
equivalent to adding Gaussian noise to the intensity data [8],
and the Gaussian noise has zero mean and standard deviation
of 1.5% of the intensity for each detector bin.

C. Directional-TV reconstruction algorithm

Image reconstruction in PB-PCCT is equivalent to inverting
the imaging model in Eq. (1). It is well-known that, while ex-
isting analytic algorithms can accurately reconstruct boundary
images from data collected over FAR of 180�, they cannot
yield accurate boundary images nor images from data collected
over LARs that are considerably lower than 180�. Instead,
we formulate the reconstruction problem from LAR data in
PB-PCCT as an optimization problem and tailor the DTV
algorithm to obtain images through solving the optimization
problem.

We consider a convex optimization program containing a
data-`2-norm fidelity and DTV constraints along the x- and
y-directions, which is given by [4]

f? = argmin
f

�(H�f � g[M]) s.t.  (f) (2)

where vector g[M] of size M denotes discrete measured data;
�(H�f�g[M]) denotes the `2-norm of the difference between
H�f and measured data g[M];  (f) is the constraint term in
the optimization program which includes three components:
image DTV constraint along x-axis, image DTV constraint
along y-axis, and image non-negativity constraint; the DTV
constraint applies an upper bound on an image DTV, which
is defined as `1-norm of a vector obtained by calculating two-
point differences of f along either x- or y-axis; and the image
non-negativity constraint is to enforce non-negative values for
each pixel in the image. In many of existing works [1], [10],
[11], algorithms were developed largely for inverting H in the
imaging model, thus yielding the boundary image �f , instead
of image f itself. In this work, we develop and tailor the DTV
algorithm to solve Eq. (2) directly for obtaining image f . Once
image f is obtained, one can readily apply the Laplacian to it to
obtain a boundary image, as shown in Fig. 1b. For references,
we also reconstruct images by using the filtered-backprojection
(FBP) algorithm [8], [12].

For evaluating image reconstructed, we first perform visual
inspection of the images reconstructed. Additionally, we also
perform a quantitative evaluation of image reconstructed from
data over LAR by using the normalized root-mean-square-
error (nRMSE) metric

nRMSE(f [recon]) = ||f [recon] � f [truth]||2/||f
[truth]

||2, (3)

where f [recon] and f [truth] denote the reconstructed and truth
images. Metric nRMSE provides measures of quantitative
accuracy between the reconstructed and truth images. We
note that nRMSE(f [recon]) approaches 0 as f [recon] approaches
f [truth].

III. RESULTS

A. Reconstruction from noiseless data

We first conducted image reconstruction, as shown in Fig.
2, by using the DTV and FBP algorithms from noiseless
data with the two-orthogonal-arc and single-arc configurations
over total angular ranges ↵⌧ = 60�, 90�, 120�, and 150�.
In this case, measured data and model data are identical,
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Fig. 2. Images reconstructed by use of the FBP (rows 1&3) and DTV (rows 2&4) algorithm from noiseless data for single-arc configurations (rows 1&2)
of ↵⌧ = 150� (column 1), 120� (column 2), 90� (column 3), and 60� (column 4), respectively, and for two-orthogonal-arc configurations (rows 3&4) of
↵1 = ↵2 = 75� (column 1), 60� (column 2), 45� (column 3), and 30� (column 4), respectively. Display window: [0.0, 5⇥10�7] AU.

TABLE I
nRMSEs of images reconstructed from noiseless data generated with single-arc and two-orthogonal-arc configurations of different ↵⌧ .

Configuration

LAR
150� 120� 90� 60�

Single-arc 2.56⇥ 10�5 3.85⇥ 10�4 1.27⇥ 10�2 2.71⇥ 10�2

Two-orthogonal-arc 8.40⇥ 10�7 1.63⇥ 10�5 1.44⇥ 10�4 2.21⇥ 10�3
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Fig. 3. Images reconstructed by use of the FBP (rows 1&3) and DTV (rows 2&4) algorithm from noisy data for single-arc configurations (rows 1&2) of
↵⌧ = 150� (column 1), 120� (column 2), 90� (column 3), and 60� (column 4), respectively, and for two-orthogonal-arc configurations (rows 3&4) of
↵1 = ↵2 = 75� (column 1), 60� (column 2), 45� (column 3), and 30� (column 4), respectively. Display window: [0.05, 0.9].

TABLE II
nRMSEs of the DTV reconstructions from noisy data generated with single-arc and two-orthogonal-arc configurations of different ↵⌧ .

Configuration

LAR
150� 120� 90� 60�

Single-arc 0.134 0.187 0.269 0.392
Two-orthogonal-arc 0.118 0.167 0.220 0.283
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i.e., g[M] = g = H�f . We first observe that FBP recon-
structions from all LAR data contain significant artifacts such
as leakage and distortion. It can also be observed that all
DTV reconstructions of the two-orthogonal-arc configurations
visually resemble the truth plant-seed phantom. However,
DTV reconstructions of the single-arc configurations show
visible artifacts for ↵⌧  90�. We also calculated nRMSEs
of the DTV reconstructions and list the corresponding values
in Table I. It can be observed that the nRMSE increases as
total-angular range ↵⌧ decreases. In addition, the nRMSEs of
DTV reconstructions for two-orthogonal-arc configurations are
generally smaller than those of the single-arc configurations
for a given ↵⌧ .

B. Reconstruction from noisy data

We then conducted image reconstruction with the DTV
and FBP algorithms from noisy data g[M], as described in
Sec. II-B, by using the two-orthogonal-arc and the single-
arc configurations covering total angular ranges ↵⌧ = 60�,
90�, 120�, and 150�, and show results in Fig. 3. Similarly to
the noiseless-data study, there exist significant LAR artifacts
in all FBP reconstructions. For the DTV reconstructions, in
general, as the total angular coverage ↵⌧ decreases, LAR
artifacts increase in image reconstructions. We observe that
DTV reconstructions with the two-orthogonal-arc configura-
tion outperform those with the single-arc configuration in
terms of artifacts reduction. This is understandable because the
data model is less ill-conditioned for the former than for the
latter, and thus the reconstruction of the former is less sensitive
to data inconsistency, i.e., data noise, than that of the latter. In
particular, DTV reconstructions with single-arc configurations
considerably deteriorate for ↵⌧  90�, and some detailed
structures cannot be identified. DTV reconstructions with
two-orthogonal-arc configurations, however, can still reveal
most of the structures for ↵⌧ = 60�. We also conduct a
quantitative analysis of the DTV reconstructions by computing
their nRMSEs relative to the truth phantom, and show results
in Table II. We notice that, for DTV reconstructions from LAR
data containing noise, the nRMSEs of reconstructions with
the two-orthogonal-arc configuration are smaller than those of
reconstructions with the single-arc configuration. Additionally,
the nRMSE increases as the total angular range decreases.

IV. DISCUSSION

In the work, we have investigated image reconstruction from
LAR data in PB-PCCT by developing and tailoring the DTV
algorithm that was developed previously for image reconstruc-
tion from LAR data in CT. We note that the DTV algorithm
developed reconstructs the image, i.e., the refractive index
distribution, and that the application of the Laplacian operator
to the image subsequently yields its boundary image. We
have studied and compared images reconstruction for single-
arc and two-orthogonal-arc configurations of different LARs.
Results of our study show that the DTV algorithm developed
can reconstruct images, instead of their boundary images,
directly from data in PB-PCCT, and that the DTV images from

LAR data are with reduced LAR artifacts observed otherwise
in images reconstructed with other algorithms. Furthermore,
observations can also be made that the two-orthogonal-arc
configurations can further improve reconstruction accuracy of
the single-arc configurations with ↵⌧ = ↵1+↵2, especially as
↵⌧ is reduced. This work may provide insights into the design
of LAR scanning configurations for potentially reducing imag-
ing time in PCCT. In the future, it is of interest to investigate
image reconstructions from LAR data with additional noise
and also for two-orthogonal-arc configurations with ↵1 6= ↵2.
Moreover, the DTV algorithm can also be applied to other
PCCT imaging techniques to enabling LAR imaging, such as
analyzer-crystal-based PCCT and grating-based PCCT.
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Abstract—Supervised deep convolutional neural network 

(CNN)-based methods have been actively used in clinical CT to 
reduce image noise. The networks of these methods are typically 
trained using paired high- and low-quality data from a large 
number of patients and/or phantom images. This training process 
is tedious, and the network trained under a given condition may 
not be generalizable to patient images acquired and 
reconstructed at different conditions. In this paper, we propose a 
self-trained deep CNN (ST_CNN) method which does not rely on 
pre-existing training datasets. The training is accomplished using 
extensive data augmentation through projection domain and the 
inference is applied to the data itself. Preliminary evaluation on 
patient images demonstrated that the proposed method could 
achieve similar image quality in comparison with conventional 
deep CNN denoising methods pre-trained on external datasets.  

Index Terms— Computed tomography (CT), low-dose CT, 
deep learning, convolutional neural network (CNN), supervised 
training  
 

I. INTRODUCTION 
N recent years, Deep convolutional neural network (CNN) 
has been one of the main driving forces for CT image 

denoising [1-7]. A majority of existing CNN-based denoising 
methods are supervised, which learn the mapping function 
between the low-quality image (e.g., low dose) and its high-
quality (e.g., high dose) counterpart [1-5]. In order to have a 
CNN denoiser that generalizes well to new patient data, a 
large amount of low-/high-quality image pairs from a large 
number of patient and/or phantom images are needed to 
sufficiently cover the data distribution. However, this training 
process is costly, and the model trained from one dataset may 
not generalize well to another dataset acquired or 
reconstructed at a different condition. The inter-patient 
differences can also make it challenging to learn a model that 
generalizes well across patients. 

To tackle this challenge, we propose a self-trained deep 
CNN (ST_CNN) method for noise reduction in CT which does 
not rely on pre-existing training datasets. This method trains 
the network directly using the data itself through extensive 
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data augmentation (random rotation and noise addition) 
through projection domain and the inference is applied to the 
data itself. We demonstrated that this method could achieve 
similar performance as conventional deep CNN denoising 
methods trained on external datasets. There are three major 
potential benefits of this method. First, by removing the need 
of a large number pre-existing training dataset, it can be 
applied to any CT data, even if the data condition were not 
previously trained. Second, the self-training mechanism 
eliminates the generalizability issue that may occur for 
network models applied to datasets that are different from the 
training datasets.  Third, the trained model can be applied to 
and finetuned for each individual patient if repeated CT exams 
are expected, which may maximize the benefit of image 
quality improvement and radiation dose reduction. 

II. METHODS 

The proposed ST_CNN method belongs to the family of 
image-domain supervised deep learning techniques, but there 
is a distinct difference in the training scheme from the existing 
approaches, as described in Figs. 1 and 2. The availability of 
sufficient amount of patient cases for training is one key factor 
contributing to the performance of the conventional supervised 
deep learning methods.   

 
Fig. 1. Overview of the training scheme for conventional image-domain 

supervised deep learning techniques

Self-trained Deep Convolutional Neural 
Network for Noise Reduction in CT  

Zhongxing Zhou, Akitoshi Inoue, Cynthia McCollough, and Lifeng Yu 

I
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Fig. 2. Overview of the training scheme for the proposed ST_CNN method. 

 
The proposed ST_CNN method is trained based on the data 

acquired from one single patient by generating a large amount 
of paired low-quality and high-quality images from the same 
patient (Figure 2). 

    The trained model is used to denoise the data acquired 
from the same patient. The training scheme is described as 
follows: 

A. Low-quality image generation and augmentation: 
1) Apply independent noise insertion multiple times (e.g., 

72 times) on the original projection data of a specific patient to 
generate the corresponding low-quality projection data (e.g., 
25% dose or 10% dose). The low dose levels can be 
randomized during the process of noise insertion. 
    2) Generate images with a large amount of different rotation 
angles. This cannot be accomplished by simply rotating the 
image itself as that will introduce errors through interpolation. 
Our approach is to apply the rotation angle directly on the 
projection data so that images are rotated at arbitrary angle 
without introducing additional errors. For example, we applied 
72 different rotation angles (e.g., every 5 degree on 360 
degree) to the low-quality projection data. After 
reconstruction, 72 sets of images with different rotation angles 
are obtained. 
    3) Divide the images into 4 groups: group1 (rotate 20*n 
degree, n=0, 1, …, 17); group 2 (rotate 20*n+5 degree); group 
3 (rotate 20*n+10 degree); group 4 (rotate 20*n +15 degree). 
The images in group 2 are flipped on x-axis, and the images in 
group 3 are flipped on y-axis.  

B. High-quality image generation and augmentation: 
    1) (Optional) Apply independent noise insertion multiple 
times (e.g., 72 times) on the original projection data. The 
amount of noise inserted is less than that to generate the low-
quality images. One can also bypass this step so that the 
original dose level is directly used.  

    2) Apply rotation augmentation (e.g., every 5 degree on 360 
degree) on the original projection data of the same patient to 
generate multiple high-quality projections. 
    3) Follow step 3) in section A to generate 4 groups of high-
quality images. 

C. Low-/high-quality image pairs generation: 
    Generate matched high- and low-quality patches with 
multiple slices (e.g., 64×64×7 voxels) from the reconstructed 
images in the first 3 groups for model training.  The images in 
the 4th groups are used to generate the matched patches for 
model validation.  

D. Model training: 
        The CNN denoising model can be based many of the 
popular network architecture. Here we employed a recently 
developed 2D residual-based CNN denoiser [3] for both 
ST_CNN and conventional deep CNN methods. The identical 
network architecture (Figure 3) was used for both methods so 
that any performance difference can be attributed to the 
different training methods.  To optimize the performance of 
the CNN model, we used 7 adjacent CT slices as the channel 
input of the 2D residual CNN model [5]. The CNN inputs 
were first standardized (derived by subtracting the mean value 
and dividing by the standard deviation), and then subjected to 
initial layers that generated 128 feature maps using 2D 
convolutional layers. The feature maps were further processed 
by a series of 2D residual blocks, each of which consisted of 
repeated layers of 2D convolutional, batch normalization, and 
rectified linear unit activation. Then the output of residual 
blocks was projected back to a single-channel image by using 
a single convolutional layer with linear activation. This single-
channel image was the estimated noise, which was further 
subtracted from the central input slice to get the final 
denoising result.  
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Figure 3. The architecture of residual-based 2D CNN denoiser. (a) Global 
structure of the network containing a 2D initial block, three 2D residual 
blocks, and a final block. (b) Details regarding the convolutional layers and 
transformations used within each block. Conv2D = two-dimensional 
convolutional layer, N = arbitrary image size, M = number of slices (1,3,7), 
ReLU = rectified linear units 

III. RESULTS 

    Figure 3 compares full-dose (FD) images reconstructed and 
denoised using 4 different methods: (a) filtered-backprojection 
(FBP), (b) iterative reconstruction (IR), (c) conventional CNN, 
and (d) ST_CNN. The images were from a patient case in the 
Mayo/AAPM Low-dose CT Grand Challenge data library 
(Case number: L291). In Figure 3 and the following figures of 
this article, “CNN” refers to the conventional residual CNN 
method [3]. The FBP and IR reconstructions used matched 
kernels of B30 and I30 at a strength setting of 3. The 
conventional CNN was trained and validated using FBP FD 
and FBP QD image pairs from a subset of totally 30 patient 
data (17 patients for training and 5 patients for validation). 
The residual network architecture was identical to that used in 
the ST_CNN. The trained conventional CNN model was 
applied to denoise the FBP FD images of the rest of the patient 
data (e.g., L291). The ST_CNN was trained and validated 
using augmented FBP 10% dose and FBP FD image pairs of a 
specific patient (e.g., L291), and then was applied to denoise 
the original FBP FD images of the same patient. The 
performance of two CNN models were assessed visually by an 
experienced radiologist. For the overall image quality 
evaluation, the radiologist ranked the ST_CNN method better 
than the conventional one because of more homogeneous liver 
parenchyma and better low-contrast lesion visibility (Arrows 
in the figure point to two subtle malignant liver tumors).  

 
Figure 3. An example comparing the FBP and IR full dose (FD), conventional 
and self-trained CNN-denoised FBP FD images from a patient case in the 
Mayo/AAPM Low-dose CT Grand Challenge data library (Case number: 
L291). The arrows point to two subtle liver lesions. Slice thickness was 1 mm. 
To visualize the different appearance better, the display window was 
narrowed down to [60,200] HU. 

    To have a reference standard for quantitative evaluation of 
the performance, the self-trained CNN was trained and 
validated using augmented 10% dose (FBP) and QD (FBP) 
image pairs, and then applied to denoise the FBP QD images 
of the same patient. In this way, the original FD images can be 
used as the reference standard. The previously trained 
conventional CNN was used to denoise the same FBP QD 
images for CNN performance comparison. Figure 4 compares 
images reconstructed and denoised using 4 different 
conditions: (a) QD+FBP, (b) QD+IR, (c) QD+FBP+CNN, (d) 
QD+FBP+ST_CNN, and the two FD reconstructions were 
used as the reference standard: (e) FD+FBP and (f) FD+IR. 
Performance of the two CNN models were assessed visually 
by the same radiologist. In terms of low-contrast lesion 
visibility, conventional and self-trained CNN appeared to have 
a similar performance (Arrows in the figure point to two 
subtle malignant liver tumors).  For the overall image quality 
evaluation, the radiologist ranked the self-trained CNN 
method better than the conventional one because of more 
homogeneous liver parenchyma and less false positive 
structures (A zoomed-in ROI in the liver parenchyma 
corresponding to the green box is shown in the bottom-right). 
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Figure 4. An example comparing the FBP and IR quarter dose (QD), FBP and 
IR full dose (FD), conventional and self-trained CNN-denoised QD images 
from a patient case in the Mayo/AAPM Low-dose CT Grand Challenge data 
library (Case number: L291). The arrows point to two subtle liver lesions. A 
zoomed-in ROI within the green box is shown in the bottom-right corner. 
Note the orange arrow on the conventional CNN-denoised image points to a 
false positive lesion that does not exist on the self-trained CNN-denoised 
image.  Slice thickness was 1 mm. To visualize the different appearance 
better, the display window was narrowed down to [60,200] HU. 

    Using FD+FBP as the reference, the root mean square error 
(RMSE), peak signal-to-noise ratio (PSNR), and structural 
similarity (SSIM) were calculated for the conventional CNN 
and ST_CNN-denoised QD images (Table 1). The results 
provide clear evidence that the ST_CNN method has a 
performance similar to that of conventional deep CNN 
denoising methods without the need of a large number of 
training data. 

TABLE I 
QUANTITATIVE RESULTS (MEAN±SDS) ASSOCIATED WITH CONVENTIONAL 

AND SELF-TRAINED CNN METHODS FOR PATIENT CASE L291 

 PSNR RMSE SSIM 

Conventional CNN 41.9±2.1 19.8±3.8 0.95±0.02 
Self-trained CNN 41.8±2.1 20.1±3.7 0.95±0.02 

IV. CONCLUSION 
We have designed a patient-specific self-trained CNN 
denoising method, aided by data augmentation through 
projection domain. Preliminary clinical evaluation 
demonstrated that the proposed method may achieve similar 
image quality in comparison with conventional deep CNN 
denoising methods pre-trained on a large number of patient 
cases. This new technique has the potential to overcome the 
generalizability issue of conventional training methods and to 
provide optimized noise reduction for each individual patient.  
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2D-3D motion registration of rigid objects
within a soft tissue structure

Nargiza Djurabekova1, Andrew Goldberg2, David Hawkes1, Guy Long3, Felix Lucka1,4 and Marta M. Betcke1

Abstract—The study of rigid body dynamics in soft tissue is

an essential part of orthopaedic imaging. Our focus is the foot

and ankle structure, which consists of 28 bones surrounded by

a variety of soft tissue such as 30 muscles, numerous ligaments,

bursae and nerves. The importance of understanding the involved

dynamics is evident by the frequent need to find functional joint

replacements to fight diseases such as hindfoot arthritis. We study

a simplified problem by constructing a phantom with two ”bones”

submerged in silicone and a remotely controlled LEGO robot that

moves one of the two bones.

We perform motion registration by manipulating the bone

segmented from an initial static scan and matching its digitally

reconstructed radiographs to a sequence of scanned X-ray

projections. The registration of the 3D volume to 2D projections

requires the right combination of optimization and interpolation

to achieve an optimal result. We test four different approaches

with the help of the Flexible Algorithms for Image Registration

(FAIR) toolbox.

Index Terms—2D3D registration, dynamic X-ray CT, cone

beam CT, rigid motion

I. INTRODUCTION

T
HIS project covers the approach to dynamic imaging of
the foot and ankle through the lens of image registration,

in particular volume to projection registration. We explore
the parametric, bone-by-bone approach as we assume that the
movement of the individual bones can be modelled through
rigid transformation. Each bone is segmented out of the initial
static scan and the volume containing one of the bones is
matched to a sequence of fluoroscopic projections. We use
the term fluoroscopy here to mean an ”X-ray movie”, i.e.
photons shooting in quick succession to track the movement of
the scanned object while the source, detector and the sample
stage remain stationary. The registration is performed with the
help of the Flexible Algorithms for Image Registration (FAIR)
package [1] for MATLAB and to test this approach we use the
phantom described in section I-A.

A. Data acquisition
The data for this project was acquired at the CWI research

institute in Amsterdam, using the state-of-the-art X-ray scan-
ner called FleXray. During the acquisition, the FleXray is
completely sealed and can only scan small (up to 10 cm tall)
objects, so we constructed a remotely controlled base and a

1 Centre for Medical Image Computing (CMIC) at the Department of
Computer Science, University College London (UCL)

2 Royal National Orthopaedic Hospital, UCL
3 CurveBeam Europe, Ltd
4 Computational Imaging (CI) Group at the Centrum Wiskunde & Infor-

matica (CWI)

Fig. 1. The FleXray scanner set-up with the CWI phantom.

simple phantom consisting of two ”bones” made from gypsum
plaster submerged in some silicone. Silicone was chosen to
reproduce the effect of cartilage and other soft tissue between
and surrounding the bones.

The data was collected at 78 kV with maximum power
due to the high attenuation of gypsum and silicone. To
remove lower energy photons, layers of thin copper plates
were attached to the source as can be seen in fig. 1. Static
frame-by-frame data of 40 individual positions was acquired
as well as data from continuously shooting X-ray beams (i.e.
fluoroscopic data) from a few selected angles.

B. Image registration
Image registration is an umbrella term for aligning two or

more sets of images. It is often used in image processing
for combining images to either extend the view, such as in
panoramic images, or to enhance an existing view and reduce
signal-to-noise ratio. The purpose of image registration is often
to identify similar features in different images in order to
acquire further information about the features. This has a very
clear application in medical imaging, where scans are often
performed multiple times during treatment and sometimes
even using different devices (e.g. MR and X-ray systems). To
find out the exact differences between the images, it is crucial
to align the images correctly, i.e. perform registration.

To avoid the need for experts to identify correct features
in order to perform landmark-based registration, we instead
choose to rely on intensity based registration. Intensity based
methods align images by comparing their intensity values and
contrasts, and often require little to no preparation in terms of
marker placement etc., although they can be quite time con-
suming during the registration process. An example of a fully
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intensity based method can be found in [2] where individual
vertebrae in a 3D CT volume were robustly registered to the
corresponding vertebrae in a 2D X-ray image. The registration
was performed by optimising for one of the six degrees of
freedom of the 3D bone at a time. We propose a method
in which we use the FAIR toolbox to optimise for all six
transformation parameters simultaneously.

C. Practical background

Image registration can occur when both images are in the
same domain. That is, both are in ⌦ ⇢ Rd, where d is the
common dimension, usually 2 or 3. So for some reference
image uR : ⌦ ! R, we try to transform a template image
uT : ⌦ ! R using the transformation ⇢ : Rd ! Rd in a way
that minimizes the following objective function:

argmin
w

F (w) = dist(uT (⇢(w, x)), uR(x)) +R(w). (1)

Here, dist is some distance measure function and R is a
regularizer, x 2 ⌦ is the set of coordinates and w is the
vector of parameters for the transformation ⇢. In our case,
the template is a 3D bone s segmented out of the whole
image uT and the reference is a projection (or a set of
projections) gR. Since the registration is to be performed
between a 3D volume s and 2D measurement data gR, one
must first generate digitally reconstructed radiographs (DRRs)
from the 3D volume, and then perform the registration between
the DRR(s) and given X-ray measurement data. Let s : ⌦ ! R
be the template image and gR : ⌦0 ! R be a reference image.
Domain ⌦0 is a set of one or more stacked X-ray projections
from different angles, ⌦0 ⇢ Rd�1 ⇥ [0, 2⇡). Let also A✓ be
the X-ray cone-beam forward operator, where ✓ is the set of
indices representing the present projection angles. Then for
2D3D registration, the eq. 1 becomes

argmin
w

F (w) = dist(A✓(s(⇢(w, x))), gR(x)) +R(w).

As we are working with rigid bodies, our parameter vector
w is going to consist of 6 elements corresponding to 6 degrees
of freedom, 3 for rotation w1, w2, w3 and 3 for translation
w4, w5, w6.

II. NUMERICAL REALIZATION AND RESULTS

R
ECALL that the objective function we want to minimize
is

argmin
w

F (w) = dist(A✓(s(⇢(w, x))), gR(x)) +R(w). (2)

We set the distance function to be the squared `2 norm, also
known as the sum of squared differences, which we refer to
as  . So if the residual r = A✓(s(⇢(w, x)))� gR(x), then the
dist function is

dist(A✓(s(⇢(w, x))), gR(x)) =  (r) =
1

2
||r||22

=
1

2
||A✓(s(⇢(w, x)))� gR(x)||22.

In the discrete setting, where the image is defined on
a grid of cells,  (r) is multiplied by a scaling factor h
which is defined as the cell width. This is particularly useful
for the multiscale optimization, where different levels/scales
correspond to different grid densities.

As a constraint on transformation parameters w, we use
Tikhonov’s regularization, i.e. given a reference set of param-
eters wref ,

R(w) =
1

2
(w � wref )|M(w � wref ),

where M is a diagonal matrix of weights for the transforma-
tion parameters.

A. Pre-processing the data

For the two-dimensional reference images, one or two
projection images are used for each of the 41 static scans
(one initial position + 40 poses along a programmed motion
path). The template image is obtained by reconstructing the
static scan in initial position and segmenting it with K-means
[3] into 3 separate masks - air, silicone (as well as lego)
and gypsum, corresponding to air, soft tissue and bone. Noise
from the reconstruction uT is smoothed by a convolution with
a Gaussian filter. The bone mask is split into two masks
corresponding to the two shapes coded as the mtibia (top)
and the mtalus (bottom). These bones are then segmented out
of the reconstruction

sbones = (mtibia +mtalus)� uT

by means of element-wise multiplication (�) to obtain a
background volume which can be projected with the forward
operator A✓ into the data domain

gbg = A✓(uT � sbones).

These background projections can then be removed from all
following reference images to give the best chance to our
intensity based registration algorithm,

gbones = g � gbg.

Fig. 2. Demonstration of data pre-processing. Left: A slice through the bone
masks volume, top: mtibia, bottom: mtalus; Middle: A slice through the
segmented bones volume sbones acquired by applying the bone masks to the
full reconstruction of the initial pose; Right: A simulated projection of the
”background”, gbg .
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The masks, segmented bones and an example of a projected
background for the static initial position can be found in fig.
2.

As the bones move further away from the initial position, the
background extracted from it becomes a worse approximation
to the true background due to decreasing overlap of the
occlusion in the initial position with the occlusion in the
present frame. However, as this only affects a small part of
the background volume, there is still a benefit to subtracting
the background.

B. Results
We run the registration problem on all 40 frames + the

first initial position using 4 different strategies. The regis-
tration itself is performed using Gauss-Newton method and
the template image s1 is always the bone (in our case
tibia, or stibia) in the initial position, while wref

1 is set to
w0 = [0, 0, 0, 0, 0, 0]|.

Setup 1.
For each consecutive frame to be registered (iteration
k + 1), the GN method is warm started by setting
wref to the parameters wk obtained from the regis-
tration of the previous frame k

wref
k+1 = wk

Meanwhile the template image s for a consecutive
frame registration is updated based on the previous
iteration’s output parameters, using rigid transforma-
tion Trigid and spline interpolation TSI , so

sk+1 = TSI(Trigid(sk, wk+1)).

To simplify notation, we combine the rigid transfor-
mation and the interpolation into one transformation
operator T . The updated sk+1 is used as a template
image for the following iteration. Results for setup
1 are visualized in fig. 4(a).

Setup 2.
In this setup, we obtain the template image sk (for
k > 1) directly from s1 via rigid transformation
with parameters wk, while the reference parameters
wref for the optimization stay the same for all
iterations. Then in every iteration we obtain global
transformation parameters as opposed to setup 1,

where the parameters are computed locally. For every
iteration k = 1, 2, ..., 40,

sk+1 = T (s1, wk+1).

Note that wref and s1 remain unchanged through all
iterations. Results for setup 2 are visualized in fig.
4(b).

Setup 3.
As in setup 2, except that the registration is now per-
formed using the coarse-to-fine multiscale approach
for registration with the goal to register over larger
distances. Results for setup 3 are visualized in fig.
4(c).

Setup 4.
In this setup we propose a scheme to aggregate
the optimized parameters and use those along with
the s1. As can be seen in fig. 3 this scheme
aggregates incremental transformations w1, ..., wk.
In practice, this is performed stepwise using the
nested_parameters function described in ap-
pendix A. This way, interpolation is applied only
once to s1 to move it into position of frame k. The
variables for this setup are updated as follows:
For k = 0,

wref
k+1 = wref

1

wk+1 = GN(wref
k+1)

wnest
k+1 = wk+1

sk+1 = T (s1, w
nest
k+1 )

For k = 1, 2, 3, ..., 40

wref
k+1 = wk

wk+1 = GN(wref
k+1)

wnest
k+1 = nested_parameters(wnest

k , wk+1)

sk+1 = T (s1, w
nest
k+1 )

The updated template s is used as initialization
for the following iterations. Results for setup 4 are
visualized in fig. 4(d).

Fig. 3. Diagram of parameter aggregation via the nested_parameters function.
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Fig. 4. Demonstration of the four different setups. Registration performed
with 1 projection at angle 45� (Left) and with 2 projections at angles 0� and
90� (Right). Rows (a) to (d) correspond to registration results for frame 20
for setups 1 to 4 respectively.

III. DISCUSSION

I
N this work we consider the 2D3D parametric image
registration between fluoroscopic X-ray data and a seg-

mented volume. The registration is performed with spline
interpolation and Gauss-Newton optimization as implemented
in the FAIR toolbox [1], adjusted for our 2D3D problem.
We create an objective function eq. 2, which we optimize for
rigid transformation parameters that would align the template
bone with the reference projections. Gauss-Newton algorithm
functions as the optimizer. The main difficulty arises with the
initialization, so we test out four different setups.

The first setup involves initializing the optimization of
a consecutive frame with a previous frame’s transformed
template and optimal parameters. This leads to very blurry

results due to what amounts to recursive interpolation (see fig.
4(a)). To avoid this, the second setup initializes the rigid trans-
formation with all parameters w set to 0 to directly compute
the transformation from the initial position to the currently
processed timestep. However, as the bone moves further away
from its initial position, the results become consistently worse.
And then as the bone moves back, closer to the initial position,
the algorithm is able to recover and realign the bones (see fig.
4(b)). To try and make up for the second setup’s inability to
account for large displacements, we repeat its initialization in
setup 3 but now the registration is performed with a coarse-
to-fine grid approach. As can be seen from fig. 4(c), though,
this multiscale approach does not lead to better results. This
is likely due to the presence of background elements in the
reference image(s). In particular, the presence of the other bone
causes the template to be aligned with it, as can be most clearly
seen in fig. 4(c) with 2 projections. Finally, for setup 4, we
propose initializing the Gauss-Newton optimization with the
previously optimised parameters and updating the template
image from the initial position with aggregated parameters.
These aggregated parameters come from nesting previous
transformations together to achieve one single transformation
(using nested_parameters function, appendix A). In fig.
4(d), we can see that this approach does not manage to perform
correct registration with just one projection, since if it wrongly
estimates in one frame, the mistake only gets amplified with
each frame and the algorithm can no longer recover. The
moving bone can even end up completely out of the visible
region of interest in the final few frames. However, two
orthogonally directed projections (at 0� and 90�) constrain the
problem enough to eliminate the ambiguity between motion
and scaling, leading to promising results depicted in fig. 4(d)
on the right, with the transformed template bone tracking the
true motion quite accurately.
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APPENDIX A
NESTED_PARAMETERS FUNCTION

The nested_parameters function is a function that
aggregates previous registration parameters to move a rigid
object from the initial position at t = 0 to all the positions in
the following timeframes. The nesting or aggregation of pa-
rameters is derived as follows. Recall that rigid transformation
⇢ on x can be expressed as

⇢ = R(x) + ⌧ext = R(x) + (I �R)c+ ⌧, (3)

where ⌧ext = [⌧1ext, ⌧
2
ext, ⌧

3
ext]

| is the extended translation
vector that contains the shift to the centre of the domain c,
rotation Rc, and shift back, as well as the actual translation
vector ⌧ = [⌧1, ⌧2, ⌧3]|. This extended translation vector
⌧ext = (I � R)c + ⌧ corresponds to the last three elements
of the rigid transformation parameters vector w. The first
three parameters of w are the angles of rotation ↵,� and
� (with respect to the axes x, y and z), which are used
to calculate the corresponding rotation matrix R. We want
to be able to perform the transformation 3 recursively to
compute the effective rotation Rnest and translation ⌧nest of
two timeframes together. Let R1 and ⌧ext refer to the rotation
and translation performed on the first timeframe and R2 and
⌧ 0ext on the second one. Then the effective transformation ⇢0

can be computed with the nested rotation matrix Rnest and
nested translation vector ⌧nest as follows

⇢0 = Rnest(⇢) + ⌧nest = R2(R1(x) + ⌧ext) + ⌧ 0ext.

Computing the translation parameters of ⌧nest is straightfor-
ward

⌧nest = R2(⌧ext) + ⌧ 0ext,

while finding the rotation angles a, b and c of Rnest is a little
more involved. We know that as a 3D rotation matrix, Rnest

has the form

Rnest =

2

4
cos a cos b cos a sin b sin c� sin a cos c cos a sin b cos c+ sin a sin c
sin a cos b sin a sin b sin c+ cos a cos c sin a sin b cos c� cos a sin c
� sin b cos b sin c cos b cos c

3

5 .

To solve for the rotation parameters (a, b, and c), we consider
the following equation

Rnest = R2R1

=

2

4
cos↵ cos� cos↵ sin� sin � � sin↵ cos � cos↵ sin� cos � + sin↵ sin �
sin↵ cos� sin↵ sin� sin � + cos↵ cos � sin↵ sin� cos � � cos↵ sin �
� sin� cos� sin � cos� cos �

3

5⇥

2

4
cos↵0 cos�0 cos↵0 sin�0 sin �0 � sin↵0 cos �0 cos↵0 sin�0 cos �0 + sin↵0 sin �0

sin↵0 cos�0 sin↵0 sin�0 sin �0 + cos↵0 cos �0 sin↵0 sin�0 cos �0 � cos↵0 sin �0

� sin�0 cos�0 sin �0 cos�0 cos �0

3

5 .

To make the calculation simpler to follow, we shall
replace cos↵, cos� and cos � by c(1), c(2) and c(3). For
sin↵, sin�, sin � we have s(1), s(2), s(3) and analogously
for the ↵0, �0, �0 parameters, their sine and cosine functions

turn into s0(1), s0(2), s0(3), and c0(1), c0(2), c0(3). This gives
us

Rnest = R2R1 =

2

4
c(1)c(2) c(1)s(2)s(3)� s(1)c(3) c(1)s(2)c(3) + s(1)s(3)
s(1)c(2) s(1)s(2)s(3) + c(1)c(3) s(1)s(2)c(3)� c(1)s(3)
�s(2) c(2)s(3) c(2)c(3)

3

5

⇥

2

4
c0(1)c0(2) c0(1)s0(2)s0(3)� s0(1)c0(3) c0(1)s0(2)c0(3) + s0(1)s0(3)
s0(1)c0(2) s0(1)s0(2)s0(3) + c0(1)c0(3) s0(1)s0(2)c0(3)� c0(1)s0(3)
�s0(2) c0(2)s0(3) c0(2)c0(3)

3

5

=

2

4
R11 R21 R31

R12 R22 R32

R13 R23 R33

3

5 ,

where
R11 = c(1)c(2)(c0(1)c0(2)) + (c(1)s(2)s(3)� s(1)c(3))(s0(1)c0(2)

� (c(1)s(2)c(3) + s(1)s(3))s0(2),

R21 = c(1)c(2)(c0(1)s0(2)s0(3)� s0(1)c0(3)) + (c(1)s(2)s(3)� s(1)c(3))(s0(1)s0(2)s0(3)

+ c0(1)c0(3)) + (c(1)s(2)c(3) + s(1)s(3))(c0(2)s0(3)),

R31 = c(1)c(2)(c0(1)s0(2)c0(3) + s0(1)s0(3)) + (c(1)s(2)s(3)

� s(1)c(3))(s0(1)s0(2)c0(3)� c0(1)s0(3)) + (c(1)s(2)c(3) + s(1)s(3))(c0(2)c0(3)),

R12 = s(1)c(2)(c0(1)c0(2)) + (s(1)s(2)s(3) + c(1)c(3))(s0(1)c0(2))

� (s(1)s(2)c(3)� c(1)s(3))s0(2),

R22 = s(1)c(2)(c0(1)s0(2)s0(3)� s0(1)c0(3)) + (s(1)s(2)s(3)

+ c(1)c(3))(s0(1)s0(2)s0(3) + c0(1)c0(3)) + (s(1)s(2)c(3)� c(1)s(3))(c0(2)s0(3)),

R32 = s(1)c(2)(c0(1)s0(2)c0(3) + s0(1)s0(3)) + (s(1)s(2)s(3)

+ c(1)c(3))(s0(1)s0(2)c0(3)� c0(1)s0(3)) + (s(1)s(2)c(3)� c(1)s(3))(c0(2)c0(3)),

R13 = �s(2)(c0(1)c0(2)) + (c(2)s(3))(s0(1)c0(2))� (c(2)c(3))s0(2),

R23 = �s(2)(c0(1)s0(2)s0(3)� s0(1)c0(3)) + (c(2)s(3))(s0(1)s0(2)s0(3)

+ c0(1)c0(3)) + (c(2)c(3))(c0(2)s0(3)),

R33 = �s(2)(c0(1)s0(2)c0(3) + s0(1)s0(3)) + (c(2)s(3))(s0(1)s0(2)c0(3)

� c0(1)s0(3)) + (c(2)c(3))(c0(2)c0(3)).
Then the rotation parameters a, b, c are:

b = arcsin(�R13) = arcsin(s(2)(c0(1)c0(2))� (c(2)s(3))(s0(1)c0(2))

+ (c(2)c(3))s0(2)),

a = arcsin(R12/ cos b) = arcsin((s(1)c(2)(c0(1)c0(2)) + (s(1)s(2)s(3)

+c(1)c(3))(s0(1)c0(2))� (s(1)s(2)c(3)� c(1)s(3))s0(2))/ cos b),

c = arcsin(R23/ cos b) = arcsin((�s(2)(c0(1)s0(2)s0(3)� s0(1)c0(3))

+ (c(2)s(3))(s0(1)s0(2)s0(3) + c0(1)c0(3)) + (c(2)c(3))(c0(2)s0(3)))/ cos b).

So the whole nested transformation vector wnest is then
defined as

wnest = [w1
nest, w

2
nest, w

3
nest, w

4
nest, w

5
nest, w

6
nest]

| = [a, b, c, ⌧1ext, ⌧
2
ext, ⌧

3
ext]

|,

and serves as the output to the
nested_parameters(w,w0) function, where w is
the vector of transformation parameters of the first timeframe
and w0 of the second. The process can be repeated to compute
the effective rotation and transformation for any number of
steps, assuming wnest is a good estimate of all the previous
timeframes’ transformations.
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Abstract--Motion of gas bubbles (gastrointestinal gas) in 

abdominal region can produce significant artifacts during on-
board CBCT scanning, which adversely affects the imaging 
quality and limits the process of CBCT-based adaptive planning 
and image-guided radiotherapy. In this study, we tested the 
effectiveness of simultaneous motion estimation and image 
reconstruction technique (SMRIE) for improving CBCT image 
quality and HU accuracy of abdominal scan. The improved 
image quality in the simulation study demonstrated that SMRIE 
technique is promising for on-board CBCT gas bubble motion 
artifact reduction. 
 

Index Terms—CBCT image reconstruction, motion artifact 
reduction, motion estimation. 

I.  INTRODUCTION 
N-board cone-beam computed tomography (CBCT) is 
widely used in image-guided radiation therapy (IGRT) 

and shows the potential to aid in adaptive radiation therapy 
(ART) [1-4]. Its artifacts, range from those due to inherent 
limitation of imaging physics, such as scattering, beam 
hardening, to those caused by the long-time scanning process, 
such as patient respiratory motion, have been well studied [5-
7]. Much work has been done on techniques to reduce these 
artifacts and improve the imaging quality. However, the 
artifacts produced by isolated aperiodic motions of small 
structures, such as gastrointestinal gas bubble, have been 
rarely described, and no available method has been discussed 
to correct them to our knowledge [2, 4]. As the gas bubble 
motion artifact is frequently seen in abdominal scan and could 
induce severe artifacts (as shown in Fig. 1), an artifact 
correction method designed for gas bubble motion is desired 
to improve the abdominal CBCT image quality and then aid in 
online patient setup and adaptive radiation therapy. 

Serval studies have been conducted to characterize the 
imaging features of gas bubble motion artifacts through 
phantom and/or clinical experiment [6, 8, 9]. These studies  
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revealed that data inconsistency of the high-contrast tissue-air 
boundary on different x-ray projections due to gastrointestinal 
peristalsis is the main reason for the streaky and/or hyperdense 
artifacts, and the shape of artifact can be affected by the size, 
speed, position and moving direction of gas bubble. Through 
viewing the patient scans, they found small intestine area was 
the most commonly affected region.  
    Winklhoder et al. used rapid-kV switching (rs) dual-energy 
computed tomography (DECT) to reduced gastrointestinal 
peristalsis-related steak artifact and observed significant 
artifact reduction in both phantom and patient abdominal 
imaging [7]. However, the current on-board CBCT doesn’t 
have energy discrimination ability, and the required time for 
scanning of on-board CBCT is much longer than diagnostic 
CT which could induce more gas bubble motion artifacts. Liu 
et al. proposed a cycle generative adversarial network 
(cycleGAN) for post-imaging processing of on-board 
abdominal CBCT and generate high-quality CBCT-based 
synthetic CT (sCT) for pancreatic adaptive radiotherapy [4]. 
Although much less gas bubble artifact can be seen in the 
generated sCT, the post-processing strategy and black-box 
property of deep learning might lead to fake abdominal 
structures in the regions affected by artifacts.  
    As the distribution and motion of gas bubbles in abdominal 
region are irregular in temporal domain, the widely used phase 
partition strategy for 4D CBCT motion artifact reduction 
cannot be readily applied for gas bubble artifact reduction. To 
overcome this limitation, we hypothesize that if the CBCT 
projection images were continuously divided into small 
groups, the gas bubble motion within each group can be 
neglected, an artifact reduced image can be reconstructed 
through estimation of the deformation vector fields (DVFs) 
between each group in image domain and motion-
compensated image reconstruction. 

Gas Bubble Motion Artifact Reduction through 
Simultaneous Motion Estimation and Image 

Reconstruction 
Kai Wang, Hua-Chieh Shao, You Zhang, Chunjoo Park, Steve Jiang, Jing Wang 

O 

Fig. 1.  On-board abdominal CBCT gas bubble artifacts in different regions of 
a same patient in a single scan (-300~300 HU). 
 

The 7th International Conference on Image Formation in X-Ray Computed Tomography

288



  

    Based on this hypothesis, in this work, we utilize the 
simultaneous motion estimation and image reconstruction 
(SMEIR) approach for abdominal CBCT image reconstruction 
and obtain the motion vectors simultaneously. The 
performance of the proposed strategy was evaluated with a 
simulation study. 

II.  MATERIALS AND METHODS 

A.  The SMEIR algorithm 
SMEIR algorithm has two main steps: motion estimation 

and motion-compensated reconstruction. Before SMEIR, we 
reconstructed an initial reference image using all the current 
projection images with simultaneous algebraic reconstruction 
(SART) method. Because of the existence of gas bubble 
motion during CBCT scan, the initial image would contain gas 
bubble motion artifacts, similar to images in Fig. 1. Different 
from the original SMEIR which was proposed for respiration 
artifact reduction, there is no motion phase information to 
guide motion phase partition for gas bubble motion. Instead, 
we evenly divided the projections into N projection groups 
following our hypothesis, each group has continued projection 
images covering 360°/N projection angle. We then applied the 
Demons registration algorithm to generate the initial inter-
group DVFs between the reference group (group 1 in our 
experiment) and all other groups. 2D projection images from 
each projection group and 3D reference reconstruction image 
were used here for the corresponding DVF estimation. In the 
motion-compensated reconstruction step, we used all the 
projection images and the estimated DVFs to reconstruct a 
new reference CBCT by using the motion-compensated 
simultaneous algebraic reconstruction method (MC-SART). 
These two steps were iteratively used until the reconstruction 
process reached the converge condition. The overall workflow 
of SMEIR method for abdominal CBCT gas bubble motion 
artifact reduction is shown in Fig. 2, and the objective function 
is: 
𝜇1̂, 𝜈̂ = argmin

𝜇1,𝜈
∑ ‖𝑝𝑛 − 𝐴𝜇1(𝑥 + 𝜈1→𝑛)‖ 𝑁

𝑛=1 +

                                                                   𝛽𝜙1(𝜇1) + 𝑟𝜙2(𝑣)   
(1) 

where  𝜇1 is the line attenuation coefficient of CBCT at group 
1, 𝜈1→𝑛 denotes the deformation matrix to transform CBCT 
from group 1 to group n (n=1, 2, …, N), 𝑝 is the projection, 
𝛽 and 𝑟  are regularization terms which control the balance 
between data fidelity, image total variation sparsity and DVF 
smoothness constrain. A is the CBCT projection system 
matrix, which was calculated through ray-tracing technique. 
Regularization function 𝜙1 is total variation in our study, and  
𝜙2 measures free-form energy of the deformation fields which 
is defined as: 

𝜙2(𝑣) = ∑ ∑ ∑ (𝜕𝑣𝑖

𝜕𝑥𝑗)23
𝑗=1

3
𝑖=1𝑣∈𝑅3   (2) 

     To be specific, in the 2D-3D registration motion estimation 
step, we iteratively update the following objective functions 
group by group: 

𝜈̂𝑛→1 = argmin
𝜈𝑛→1

‖𝑝1 − 𝐴𝜇𝑛(𝑥 + 𝜈𝑛→1)‖ + 𝑟𝜙2(𝜈𝑛→1) (3) 

𝜈̂1→𝑛 = argmin
𝜈1→𝑛

‖𝑝𝑛 − 𝐴𝜇1(𝑥 + 𝜈1→𝑛)‖ + 𝑟𝜙2(𝜈1→𝑛) (4) 

𝑟 is empirically set to 0.05 in our study. Nonlinear conjugate 
gradient algorithm was used to minimize these two functions 
alternatively, the DVFs updated in the first function were 
inverted and served as the initial for the second function. T1=5 
iterations were used in our experiment for motion estimation 
in each iteration of SMEIR.  
     In MC-SART step, we have the current reconstruction 
results for each group as: 

𝜇𝑛 = 𝜇1(𝑥 + 𝜈1→𝑛) (5) 
and the reference group image can be updated through a 
modified SART algorithm, which is: 

𝜇𝑗
1,𝑛𝑒𝑤 = 𝜇𝑗

1 + 𝜆
∑ 𝑑𝑗𝑘

𝑛→1 ∑ [𝑎𝑖𝑘
𝑝𝑖 − ∑ 𝑎𝑖𝑘𝑢𝑘

𝑛
𝑘

∑ 𝑎𝑖𝑘
𝐽
𝑘=1

]𝑖𝑛,𝑘

∑ 𝑑𝑗𝑘
𝑛→1 ∑ 𝑎𝑖𝑘𝑖𝑛,𝑘

 (6) 

where 𝑑𝑗𝑘
𝑛→1denotes element of the DVF matrix that deforms 

image from group n to group 1. T2=10 iterations were used in 
our study for motion compensated reconstruction in each 
iteration of SMEIR. 

B.  Materials 
 To simulate the irregular motion during on-board CBCT 

 
Fig. 2. Workflow of gas bubble artifact reduction using simultaneous motion estimation and image reconstruction (SMEIR) method. SART:  simultaneous 
algebraic reconstruction technique; DVF: deformation vector field; N: number of projection groups. 
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scanning, we used two 3D abdominal CT images for a same 
patient acquired with 3 mins interval as the base images in this 
study. Dimension of the CT images are both 512×512×256, 
with voxel size of 0.125×0.125×0.192cm3. The deformation 
vector field (DVF) between these two scans were calculated in 
the image domain and used as 𝜈1→𝑁, and other N-2 (N=4, 8, 
16) different DVFs were generated through randomly scaling 
𝜈1→𝑁in x, y, z directions by [-2, 2] to the simulate different 
DVFs. Then, the first CT image was deformed to N-2 different 
CT images corresponding to the simulated DVFs. A N group 
360° full-fan CBCT projection was then simulated through 
combining the projection images from different CT images, 
where projections from every continuous 360°/N beam angle 
are generated from the same CT image using the ray tracing 
technique. The total number of projection images are set as 
360, detector size is 1280 × 318 with pixel size 
0.0772 × 0.1344cm2, distance from source to detector is 
154cm, distance from source to isocenter is 100cm. To explore 
the effect of selection of group number N, N=4, 8, 16 were 
simulated in our experiment. For image reconstruction, image 
dimension of 256 × 256 × 128 with voxel size of 
0.25×0.25×0.25cm3 were used, and we ran 20 iteration of 
SMEIR for all the experiments. 

III.  RESULTS 
We showed the original group 1 image sample slices and 

reconstructed image with different methods and motion groups 
in Fig. 3. The real gas bubble artifacts in an on-board CBCT 
abdominal scan are shown in Fig. 1, while the simulated gas 
bubble artifacts in 4-, 8- and 16-groups simulated CBCT scan 
with SART reconstruction are shown in Fig. 3 (b)~(d). As the 
simulated motion mainly occurred on a single large air bubble 
(stomach) the pattern of artifacts in these images are more 
similar to the third image in Fig. 1. The corresponding 
reconstructed image with SMEIR is shown in Fig. 3 (e)~(g).  

As the number of motion groups increase, in the SART 
reconstructed images, the visual quality of the gas bubble 
boundary became more blurred, and small streak artifact can 
be seen when N=16. Compared to the SART reconstruction 
results, the boundaries of reconstructed gas bubbles with 

SMEIR are well preserved and HU values around bubble 
regions are more accurate when compared with the original 
group 1 images, no obvious streak artifact can be seen.  

IV.  DISCUSSIONS AND CONCLUSION 
In this study we modified SMEIR for gas bubble motion 

artifact reduction. From the simulation experiment, we can 
clear see the image quality improvement in the gas bubble 
boundary area by using SMEIR over SART.  

There are several limitations of the current study. First, 
scattering is an important factor that influences CBCT 
imaging quality, for a more realistic simulation, we need to 
consider it in a future study. Second, given the inherent 
irregularity of gas bubble motion in both temporal domain and 
spatial domain, it’s difficult to simulate the gas bubble motion. 
Our next step will be more focusing on artifact reduction using 
real clinical data. Third, dividing the projection data into 
projection groups equally is not an optimal strategy. The 
larger the N is, the smaller the motion within each projection 
group, and smaller angle coverage. Although big N can 
improve the data consistency within each projection group, 
small projection angle coverage might not provide enough 
information to update the DVF. Therefore, a data-driven 
projection group partition method is desired.  

Deep learning-based methods have showed promising 
performance on both medical image reconstruction and post-
processing tasks, and serval cycleGAN-style networks were 
proposed to synthesis high-quality images using CBCT for 
CBCT-guided adaptive radiotherapy [4, 10]. Although not 
designed for gas bubble motion artifact reduction, some of 
them performed well in the abdominal region [4]. One of our 
future works will be incorporating deep learning methods to 
the workflow of gas bubble motion artifact reduction and 
motion estimation. 

In conclusion, we introduced SMRIE technique for gas 
bubble motion artifact reduction, the improved image quality 
of the gas bubble area in this study demonstrated that SMRIE 
technique is promising for on-board CBCT gas bubble motion 
artifact reduction. 

 
Fig. 3. Original group 1 images, simulated gas bubble artifacts in SART results, and reconstructed images with SMEIR. (a) are two slices of original group 1 
image. (b)~(d) are the SART reconstruction of different motion group projections, simulated gas bubble motion artifacts can be seen around the boundary of the 
gas bubble in the images. (e)~(g) are the SMEIR results which reduced the artifact around the gas bubble boundaries. 
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Comparing One-step and Two-step
Scatter Correction and Density Reconstruction in

X-ray CT
Alexander N. Sietsema, Michael T. McCann, Marc L. Klasky, and Saiprasad Ravishankar

Abstract—In this work, we compare one-step and two-step ap-

proaches for X-ray computed tomography (CT) scatter correction

and density reconstruction. X-ray CT is an important imaging

technique in medical and industrial applications. In many cases,

the presence of scattered X-rays leads to loss of contrast and

undesirable artifacts in reconstructed images. Many approaches

to computationally removing scatter treat scatter correction as

a preprocessing step that is followed by a reconstruction step.

Treating scatter correction and reconstruction jointly as a single,

more complicated optimization problem is less studied. It is

not clear from the existing literature how these two approaches

compare in terms of reconstruction accuracy. In this paper, we

compare idealized versions of these two approaches with synthetic

experiments. Our results show that the one-step approach can

offer improved reconstructions over the two-step approach,

although the gap between them is highly object-dependent.

Index Terms—Computed tomography, computational imaging,

density estimation, scatter correction, model-based iterative re-

construction.

I. INTRODUCTION

T
HE presence of scattered X-rays presents a challenge
for X-ray computed tomography (CT) imaging systems.

For example, in the context of medical cone-beam CT, scatter
causes a loss in soft-tissue contrast and artifacts such as cup-
ping, streaks, bars, and shadows [1]. The same artifacts appear
in nondestructive testing applications of X-ray CT, where they
can interfere with subsequent quantification tasks [2]. There
is a large body of work on preventing scatter using hardware
and on correcting it using software; see [1], [3] for a review.

Hardware approaches to scatter correction include colli-
mation (blocking unwanted X-rays at the source, thereby
preventing them from contributing to scatter) or increasing the
distance between the source and detector, which reduces the
amount of scattered radiation reaching the detector. Among
software approaches to scatter correction, a key distinction
is whether scatter correction happens as a preprocessing step
before CT reconstruction or jointly with CT reconstruction. In
the former case, which we term two-step reconstruction, scatter
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is typically modeled as a function of the direct (i.e., not scat-
tered) radiograph. This model is used to remove scatter from
the measured data and estimate the direct radiograph, which is
subsequently used for reconstruction. In the latter case, which
we term one-step reconstruction, a model of scatter is included
in a model-based CT reconstruction algorithm.

In our literature review, we found that the two-step for-
mulation is the more common approach, including among
recent work, e.g., [4], [5], [6], [7]. A two-step approach is
also implicitly assumed in works where only scatter correction
is considered, e.g., [8]. The popularity of the two-step ap-
proach may be because it usually involves solving two simple
optimization problems (scatter correction and reconstruction)
rather than a challenging joint problem.

The one-step approach appears less well-studied. The
model-based reconstruction formulation in [9] includes a
scatter term, but it is assumed to be known. The authors
in [10] iteratively alternate between reconstruction and scatter
estimation, but do not formulate a joint optimization prob-
lem. The review [1] describes a joint scatter correction and
reconstruction approach, but only in general terms and without
implementing it.

The main goal of this work is to compare one-step and
two-step reconstruction approaches to find when, if ever,
the added complexity of one-step reconstruction yields better
results. To this end, we compare idealized one- and two-step
algorithms on synthetic data in our studies. These experiments
are intentionally simple: scatter is modelled using a convo-
lution with a Gaussian kernel, noise is Gaussian, and the
beam is monoenergetic; we believe this experimental setup
includes many of the key features of real descattering and
reconstruction while leaving out aspects that may obscure
the difference between the one-step and two-step approaches,
e.g., inaccuracies in the radiographic forward model and beam
hardening.

In the following sections, we formulate the scatter correction
and reconstruction problem, describe our one- and two-step
algorithms, and present our experiments, results, and conclu-
sions.

II. SCATTER CORRECTION AND
RECONSTRUCTION

We focus on a model of 2D monoenergetic X-ray tomogra-
phy that includes scatter. Given a (vectorized) density profile
⇢ 2 RN1N2 , our model of the total transmission t is

t = s+ d, s = Kd, d = exp(�⇠A⇢), (1)

The 7th International Conference on Image Formation in X-Ray Computed Tomography

292



where s is the scattered signal, d is the direct (i.e., scatter-free)
signal, A 2 RM⇥N1N2 is the X-ray transform, ⇠ represents
the mass attenuation coefficient for a given material, exp(·) is
applied element-wise, and K represents linear convolution by
a kernel k, used to approximate scatter.

The choice to model scatter as a kernel convolved with the
direct is common in the scatter correction literature [11], [7],
[12], [13], [14]. This provides a fast scatter model that is at
least representative of models used in practice. As our main
goal is to bring out the differences between the one-step and
two-step formulations, we leave more complicated models for
future investigation.

A. One-step vs two-step scatter correction and reconstruction

Two-step Approach: The two-step method involves first
solving a scatter correction problem that is followed by solving
a density reconstruction problem. We formulate the first step,
i.e. scatter correction, as

d⇤ = argmin
d

kt� (Kd+ d)k22, (2)

where we minimize an `2 fit between the measured transmis-
sion and the model for it (i.e., direct + scatter) to account
for noisy data. This step would correct for scatter in all the
measured (one or multiple) CT views.

Following scatter correction, we invert the nonlinear
part of (1) with the elementwise operation, ⇢⇤

A[m,n] =
� log(d⇤[m,n])/⇠. Note that we would need to set any values
where d⇤[m,n] was less than or equal to zero to zero, as the
logarithm would be invalid there. We use the symbol ⇢⇤

A here
because this quantity represents the areal density [7].

After performing this scatter correction, we solve the fol-
lowing optimization problem to reconstruct the underlying
density:

⇢⇤ = argmin
⇢

k⇢⇤
A �A⇢k22 + ↵R(⇢), (3)

where R is a regularization functional and ↵ is a nonnegative
parameter. In essence, this approach first estimates the direct
d⇤ by removing scatter from the transmission t, and then takes
that estimate and uses it to reconstruct an estimate of the object
density ⇢⇤.

The main advantage of the two-step method is its simplicity:
both the first and second step are well-studied formulations
of linear inverse problems that can be readily solved with
standard algorithms. The scatter correction step involves linear
least squares (with possible constraints) for which there are
many good algorithms, e.g., a fixed-point method such as
Jacobi iteration [15], the conjugate gradient method [15] or
ADMM [16]. The reconstruction step can be solved efficiently
using ADMM.

One-step Approach: One-step scatter correction and recon-
struction involves jointly optimizing over the entire forward
model rather than first optimizing for the direct radiograph.
This amounts to solving the following optimization problem:

⇢⇤ = argmin
⇢

kt� (K + I) exp(�⇠A⇢)k22 + ↵R(⇢), (4)

where R is again a regularization functional. Intuitively, the
one-step method has the benefit of not relying on the estima-
tion of the direct: in the two-step method, our overall estimate
of the density is limited by the estimate of d⇤ we obtain from
solving (2). However, the one-step optimization could be more
challenging depending on the complexity of the entire forward
model.

B. Implementation of one-step and two-step methods

In our implementation of the one-step and two-step methods
described above, we consider imaging a spherically symmet-
ric, single-material object, parameterized by its radial profile
⇢ 2 RN . This simple model captures the important elements
of X-ray reconstruction with scatter, while remaining fast to
optimize; similar models find application in nondestructive
testing [17] and have been used for developing scatter correc-
tion methods [7]. As a result, our operator A is the forward
Abel transform and is followed by spinning the 1D signal
into a 2D image on which the convolution (for scatter) is
applied. For an example of data generated with this model,
see Figure 1.

For regularization, (R in (3) and (4)) we use total variation
on the profile, i.e., R(⇢) =

Pn
k=1 |⇢[k]� ⇢[k � 1]|.

In both approaches, we solve the underlying optimization
problems using the LBFGS algorithm in PyTorch [18]. Note
that PyTorch automatically handles non-differentiability is-
sues. Additionally, due to the poor conditioning of the Abel
matrix A, we used the separable quadratic surrogate (SQS)
preconditioning as follows:

P = diag
�
A>A1

��1
, (5)

where 1 2 RN denotes a vector of ones. This preconditioner is
used for performing the one-step optimization and the second
step of the two-step optimization. We apply this precondi-
tioning by premultiplying ⇢ by P prior to optimizing. For
the one-step method, this then becomes the preconditioned
optimization formulation

⇢0 = argmin
⇢

kt� (K + I) exp(�⇠AP⇢)k22

+ ↵
nX

k=1

|P⇢[k]� P⇢[k � 1]| , (6)

where the solution is recovered via ⇢⇤ = P⇢0; a similar
formulation is used for the two-step problem.

III. EXPERIMENTS AND RESULTS
We compare the one-step and two-step algorithms by scat-

ter correcting and reconstructing ten synthetically generated
transmissions. In all experiments, we quantify performance by
taking the root mean square error (RMSE) between the ground
truth density and the reconstructed density for each algorithm.

A. Data generation

To generate test objects, we first randomly selected indices
in 1D at which shells start and end, assuming a maximum
radius of N = 129 pixels of the object. We converted
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(a) Density (b) Direct (c) Scatter

Fig. 1: Density, direct, and scatter lineouts for profile 4 in our data set.

these indices into a piecewise-constant profile with steps at
each shell boundary. Finally, we picked shell densities (in
R) uniformly in the range (0, 20), and assigned each shell
a density. These 1D radial profiles were spun to create 2D
images (representing slice of 3D volume) as part of the
forward projection process [19]. The spinning process slightly
cropped the images to avoid edge effects.

In order to generate transmissions, we applied the forward
model in (1), choosing ⇠ = 1 ⇥ 10�3 and fixing a Gaussian
scatter kernel. In our implementation, this kernel is a three-fold
convolution with a 7⇥7 Gaussian blur with standard deviation
1.5 pixels. Spinning occurs after A⇢ is computed. Finally,
Gaussian noise is added in the end with µ = 0,� = 3⇥10�2,
and negative values in the transmission are set to zero (non-
physical). See Figure 1 for an example of the density, direct,
and scatter profiles.

B. Implementation details

All experiments were performed in Python using simulated
data, and optimization is performed using the PyTorch pack-
age. The one-step algorithm was run with a learning rate (step
size of Wolfe line search) of 3 ⇥ 10�2 and a total variation
weight of 1⇥10�3 with 20 iterations. The two-step algorithm
used a learning rate of 1.0 and no total variation with 10
iterations for the first step, and a learning rate of 1 ⇥ 10�2

and a total variation weight of 7⇥ 10�4 with 20 iterations for
the second step. All parameters were optimized by performing
a grid search over possible combinations of learning rate and
total variation parameters. See Figure 2 for the results of the
grid search. The forward Abel transform was the Hansenlaw
method [20] from the PyAbel Python package [19].

C. Results

Results for each of the ten profiles are summarized in Ta-
ble I. Overall, the one-step algorithm outperforms the two-step
algorithm, with a median RMS error of 1.548, compared to
2.575 for the latter. Two example reconstructions are shown in
Figure 3. Qualitatively, the two-step method can be quite noisy,
especially near the center of the reconstruction, despite the
regularization. However, the two-step model may reconstruct
thin shells better (Figure 3b), although this benefit is on the
whole negligible.

(a) One-step (b) Two-step

Fig. 2: Reconstruction accuracy (RMSE) as a function of
the total variation weight (↵ in (3) and (4)). The optimal
learning rate was tuned independently for each weight value.
The minima achieved are used in later fitting.

TABLE I: One-step vs. two-step reconstruction performance.

Profile One-step RMSE Two-step RMSE
1 0.827 1.445
2 2.077 9.242
3 2.021 9.552
4 0.568 2.468
5 1.210 2.683
6 2.488 3.071
7 0.853 0.552

8 0.422 0.623
9 1.887 2.397
10 2.305 3.491

(a) Profile 4 (b) Profile 7

Fig. 3: Comparison of one-step and two-step reconstruction
results on two profiles.
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(a) One-step (b) Two-step (second step only)

Fig. 4: Comparison of one-step and two-step (second step
only) convergence rates for each of the ten profiles. Satisfac-
tory convergence is demonstrated in all cases. Note that the
two-step loss is calculated in the areal density space, so its
values are much higher than the one-step method’s.

Both methods tend to struggle with profiles with high-
density (densities above 8) shells near the center. This is likely
due to the conditioning effects of the Abel matrix, which the
SQS preconditioning is only partially able to solve. Uniformly
high-density profiles can also cause some problems in both
methods (e.g., profiles 2 and 3). This may be an artifact of our
noise model, as denser objects produce smaller transmissions,
which results in a low signal-to-noise-ratio when noise with a
constant variance is added.

Finally, we summarize convergence results, where we plot
the data-fidelity terms in (3) and (4) over the LBFGS
iterations. From Figure 4, we see that both algorithms converge
quickly. We omitted the first step for the two-step method here
since it converges nearly instantly and we plotted for only the
one-step method and the second step of the two-step method.

IV. CONCLUSIONS
In this paper, we performed an empirical comparison of

one-step and two-step X-ray CT scatter correction and re-
construction. Our experiments showed that the one-step ap-
proach can demonstrate significant improvements over the
common two-step approach. While certainly not exhaustive,
these experiments suggest that the added complexity of the
one-step method may be worth it. Our future work in this area
would extend these experiments to more complicated regimes,
including using more complicated scatter estimation models
(e.g., [7]), polyenergetic spectra, and multiple materials. The
same comparisons could be also run on more realistic synthetic
data (e.g., generated from particle transport simulations as in
[7]) to validate the efficacy of one-step descattering in a setting
where the scatter model used during reconstruction does not
perfectly match the scatter in the data. Finally, we aim to run
similar comparisons on real, experimental data.
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Material decomposition from unregistered dual kV
data using the cOSSCIR algorithm

Benjamin M. Rizzo, Emil Y. Sidky, and Taly Gilat Schmidt

Index Terms—Dual and multi-energy imaging, Image recon-
struction, Photon counting CT.

I. INTRODUCTION

THE constrained one-step spectral CT Image Reconstruc-
tion method (cOSSCIR) has been developed to estimate

basis material maps directly from spectral CT data [1], [7].
cOSSCIR includes modeling of polyenergetic x-ray trans-
mission, which can prevent beam hardening artifacts. Also,
constraints can be placed on the basis material maps to
stabilize the material decomposition inversion. The cOSSCIR
framework has been investigated for spectral data from photon
counting detectors. Recently, preliminary work has applied
cOSSCIR to dual energy CT using an integrating detector
model, where the dual energy problem is modeled in the
cOSSCIR framework as a two-window spectral CT problem
with significant overlap between the acquisition spectra. Pre-
vious work assumed the spectral data are fully registered
(i.e., all spectral measurements are collected for each ray),
as is generally the case with current photon-counting detector
technologies. However, clinical dual energy diagnostic CT or
cone-beam CT data may be acquired using Rapid- or Slow-
kV acquisitions, resulting in unregistered spectral CT data.
Typically, unregistered dual kV acquisitions are reconstructed
by a two-step approach that first reconstructs CT images from
each spectra and then performs image-domain material decom-
position. However, such approaches cannot take advantage of
polyenergetic modeling and are susceptible to beam hardening
artifacts. One advantage of one-step direct inversion material
decomposition methods such as cOSSCIR is that polyenergetic
transmission can be modeled while the spectral data need not
be registered. This study investigates the application of cOSS-
CIR to unregistered, dual energy acquisitions. First, an inverse
crime simulation using a pelvic phantom was performed
to determine whether the cOSSCIR optimization algorithm
converges for the case of rapid switching dual kV. Our results
demonstrate that convergence is possible for the unregistered,
dual energy, problem using cOSSCIR. We further demonstrate
the approach on a preliminary experimental dataset.
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II. PURPOSE

The goal of this study is to investigate the use of cOSSCIR
on unregistered dual kV data, such as that acquired by rapid
kV switching acquisition approaches. Specifically, this inves-
tigation will focus on inverse-crime studies and experimental
reconstructions to establish the feasibility of using cOSSCIR
on unregistered dual-kV data.

III. METHODS

The cOSSCIR algorithm is designed to solve the concave-
convex optimization problem [1], [2], [3],

x⇤
km =argmin

n
D(cw`, ĉw`)

o
:
P

m kxmkTV  �,

where the objective is to find the optimal basis material images
x⇤
km that minimizes

DTPL(cw`, ĉw`) =
P

w`[ĉw`(y)� cw` log(ĉw`(y))],

where DTPL is the Transmission data discrepancy derived
from a Poisson likelihood (TPL). The data model utilized by
the method is

ĉw` = Nw`
P

i Sw`i exp(�µmiP`kxkm),

where ĉw` represents the mean photon counts along a ray `
in energy window w. The variable Nw` represents the number
of counts along ray ` in energy window w in the absence of
an object, and Sw`i is the normalized x-ray energy spectrum.
P`k is the x-ray projection operator. Finally, µmi represents the
attenuation of material m at energy Ei. This one-step direct
inversion [2], [5], [6] method for CT has been investigated
for the photon counting problem. The method was found
to be more stable than traditional two-step approaches as it
utilizes all rays in the reconstruction, and places constraints
on the basis images xkm directly. In the one-step approach, the
spectral measurements need not be registered, and cOSSCIR
may potentially be applied to dual energy CT. Dual energy
CT, therefore, presents a unique opportunity to test cOSSCIR
on the unregistered reconstruction problem. In the case of dual
energy CT, the spectral model requires minimal modification
to account for an energy integrating detector. The spectra Sw`i

may be replaced by

Ŝw`i = �w`i Sw`i Ei,

where �w` represents the detector gain along the transmission
path ` in energy window w. The effect of unregistered data
was investigated by simulating data from a pelvis phantom,
consisting of a bone and water basis material maps, as
shown in Fig. 1. Using a polyenergetic x-ray transmission
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model [7], projections at 80 and 140 kV data were simulated
using realistic x-ray spectra. One simulation generated fully
registered noiseless data for spectra at 128 equally spaced
views. A second simulation generated data at 256 equally
spaced views, but with the 80 and 140 kV spectra alternating
for each view angle. This second simulation models a rapid
kV acquisition approach. Both sets of simulation data were

(a) (b)

Fig. 1: Pelvis phantom; (a) The bone basis material map, and
(b) the water basis material map.

reconstructed using the cOSSCIR framework, and the same x-
ray transmission model was used to simulate the data. During
the reconstructions, two error metrics were monitored with
iteration; the Root-Mean Squared-Error (RMSE) between the
phantom basis images and the basis map estimates, and the
TPL between the measured data and the modeled data.

Additionally, Dual-kV data was obtained from an exper-
imental micro-CT system using a high resolution flat panel
detector (Varian PaxScan 2520 DX) and a micro-focal x-ray
source (Hamamatsu 9181-02). A cylindrical phantom with
PMMA, Polystyrene, and Teflon inserts was imaged. For each
phantom, fully registered projections were acquired from 500
equally spaced view angles using 80 and 130 kV.

Fig. 2: Rod phantom consisting of PMMA, LDPE, and Teflon

A rapid-kV-switching acquisition was then simulated by
reconstructing from only 250 views for each spectra, with the
spectra alternating across angle. For each subsampled dataset,
the 80 and 130 kV sinograms were offset by a single view
angle. To further test the method, Slow-kV-switching data was
subsampled from the registered data by alternating between
the 80 and 130 kV sinograms every 10 consecutive views.
Reconstructions were then performed using the cOSSCIR
algorithm using aluminum and PMMA as the basis materials.
For each basis material image, Regions-of-interest (ROIs)

were placed over the LDPE, PMMA, and Teflon regions,
and the mean value in each material’s ROI was measured.
The percent error was taken between the ROI measurements
and the predicted ground truth material decomposition values
obtained from the XCOM NIST database [4].

IV. RESULTS

cOSSCIR was performed on the noiseless data to investigate
the effect of unregistered data on the reconstructions, and
the resulting material maps are shown in Fig. 3 for 8000
iterations. Rows (b) shows the results of the unregistered
reconstructions. The top row (a) shows the results obtained
from using fully registered 128 view data for comparison.

(a)

(b)

Fig. 3: Pelvis phantom reconstructions for (a) registered 128
views, (b) Rapid-kV 128 views/kV. The columns show the
bone and water basis reconstructions, respectively.

In general, the basis images are recovered well for the
unregistered 128 views/kV in Fig. 3(b), compared to the
registered reconstruction using 128 views/kV in Fig. 3(a). The
algorithm performance was further evaluated by monitoring
the data error and basis image error with iteration, and are
plotted in Fig. 4 for 128 views/kV.

As in the case of the reconstructions, the basis image
error indicate good recovery after 8000 iterations. The RMSE
between the phantom and basis images suggest the registered
and unregistered 128 view/kV reconstructions are approaching
the same solution. More iterations are required, in the case
of the unregistered data, before the image RMSE approaches
the same values as the registered reconstructions. Although
the data error is decreasing with iteration in Fig. 4(a), in
general, the TPL also indicates more iterations were required
in the unregistered case, suggesting there is a penalty to using
fewer projections per spectra compared to the fully registered
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Fig. 4: (a) Data error, (b) RMSE for the bone basis image, (c)
RMSE for the water basis image.

case. An interesting aspect of these unregistered inverse-crime
studies was convergence to a solution was only observed using
µ-preconditioning [1], where the material attenuation energy
functions µ(E) were orthogonalized. µ-preconditioning was
not required for convergence on the registered data, but was
used in the results presented above.

Experimental data was also reconstructed as a preliminary
demonstration cOSSCIR applied to dual-kV data. 500 view
dual energy data were acquired, then unregistered rapid- and
slow-kV data were simulated by applying masks to the fully
registered data for a total of 256 views/kV. A 256 views/kV
registered dataset was also constructed from the 500 view
acquisition. Results for the 256 views/kV reconstructions are
shown in Fig. 5 using aluminum and PMMA as the basis
materials for 8000 iterations. µ -preconditioning was also used
to perform all reconstructions. Compared to the registered
results in Fig. 5, the recovered rapid- and slow-kV PMMA
basis image and virtual mono-energetic images are quite
similar. There are noticeable ray artifacts in the rapid- and
slow-kV aluminum basis images. However, these appear to
be largely in areas of the image where aluminum has limited
contribution.

(a)

(b)

(c)

Fig. 5: Reconstructions using (a) Registered, (b) Rapid-kV,
and (c) Slow-kV data. The columns display the aluminum,
PMMA, and the 50 keV mono-energetic image.

Material quantification was performed on the LDPE,
PMMA, and Teflon ROI’s of the phantom. The percent errors
between the recovered grayscale values and their ground truth
for each basis are shown in Table I. The recovered material
vectors are nearly identical for the registered and rapid-kV
reconstructions, demonstrating that unregistered acquisition
does not impact quantitative accuracy.

V. NEW AND BREAKTHROUGH WORK TO BE PRESENTED

This is the first demonstration and application of cOSSCIR
on unregistered dual-kV data.

VI. CONCLUSIONS

Our preliminary results demonstrate the application of the
one-step cOSSCIR algorithm to unregistered data. The inverse-
crime studies demonstrate a challenging reconstruction prob-

TABLE I
% Error LDPE ROI PMMA ROI Teflon ROI

Registered PMMA 1.11 0.80 1.76
AL -21.41 - 6.24

Rapid-kV PMMA 0.99 0.20 0.58
AL -21.41 - 3.27

Slow-kV PMMA 0.60 1.20 1.10
AL -2.92 - 0.45
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lem, compared to reconstructing registered data. More itera-
tions and orthogonalized material attenuation energy functions
are required for basis image recovery. Our results suggest
this may be due to using fewer view per spectra. Finally,
the inverse-crime results were extended to experimental un-
registered dual-kV data using a physical rod phantom. The
results demonstrate that the cOSSCIR may also be applied
to experimental, unregistered, dual-kV data. Furthermore, the
unregistered data appears to have minimal impact on material
basis quantification using 256 views/kV. Investigations into
improving the basis image quality and material decomposition
are currently underway. Work is underway to compare the
cOSSCIR results to a two-step image-domain decomposition
method.
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 Abstract— Patient-based CT phantoms, with realistic image 
texture and densities, are essential tools for assessing and 
verifying CT performance in clinical practice. This study extends 
our previously presented 3D printing solution (PixelPrint) to 
patient-based phantoms with soft tissue and bone structures. To 
expand the Hounsfield Unit (HUs) range, we utilize a stone-based 
filament. Applying PixelPrint, we converted patient DICOM 
images directly into FDM printer instructions (G-code). Density 
was modeled as the ratio of filament to voxel volume to emulate 
attenuation profiles for each voxel, with the filament ratio 
controlled through continuous modification of the printing speed. 
Two different phantoms were designed to demonstrate the high 
reproducibility of our approach with micro-CT acquisitions, and 
to determine the mapping between filament line widths and HU 
values on a clinical CT system. Moreover, a third phantom based 
on a clinical cervical spine scan was manufactured and scanned 
with a clinical spectral CT scanner. CT image of the patient-based 
phantom closely resembles the original CT image both in texture 
and contrast levels. Measured differences between patient and 
phantom are around 10 HU for bone marrow voxels and around 
150 HU for cortical bone. In addition, stone-based filament can 
accurately represent boney tissue structures across the different 
x-ray energies, as measured by spectral CT. This study 
demonstrates the feasibility of our 3D-printed patient-based 
phantoms to be extended to soft-tissue and bone structure while 
maintaining accurate organ geometry, image texture, and 
attenuation profiles for spectral CT. 
 

Index Terms—Computed Tomography, 3D printing, Image 
Quality Phantoms, Quality Assurance 
 

I. INTRODUCTION 
nthropomorphic patient-based phantoms are essential 
tools in computed tomography (CT) research and clinical 

practice. Academic and clinical CT communities would benefit 
from a fast and inexpensive manufacturing method to produce 
patient-based phantoms compared to currently available 
commercial solutions.  

Over the last decade, several approaches for 3-dimensional 
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(3D) printing of tissue-mimicking phantoms have been 
proposed for validation and evaluation of CT imaging 
technology [1]-[3]. We recently introduced PixelPrint [4], 
which has illustrated the capability to generate patient-specific 
lung phantoms with accurate attenuation profiles and textures.  
This method directly translates DICOM image data into 
G-code, eliminating the need for slicing software utilized in 
common conventional 3D printing methods. By this, our 
method does not require segmentation and triangulation of 
surface geometry models and thus enables the generation of 
sophisticated patient-based phantoms.  

In this study, we applied PixelPrint with a new type of 
filament (StoneFil) to enable 3D printing of soft tissue and bone 
structures. The filament, consisting of 50% gravimetric 
powdered stone filling, is 37% denser than regular PLA. First, 
we manufactured three identical phantoms to evaluate the 
reproducibility of our printing patterns with a micro-CT 
system. Next, we generated a calibration phantom to calibrate 
printed filament ratios with Hounsfield Units (HU). Finally, a 
patient-specific cervical phantom was generated and evaluated 
with a clinical spectral CT system. We demonstrated that 
PixelPrint can readily and reliably produce realistic 
patient-based phantoms for representing various anatomical 
structures. 

II. MATERIALS AND METHODS  

A. Printer and filament 
In this study we used a fused-filament 3D printer (Lulzbot 

TAZ 6 with M175 tool head, Fargo Additive Manufacturing 
Equipment 3D, LLC Fargo, ND, USA) and a 0.40 mm brass 
nozzle. StoneFil filament with a diameter of 1.75 mm 
(FormFutura, AM Nijmegen, the Netherlands) was extruded at 
a nozzle temperature of 200 °C. To generate different x-ray 
attenuations, printing speeds were varied between 6.0 to 30 
mm/s, producing line widths from 0.2 to 1.0 mm. Printer head 
acceleration was set to 500 mm/s2 and the jerk setting (or 
acceleration threshold) was kept at 8 mm/s.  

PixelPrint: Three-dimensional printing of 
patient-specific soft tissue and bone phantoms for CT 
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B. PixelPrint 
For each phantom in this study, G-code was automatically 
generated by PixelPrint through translating input images, i.e., 
DICOMs, into printer instructions. The generated G-code files 
contain instructions for the 3D printer to produce multiple 2D 
layers. Each printed layer consisted of an array of spaced 
parallel filament lines at a fixed spacing but of varying line 
widths, causing a partial volume effect that corresponds to the 
desired densities and resulting HU values in the final CT slice.  
Here, the infill ratio is defined as the amount of filament 
occupying a given unit volume, entailing printed line widths 
that are wider for high-density areas and narrower for 
low-density areas. Figure 1 illustrates the internal structure of 
2D layers imaged with a micro-CT and the resulting partial 
volume effects in clinical CT scans. Further details regarding 
the PixelPrint technique can be found in our previous 
publication [5]. 

C. Phantoms 
1) Micro-CT phantom 
Three cylindrical phantoms were generated to evaluate the 
reproducibility of PixelPrint, utilizing both micro-CT and  
clinical CT imaging. Each phantom was printed as a small rod, 
with a diameter of 20 mm and a length of 60 mm, that consisted 
of four sections with different infill ratios (100%, 70%, 50%, 
and 30%). StoneFil filament lines were printed at a spacing of 1 
mm, and the corresponding line widths were 1, 0.7, 0.5, and 0.3 
mm, respectively. A thin outer layer was added to each 
phantom to support the structure (crucial for low density 
sections). The three phantoms were printed using the same 
G-code input and 3D printer. 
2) Calibration phantom 

A calibration phantom was designed to further evaluate the 
performance of PixelPrint when utilizing the StoneFil filament. 
The phantom is designed as a cylinder, with a diameter of 10 
cm and a height of 1 cm, that includes seven equally divided 

pie-shaped sections. Each section was printed with a fixed line 
spacing of 0.5 mm but at variable filament line widths (0.2-0.5 
mm), corresponding to different infill ratio (40-100%, with 
10% intervals). 
3) Cervical phantom 

The Institutional Review Board (IRB) approved this 
retrospective study. A cervical phantom was created based on a 
patient-specific image volume (10 x 10 x 10 cm3) that was 
acquired on a clinical CT scanner (Siemens SOMATOM 
Definition Edge, Siemens Healthcare GmbH, Erlangen, 
Germany) at 120 kVp with a standard diagnostic dose (CTDIvol: 
8.8 mGy). See Table 1 for detailed acquisition parameters for 
the patient and phantom scans.  

The patient data consist of four cervical vertebrae (C4 to C7), 
including a clear view of trachea and esophagus. A circular 
region of interest with a diameter of 10 cm was cropped in the 
axial slices, forming a cylindrical phantom to fit in the bore of a 
QRM chest phantom (QRM GmbH, Möhrendorf, Germany). 

TABLE I 
SCAN PROTOCOL OF THE PATIENT DATA AND PHANTOM SCAN 

 Patient scan Phantom scan 

Scanner model Siemens SOMATOM 
Definition Edge 

Philips IQon  
Spectral CT 

Tube voltage 120 kVp 120 kVp 

Tube current 105 mA 105 mA 
Exposure time 1.0 s 1.248 s 
Spiral pitch factor 0.8 1.0 
Exposure 131 mAs 131 mAs 
CTDIvol 8.8 mGy 9.9 mGy 
Collimation width 0.6 / 38.4 mm 0.625 / 40.0 mm 
Slice thickness 0.60 mm 0.67 mm 
Convolution kernel I26s\3 C 
Field of view 99.75 x 99.75 mm2 224 x 224 mm2 
Matrix size 228 x 228 pixel2 512 x 512 pixel2 
Pixel spacing 0.4375 mm 0.4375 mm 

Collimation width values are noted as single / total collimation width. 
 

10mm

a b c d

e f g h

 
Fig. 1.  Micro-CT (first row, window min/max = -1000/2500 HU) and clinical CT images (second row, window min/max = -1000/1000 HU) of the four sections 
of a micro-CT phantom, with infill ratios of 1.0, 0.7, 0.5 and 0.3 (from left to right). 
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HUs were converted to infill ratios, based on the results from 
the calibration phantom, where the maximum HU the StoneFil 
filament can reach was 1000 HU. Further, the maximum infill 
ratio was 100% (0.5 mm line width), and the minimum was 
40% (0.2 mm line width). 

D. CT scan and image analysis 
The three micro-CT phantoms were scanned on a 

commercial micro-CT (U-CT system, MILabs, CD Houten, the 
Netherlands) with a tube voltage of 50 kVp in three consecutive 
scans. In addition, the phantom was also scanned on a clinical 
CT system (IQon spectral CT, Philips Healthcare, the 
Netherlands) at 120 kVp with a high-resolution protocol and a 
small field-of-view. Additional acquisition parameters of the 
two scans are listed in Table 2. 

Micro-CT images were exported from the scanner and 
reprocessed with a multi-planar reconstruction algorithm 
(MPR) in Horos (Horos Project, Annapolis, MD, USA). Mean 
and standard deviation HU values of the four sections in the 
sagittal slices were measured, and their linearity was assessed. 

The calibration and cervical phantom were scanned inside 
the QRM chest phantom with a clinical CT system (IQon 
spectral CT, Philips Healthcare, the Netherlands). The protocol 
parameters approximately matched those of the original clinical 
examination of the patient (see Table 1). 

For the calibration phantom, mean and standard deviation 
HU values of seven areas were measured. Square regions of 
interest (ROI) of 15 x 15 mm2 were manually placed in each 
density region. For the cervical phantoms, images are exported 
and registered to the original patient images using the OpenCV 
Library (https://opencv.org). The dual-energy CT acquisition 
was utilized to measure HU at various virtual monoenergetic 
levels to quantity the spectral performance of our phantom.   

III. RESULT 
Underlying grid-like structure generated by PixelPrint are 

visible in micro-CT images however appear as constant regions 
in high-resolution clinical images due to the partial volume 
effect (Figure 1). In the micro-CT images, printed lines were 

observed having equal spacings (1 mm) and a constant line 
width within each region. A layered structure with introduced 
offsets is distinctly visible in orthogonal views. When 
comparing the three identically manufactured phantoms, one 
can appreciate the high reproducibility that Pixelprint offers. In 
both micro- and clinical CT scans, an accurate linear 
relationship between infill ratios and mean HU was measured (r 
= 0.984 and 0.982).  

For the calibration phantom (Figure 2), each of the seven 
regions had homogeneous intensities with excellent linearity. 
The highest infill ratio (100%) region has a mean of 819 HU 
and a standard deviation of 37 HU, while the lowest infill ratio 
(40%) has a mean of -220 HU and a standard deviation of 36 
HU. A Pearson’s correlation coefficient of 0.99 indicated a very 
high linear correlation between infill ratios and HUs.   

Qualitatively, the CT image of the patient-based phantom 
closely resembles the original CT image both in texture and 
contrast levels, including various small bone and soft tissue 
structures. Mean virtual monoenergetic HU values of vertebra 
voxels from spectral CT reconstructions of the phantom scan 
show high corresponds to those of a 300 mg/ml calcium insert, 
with an RMSE of 138 HU after accounting for density 
differences. (Figure 3g). The intensity of bone marrow in the 
phantom (region 1 in Figure 3b) is about 10 HU different from 
the corresponding value in the original patient image. Limited 
by the density of the StoneFil filament, cortical bone voxels 
(regions 2-3 in Figure 3b) are about 150 HU less than expected.  

IV. DISCUSSION 
Continuing our previous work on producing patient-based 

lung phantoms, we demonstrated that PixelPrint combined with 
higher density filament is capable of creating soft tissue and 

TABLE II 
SCAN PROTOCOLS FOR THE MICRO CT PHANTOM 

 Micro CT scan Clinical CT scan 

Scanner model MILabs U-CT Philips IQon  
Spectral CT 

Tube voltage 50 kVp 120 kVp 

Tube current 0.21 mA 130 mA 
Exposure time 54 s 1.923 s 
Spiral pitch factor Axial scan 0.39 
Exposure 11.3 mAs 250 mAs 
CTDIvol 69 mGy 16.4 mGy 
Collimation width - 0.625 / 40.0 mm 
Slice thickness 0.08 mm 0.67 mm 
Convolution kernel - YC 
Field of view 22.16 x 22.16 mm2 100 x 100 mm2 
Matrix size 277 x 277 pixel2 512 x 512 pixel2 
Pixel spacing 0.080 mm 0.195 mm 

Collimation width values are noted as single / total collimation width.  

 
Fig. 2.  Calibration phantom for Stonefil filament (a) Ground truth design of 
the phantom: a cylinder that is equally divided into areas with infill ratios of 
40-100%, with 10% intervals. (b) Phantom images from a clinical CT scanner. 
Window max/min is -1000/1000 HU. (c) Mean HU values of the seven areas 
versus the corresponding infill ratios, with standard deviations indicated as 
error bars. 
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bone phantoms. We demonstrate PixelPrint’s high level of 
reproducibility and robustness by examining the underlying 
grid-like structure with micro-CT scans, which cannot be 
resolved with high-resolution clinical CT acquisitions. In 
addition, we show a high correspondence in attenuation values 
for boney structures across the entire x-ray energy range. 

Our study has limitations; the maximum Hounsfield unit 
created from StoneFil was approximately 819 HU in the 
patient-based cervical spine phantom. Further investigations 
are necessary to extend the dynamic range of PixelPrint, 
potentially by working with a dual-filament 3D printer.  

V. CONCLUSION 
The present study demonstrates the feasibility of our 

3D-printed patient-based phantoms to be extended to 
soft-tissue and bone structure while maintaining accurate organ 
geometry, image texture, and spectral attenuation profiles. 
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Fig. 3.  Patient image and the PixelPrint cervical phantom. (a) (c) and (e) 
Original CT images utilized by PixelPrint to create the cervical phantom. (b) (d) 
and (f) CT images of the cervical phantom. All images have window level of 0 
HU and width of 1200 HU. (g) Virtual monoenergetic HU measured with 
spectral CT at the denoted ROIs in (b) alongside reference values from a 300 
mg/ml calcium insert (marked in yellow).  
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Practical Workflow for Arbitrary Non-circular
Orbits for CT with Clinical Robotic C-arms

Yiqun Ma1, Grace J. Gang1, Tess Reynolds2, Tina Ehtiati3, Junyuan Li1, Owen Dillon2, Tom Russ4,
Wenying Wang1, Clifford Weiss1, Nicholas Theodore1, Kelvin Hong1, Ricky O’Brien2, Jeffrey Siewerdsen1,

J. Webster Stayman1

Abstract—Non-circular orbits in cone-beam CT (CBCT) imag-
ing are increasingly being studied for potential benefits in
field-of-view, dose reduction, improved image quality, minimal
interference in guided procedures, metal artifact reduction, and
more. While modern imaging systems such as robotic C-arms
are enabling more freedom in potential orbit designs, practical
implementation on such clinical systems remains challenging due
to obstacles in critical stages of the workflow, including orbit
realization, geometric calibration, and reconstruction. In this
work, we build upon previous successes in clinical implementation
and address key challenges in the geometric calibration stage with
a novel calibration method. The resulting workflow eliminates the
need for prior patient scans or dedicated calibration phantoms,
and can be conducted in clinically relevant processing times.

I. INTRODUCTION

FOR decades, CT imaging has largely relied on standard
circular and helical source-detector orbits for data acqui-

sition. In recent years, new imaging systems (eg. robotic C-
arms) have enabled the exploration of more advanced non-
circular orbits for added benefits including increased field-
of-view (FOV) size [1], improved image quality and/or dose
reduction [2], weight-bearing extremity imaging [3], and metal
artifact reduction [4].

Despite the increased interest, non-circular orbits that re-
quire more complex motion remain difficult to implement and
research on clinical systems. There are several challenges —
especially when many new orbits are desired including those
that are customized to be patient- and/or task-specific. First,
without access to sophisticated control systems, it is difficult
to command the system to realize designed orbits. To date,
we have relied on largely manual controls to achieve non-
circular orbits on robotic C-arms [4]–[6]. Second, the manual
element in the data acquisition leads to irreproducible scans.
Additionally, the system geometry parameters recorded by
the robot are not accurate enough to be used for 3D recon-
structions due to system vibrations and gravity-induced strain
on mechanical parts. Therefore, each scan requires online
geometric calibration before reconstruction. Previously, we
used a 3D-2D registration process for geometric calibration,
in which we used a prior reconstruction as the registration
target and then iteratively register each acquired projection to
forward projections from the registration target [7]. However,
this method requires a prior reconstruction and relatively long
computation time, both of which may not be available in
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by the Cancer Institute of New South Wales Fellowship 2021/ECF1293

1Johns Hopkins University, Baltimore, MD, 21205
2University of Sydney, Australia
3Siemens Healthineers
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a clinical setting, and thus presents an obstacle to clinical
research and translation.

In this work, we outline a workflow for implementing
non-circular orbits on clinical systems, focusing on orbits
previously demonstrated with inherent metal artifact reduction
capabilities. This workflow includes a novel geometric calibra-
tion method based on fixed fiducials with arbitrary and a priori

unknown placement, which overcomes the aforementioned
challenges in clinical implementation.

II. METHODS

We introduce a workflow for arbitrary-trajectory CT data
acquisition in the following subsections. This includes details
of acquisition on an experimental test bench and two different
clinical robot C-arms, as well as a new online geometric
calibration method and image reconstruction. Many clinical
systems are limited in the degree of automatic orbit control.
Some currently can only be driven manually while others allow
increasing levels of automation. While fully manual techniques
allow for research investigations, clinical translation will re-
quire additional manufacturer support.
A. Orbit Design and Implementation

Previously, we have investigated several types of non-
circular orbits that can largely eliminate metal artifacts in-
cluding sinusoidal and multiple-arc trajectories [6], [8]. In
this work we consider simplified versions of two orbit types:
sawtooth orbits and double-circle-plus-arc (DCArc) orbits.
(See Figure 1). Both orbits were designed with a fixed isocen-
ter, with LAO/RAO gantry rotation angle and CRAN/CAUD
gantry tilt angle being the parameters in non-circular actuation.
In the sawtooth orbit, the source oscillated between ±20�

in tilt at a constant speed for two full cycles while rotating
360�. The DCArc orbit consisted of two tilted circular scans
at ±25� plus an arc, where the gantry did not rotate while
tilting from +29� to �28�. On clinical C-arms, the orbits were
realized by manually driving using the bedside joystick in flu-
oroscopy mode (Experiment B), manually advancing through
pre-programmed navigation points [6], or using a dedicated
control system supplied by the manufacturer (Experiment C).

B. Geometric Calibration

As mentioned above, calibration of trajectories can require
scan-specific estimation of the system geometry. Towards this
end, we placed steel ball bearings (BBs) on the surface of
the object as fiducials. The positions were unknown a priori

but were presumed to remain rigidly aligned with respect to
each other during the scan. The locations of BBs in projection
images were extracted and used as inputs to a geometric
estimation routine. Details of this procedure follow.
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1) BB Extraction: The BB locations were identified in
each projection by performing a 2D correlation between the
line integral images and a disc-shaped kernel of roughly the
same size as the BBs. The highest correlations represent the
approximate location of the centroids of the BBs. This location
is further refined by computing the centroid of pixel values
in a square region-of-interest (ROI) about the initial location
estimate. Predicted BB locations based on linear interpolation
across adjacent frames were used to identify individual BBs
and maintain continuity. For scans where the BBs had very low
contrast against background features such as metal and thick
bones, the extraction was initialized by manually selecting the
approximate centroid locations on the first image.

2) Geometry Optimization: Due to the BB’s spherical sym-
metry, accurately backprojected rays of the centroid of a BB
should intersect at an infinitesimal point in space. With an
inaccurate geometry, these rays may not intersect. Thus, we
can potentially estimate the true geometry by minimizing the
mean Euclidean distance from the BB centers to corresponding
backprojected rays, or, the reprojection error (RPE):

RPE(p,⌦n) =
1

K

KX

k=1

d [pk,Lk(⌦n)] (1)

where n is the projection index; k is the BB index; ⌦n

are parameters of the view-dependent system geometry; p
contains all 3D BB center locations; Lk(⌦n) is the line
equation of the ray backprojected from the k-th BB centroid
on the n-th projection view using geometry ⌦n; d [p,L] is the
Euclidean distance from point p to line L.

We presume that the BB center locations are unknown (e.g.
no prior scan or calibration) and also need to be estimated.
We start with an approximate geometry (e.g. based on rough
encoder positions or commanded location) as an initial guess.
In this case, backprojected lines will likely not intersect at
a point but instead a larger region that is generally close to
the true BB location in 3D. For each pair of backprojected
rays, we calculate the nearest point between these rays - the
midpoint of the line segment orthogonal to and connecting
both rays. We form a point cloud by computing the nearest
points between all ray pairs, and the mean location of the point
cloud is used as the estimated BB center: p̂k = PN [Lk(⌦)]
where PN [L(⌦)] is the mean of all nearest points formed
from N rays backprojected using geometry ⌦. We iteratively
update p̂ and ⌦ by minimizing the RPE to jointly estimate
BB point cloud centers and the system geometry:

⌦̂n,i = argmin
⌦

RPEn(p̂i�1,⌦) (2)

where i is the iteration number. Note that the solutions of
this objective will have fixed points where the point clouds
have shrunk to infinitesimal size. It is possible that such a
scenario is not the true geometry; however, such a geometry
should provide accurate representations at those points. In
this work, the optimization is performed using the MATLAB
(MathWorks Inc.) function fmincon.

C. Reconstruction and Metal Artifact Reduction (MAR)

For image formation for the non-circular scan trajectories,
we used a model-based iterative reconstruction algorithm.

Fig. 1. Diagram showing the non-circular orbits invested in this work. Red
dot at center of spheres is the isocenter. Colored dots on the sphere are source
positions in the orbit. Important CRAN/CAUD tilt angles and arc lengths are
marked on each plot. (A) sawtooth orbit. (B) double-circle-plus-arc (DCArc)
orbit. (C) multi-arc orbit.

Fig. 2. Photo of bench setup and diagram of the 6 DoF motion space of the
hexapod stage.

Fig. 3. Motion errors added to the sawtooth orbit in Fig. 1 for the test bench
experiment. Top plot: angular errors added in roll, pitch, and yaw. Bottom
plot: spatial shift of iso-center added in x, y, and z axes.

Specifically, we used a modified Penalized Weighted Least-
Squares (PWLS) objective with a quadratic penalty. For all ex-
periments, 50 iterations of a separable paraboloidal surrogates
algorithm [9] were applied. A simple MAR algorithm [10]
was implemented to eliminate streaks, etc. associated with the
BBs or implants. In short, the metal regions in the projection
images were segmented and those regions were filled using
interpolated data. For implants, the metal volumes were added
back into the metal-free reconstruction.

D. Experiment A: X-ray Test Bench

To investigate the online registration approach under con-
trolled conditions, we performed a phantom study on a dedi-
cated x-ray testbench.

1) Phantom Design: The test phantom (Figure 4A) con-
sisted of a 3D-printed cervical spine placed in a plastic cylin-
der filled with plastic spheres of variable sizes for background
clutter. Eight steel BBs of 3.17 mm diameter were affixed to
the side of the container. BB placement followed a roughly
spiral fashion to reduce the chance of overlapping BBs in
projections; however, precise locations were unknown a priori.
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2) Bench Experiment Implementation: The test bench in-
cludes an X-ray tube (Varex Rad-94), a flat-panel detec-
tor (Varex PaxScan 4343CB), a 6 degree-of-freedom (DoF)
hexapod (PI H-900K Series) and rotation stage (PI PRS-
200) (Figure 2), which enables precise emulation of arbitrary
source-detector trajectories. In previous work [6], inaccuracies
in positioning of a Siemens Artis Zeego were identified. We
found systematic inaccuracies in the system encoded positions
in LAO/RAO angle, CRAN/CAUD angle, isocenter, and a
slight in-plane panel rotation around its normal axis, but also
found that the C-arm was sufficiently rigid that we could
assume a fixed source-detector distance and piercing point [6],
[7]. In our bench studies, we emulated a C-arm system whose
source remained fixed relative to the detector but had similar
isocenter shifts and angular inaccuracies. These inaccuracies
were added to an ideal sawtooth orbit (Figure 1A) and were
realized by the hexapod using 3 DoF linear motions and 3 DoF
rotations in roll, pitch, and yaw. Figure 3 illustrates the error
in each DoF added to each frame. The error amplitudes in yaw
(rotation) and pitch (tilt) were equal to the angular step size
in each axis. A sinusoidal error pattern that was previously
observed during data acquisitions (likely caused by gravity-
induced sagging) was also added. The spatial shifts were
generated with a sine wave of amplitude 8 mm plus random
noise of ±2 mm for an exaggerated level of uncertainty as
compared with the clinical system. A normal circular scan
was also acquired and each scan had 500 frames.

E. Experiment B: Siemens Artis Zeego Robotic C-arm

1) Phantom Design: To test and quantify the performance
of the new calibration method on the Zeego C-arm, we used
a cylindrical calibration phantom as proposed in [11], which
contained 16 steel BBs, with the addition of a thin tungsten
wire of 0.13 mm diameter suspended in the middle to probe
in-plane image fidelity (Figure 4B).

2) Siemens Artis Zeego implementation: The DCArc orbit
(Figure 1B) was performed manually with the bedside joystick
controller, and projections were acquired in fluoroscopy mode.
The orbit was acquired in three parts: two full tilted circles
in LAO/RAO and one arc in CRAN/CAUD. For comparison,
a standard circular scan was also acquired. The acquisition
process required no modification to the system. The raw
images were extracted with a dedicated software tool.

F. Experiment C: Siemens Artis Pheno Robotic C-arm

1) Phantom Design: To further test the proposed workflow,
we imaged a torso phantom with Sawbones spine (Figure 4C).
Four pedicle screws (Evolution Surgical, Sydney, Australia)
were placed into three vertebrae (L2–4). Ten BBs of diameter
2 mm were taped to the surface of the torso phantom.

2) Siemens Artis Pheno implementation: We combined
non-circular orbits with an upright weight-bearing setup —
positioning that could provide more diagnostic information
for spine diseases [1], [3], [12]. Since the phantom was sat
upright on the bed, the C-arm’s CRAN/CAUD tilt axis now
functioned as the primary LAO/RAO gantry rotation. Due to
motion range limitation, in order to achieve the 210� arc in the
multi-arc orbit (Figure 1C), we manually rotated the phantom

Fig. 4. Phantoms used in the three experiments. (A) C-spine phantom,
showing the clear container, the plastic spheres inside, and steel BBs taped
on the outside; the 3D-printed cervical spine is not visible due to the spheres.
(B) Diagram of the cylindrical phantom adding a tungsten wire to a Cho
calibration phantom with BBs. (C) Torso phantom with Sawbones spine,
pedicle screws (green ovals), and steel BBs affixed with black tape.

approximately 90� between two identical 120� arc scans at a
10� tilt. Another 120� arc was acquired at a �20� tilt, and a
tilting arc between �25� and 30� was acquired.

III. RESULTS

A summary of results for all experiments is shown in
Figures 5–7. Pre- and post-online calibration reconstructions
are shown for each case. In all cases, the online calibration
improves image quality. In experiment A/test bench (Figure
5) we see that the online BB calibration has similar image
quality to both a well-calibrated circular scan as well as a
calibration based on 2D-3D registration using a prior circular
scan. In experiment B/Zeego (Figure 6), the central tungsten
wire in the phantom is used to compute a FWHM estimate
of the point-spread-function (PSF) which is comparable in
both a circular and online BB-calibrated scan, whereas the
pre-calibrated scan is too diffuse to obtain a FWHM estimate.
Experiment C/Pheno (Figure 7) shows significantly improved
visualization of anatomy with the online calibration. Moreover,
previous results showing the ability to reduce metal artifacts
with non-circular scans are evident.

The right side of each Figure 5-7 shows RPE distribution
for the initial (pre-calibration) guess, and after 1, 2, and 3
iterations of the joint location/geometry estimation process.
Each violin plot contains N RPE values from the N projec-
tions of the scan. The white circle at the middle of each violin
represents the median RPE, the horizontal line denotes mean
RPE, and the top right insert shows the RPE for the initial
guess, which does not fit within y-axes of the main plots.

All three RPE distribution plots show that the joint esti-
mation significantly improve accuracy after 1 iteration and
appears largely converged after 2 iterations, with marginal
improvements with a third iteration. Calibration performance
results after 2 iterations are summarized in Table I. Figure 7
shows the biggest RPE improvement from the initial guess
and also the highest computation time per frame, which
is potentially caused by the worst accuracy of the initial
guess. We observe an increasing total computation time with
more frames, although other factors such as BB number
and accuracy of initial guess may also be correlated. For
reference, the 3D-2D registration method routinely took more
than 15 seconds per frame. Note computation times were
for a mid-range laptop using prototype code, whereas 3D-2D
registrations were run on a workstation with a high-end GPU.
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Fig. 5. Experiment A - Test Bench: (Left) axial views of a select slice from the test bench experiment reconstructions. The columns compare results pre-
and post-calibration and between the 3D-2D registration and BB calibration methods. (Right) Summary of RPE as a function of iteration.

Fig. 6. Experiment B - Artis Zeego: (Left) zoomed-in reconstructions of the tungsten wire at the central slice. The corresponding FWHM of the PSF from
the tungsten wire is shown in each image. Voxel size: 0.01 x 0.01 x 0.01 mm. (Right) Summary of RPE as a function of iteration.

Fig. 7. Experiment C - Artis Pheno: (Left) selected axial and sagittal slices from pre- and post-calibration reconstructions of torso phantom. Voxel size: 0.5
x 0.5 x 0.5 mm. (Right) Summary of RPE as a function of iteration.

TABLE I
GEOMETRY ESTIMATION PERFORMANCE AFTER 2 ITERATIONS

Exp. A Exp. B Exp. C
Test Bench Siemens Zeego Siemens Pheno

Number of frames 500 656 857
Number of BBs 8 16 10
Elapsed time 60 s 91 s 208 s
Mean RPE 0.065 mm 0.210 mm 0.490 mm
Median RPE 0.065 mm 0.201 mm 0.418 mm
Std Dev RPE 0.0169 mm 0.0377 mm 0.370 mm
Time/frame 0.12 s 0.14 s 0.24 s
Time/frame/BB 0.015 s 0.009 s 0.024 s

IV. DISCUSSION AND CONCLUSION

This work establishes a practical workflow for non-circular
CBCT scans on clinical robotic C-arms by overcoming several
challenges in geometric calibration. The proposed geometric
calibration method requires no prior scans, is fast to compute,
and maintains comparable image quality to methods based on
2D-3D registration with prior images. This approach allows
for scans with only approximately known geometries due
to hardware limits in control and position, and for patient-
and task-specific scans that vary between procedures and that
cannot be individually pre-calibrated.

While we observe that previously investigated advantages
like artifact reduction for metal implants can be realized with
this approach, more detailed investigations are ongoing. More-

over, we expect that refinements in the BB extraction process
and subsequent optimization can be improved. In particular,
approaches to handle BBs obscured by metal implants and
BBs coming in and out of the FOV, will further deliver a
practical automatic workflow. Moreover, future work includes
the development of strategies for BB placement based on
task and anatomical site. Despite these current limitations,
the proposed workflow is an important step in delivering fast
online calibration without the need for prior images that will
facilitate clinical translation.
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Rigid Motion Correction Based on Locally Linear Embedding
for Helical CT Scans with Photon-counting Detectors
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Abstract—X-ray photon-counting detector (PCD) provides low noise,
high resolution, high contrast and spectral responses which makes it
popular in the CT imaging applications. Same as conventional CT scans
with energy integrating detectors, patients’ involuntary motions may
blur the reconstruction and generate artifacts, and this issue is more
prominent with PCD due to its high resolution and extended imaging
time result from limited counting rate. In addition, PCDs often come
with a significant amount of bad pixels and this makes the reconstruction
hard to be handled satisfactorily with analytical methods, which rules
out many state-of-the-art motion correction methods with fast analytical
reconstruction cores. In this paper, we extend our previous locally linear
embedding (LLE) based cone beam motion correction work to helical
scanning geometry which is more commonly used due to the high cost
of large-area PCDs. Specifically, besides the simple adaption of the LLE
based parallel searching idea to helical scans with PCDs, we propose
to use unreliable-volume masking to improve the motion estimation
accuracy and to perform incremental type updating to majorly reduce the
size of sampling grids for further acceleration. Our numerical experiment
results demonstrate that using unreliable-volume masking significantly
reduce the estimation errors around the two ends of the reconstruction
volume, and a five times reduction of sampling grid size while maintaining
a slightly better performance is observed by adopting the incremental
updating strategy. The experimental results on physical photon-counting
scans of patient wrist show significant resolution improvement and
contrast enhancement after correction with our method which reveals
subtle fine structures hidden by the motion artifacts.

Index Terms—Rigid motion correction, Motion estimation, Locally
linear embedding, Helical CT scan, Photon-counting detectors (PCDs).

I. INTRODUCTION

MOTION induced artifact is a long standing problem in X-
ray computed tomography which frequently happens in many

clinical diagnostic scans. For instances, head CT and cardiac CT
often suffer from two most representative types of motion artifacts,
rigid motion artifacts and deformable motion artifacts, respectively.
In this work we mainly focus on the rigid type motion compensation.
The rigid motion of the object can be virtually taken as the trans-
formation of the source and detector pair. Without proper correction
for the motion, the reconstruction will get degraded by equivalent
geometric error artifacts, typically like, blurring, double-edges, and
even streaks. Compensations for rigid motion is fairly straightforward
in an iterative reconstruction framework, which basically minimizes
a loss function by alternatively updating image reconstruction and
motion estimation till convergence [1]. However, this method is
often slow due to the heavy computational cost from each iterative
reconstruction. For acceleration, modified FDK [2] and weighted
filtered backprojection (WFBP) with motion-accounting rebinning [3]
have been recently developed to replace the iterative reconstruction
in the loop. Along the other direction, a powerful parallel searching
algorithm based on locally linear embedding (LLE) is proposed for
cone beam CT [4] to replace the gradient-base optimization steps
to majorly reduce the required number of iterations till convergence,
resulting a significant speed boost with the help of GPU.

M. Li and G. Wang are with the Department of Biomedical Engineering,
Rensselaer Polytechnic, Troy, NY, 12180 USA (wangg6@rpi.edu).

C. Lowe, A. Butler and P. Butler are with University of Canterbury and
MARS Bioimaging Ltd, Christchurch, New Zealand.

Recent development of X-ray photon-counting detector begins to
revolutionize the CT imaging field with the flag-event of the Siemens
photon-counting CT getting approved by FDA. But currently the
photon-counting detection technique is still not mature [5] which also
brings additional challenges to the motion correction (MC) problem.
First of all, due to complex manufacturing process, many PCDs in the
market come with a significant amount of ineffective pixels as a result
of manufacture cost controlling. In addition, large PCD array is often
tiled from many small PCD chips. The tiling often results in gaps due
to the insufficient room for electronics. Hence, the gaps together with
the ineffective pixels form the bad pixels in the projection which are
sometimes so big that can not be easily addressed with interpolations.
As a result, the traditional analytical reconstruction is hard to be
applied here. Second, due to the high cost of a PCD compared to a
same-area flat panel detector, helical scan is often performed for axial
FOV extension. These two issues make the problem unique and we
start from the state-of-the-art LLE based cone beam MC method [4],
further tailor the method for helical scan, and modify the motion
updating step from a global absolute value searching manner to an
incremental type for improved performance.

II. METHODS

A. LLE based motion correction

The rigid MC for a moving object is equivalent to the compensation
for the geometrical misalignment of the source and detector pair with
a fixed object. The goal is to minimize the difference between the
measured projections and the re-projected projections with estimated
motions incorporated. More explicitly, it formulates,

argmin
p,x

kb�A(p)xk22 , (1)

where A(p) is the system matrix after incorporating the motion
parameters p, x and b denote the reconstruction image and the
projection measurements respectively. The optimization is often per-
formed by alternatively updating p and x. In addition, since the
motion parameters for one view is separable from those for others,
the problem can be dealt as a set of sub-problems for each view in
the motion estimation updating step,

p = [p1, · · · ,pi, · · · ,pN ]T , pi = argmin
pi

kbi �Ai(pi)xk22 ,

(2)
where i = 1, 2, · · · , N denotes the selection for the ith view out of N
in total, and pi is the motion parameters for the ith view in the form
of [tx, ty, tz, ✓x, ✓y, ✓z]

T characterized by six freedom parameters
describing the translation and rotation along and around three axes.

Instead of using gradient based optimization technique, LLE uti-
lizes a powerful parallel searching strategy by densely sampling a
predefined parametric range. The basic idea is that if the sampling
grid is sufficiently small, the true parameter vector should be so close
to its K-nearest neighbors in the sampling grid and can be expressed
as the a linear combination of them such that its corresponding
projection measurement can also be represented with the linear
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combination of the K-nearest reprojected projections associated with
the neighboring parameter samples and with the same weights, i.e.,

p⇤
i =

KX

k=1

wkp
(k)
i , bi =

KX

k=1

wkAi(p
(k)
i )x, (3)

where
PK

k=1 wk = 1, and p(k)
i is one of the K nearest samples for

p⇤
i in the grid (p(1)

i , · · · ,p(j)
i , · · · ,p(S)

i ) with S samples in total, and
p⇤
i denotes the ground truth motion parameter. This can understood

as following, based on Taylor series expansion of Ai at p⇤
i ,

Ai(pi) ⇡ Ai(p
⇤
i ) + (pi � p⇤

i )
T @Ai(p

⇤
i )

@pi
, (4)

Hence,
KX

k=1

wkAi(p
(k)
i ) =

KX

k=1

wk(Ai(p
⇤
i ) + (p(k)

i � p⇤
i )

T @Ai(p
⇤
i )

@pi
)

= Ai(p
⇤
i ) + (

KX

k=1

wk(p
(k)
i � p⇤

i )
T )

@Ai(p
⇤
i )

@pi

If we have p⇤
i =

PK
k=1 wkp

(k)
i , we can easily reach the conclusion,

KX

k=1

wkAi(p
(k)
i ) = Ai(p

⇤
i ), bi =

KX

k=1

wkAi(p
(k)
i )x. (5)

As a close approximation, in practical algorithm we estimate
the parameters from pi one by one for each subproblem to save
computational cost rather than sampling multidimensional grid, and
all subproblems are updated in parallel for each of this iteration.
Specifically, let the rth parameter pir in one subproblem to be
updated. The key steps are

1) to generate a dense sample grid {p(s)
ir |s = 1, · · · , S} for pir;

2) to calculate the reprojected projection grid {(b(s)i ,p(s)
ir )|s =

1, · · · , S|} by replacing the rth parameter of pi with the sample
grid above;

3) to find the K nearest neighbors {(b̃(k)i , p̃(k)
ir )|k = 1, · · · ,K}

for bi from the grid projections in terms of Euclidean distance;
4) to find the weights w = [w1, · · · , wK ]T for the K neighbors to

best fit the measurement by optimizing the following problem,

w = argmin
w

�����bi �
KX

k=1

wkb̃
(k)
i

����� s.t.
KX

k=1

wk = 1; (6)

5) to update the estimation as pir =
PK

k=1 wkp̃
(k)
ir .

Note that the described updates for different views can be imple-
mented in parallel with GPU, above these are the sequential iterations
on r, and the whole process can be iterated a few times to reach
convergence (we refer to [4] for more details).

B. Bad pixel masking

Most PCDs contain a nonnegligible amount of ineffective pixels,
including initial real bad pixels from manufacturing, the tile gaps be-
tween chips, and developing dead/bad pixel due to aging/degradation
over time. Those pixels come with unreliable responses and in a big
number compared to the traditional EID detectors. One exemplary
projection with a 14-chip PCD is shown in Fig. 1. Since the number
is so big that simple interpolations cannot address the issue without
introducing significant artifacts. Their unreliable responses will also
influence the motion estimation accuracy.

Hence, our strategy to suppress the issue is to turn off those pixels
with a mask and utilize iterative reconstruction methods to avoid their
contribution to the reconstruction and MC. We adopted two simple
criteria for unreliable pixels detection with the open beam projection

Fig. 1. An exemplary raw projection image (top) and corresponding bad pixel
mask (bottom).

Fig. 2. Geometric illustration for the reliable volume masking. Any ray
passing through the unreliable portions (marked blue on the volume) is taken
as unreliable and resulting a mask indicating the areas in a projection (marked
blue on the detector) which should be discarded during the data fidelity loss
calculation for motion estimation.

data, (1) the temporal mean value of the pixel is a statistically outlier
from the group of all pixels; (2) the temporal variance of the pixel is
a statistically outlier from the group of all pixels. The mask for the
unreliable pixels will be used for reconstruction and to exclude their
contributions in the calculation of fidelity loss in Eq. 6.

C. Unreliable volume masking

Due to axial truncation, there are portions at two ends of a
reconstruction volume to be unreliable due to data insufficiency, as
illustrated in Fig. 2. Since these regions are only related to a few
projections, the resulting reconstruction will be solely determined
by these projections regardless of their geometrical misalignment,
which will counter-balance the misalignment loss they contribute
to the reliable portion, and finally degrade the reconstruction and
influence the overall motion estimation for other projections as well.
The original cone beam LLE MC method [4] does not consider
this effect, however, we found this effects could make a significant
difference if not dealt with properly.

To minimize the aforementioned effects, we utilize a mask to reject
the contribution from the rays passing through the two unreliable
portions to the data fidelity loss calculation in Eq. 6. The generation
of the mask follows three key steps,

1) determine the unreliable portions and generate a volume mask
with one indicating the unreliable portions;

2) forward project the volume mask to obtain the projection images;
3) take threshold on the projected images comparing to zero and

generate the unreliable volume mask in the projection domain.
There are several different approaches to determine the unreliable

portions. One could determine them according to the Tam-Danielsson
window, or could investigate the reconstruction and manually select
the slice range to balance the noise and image quality and reserve
some margins. In this study, we follows the latter one.

D. Incremental updating

In our previous work [4], the algorithm directly estimates the
motion vectors from the updated reconstruction in each main iter-
ation, and a same large dense sampling grid is used for all iterations.
However, the error of the motion estimation is expected to gradually
decease as iteration goes, which is also what we observed in practice.
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Global searching in a large grid may be a waste of computation
in later iterations, hence, we propose a more efficient incremental
type searching strategy, i.e., in each new iteration, we inherent both
the intermediate motion estimation and the updated reconstruction
from the last iteration, and perform further incremental refinement on
the estimation rather than start a global absolute value search. Since
we know the error is decreasing during iterations, we can gradually
shrink the sampling space while maintaining the same number of
samples to generate finer grid for improved searching accuracy. On
the other hand, we can use a fixed small number of samples resulting
an initial coarse sampling grid and gradually shrink the sampling
range to obtain finer grid during iterations, hence, we are able to boost
the searching efficiency without sacrificing significant performance.

E. Virtual bed removal

In most CT scans, the object is supported by a bed or holder which
is considered static in reference to the scan geometry, for example,
a couch in a medical CT or a sample holder in a micro-CT. In the
reconstruction, those static beds preserve sharp edges and a relatively
good image quality and are more robust to object motions. However,
during the MC, those static items begin to move in reference to the
object. In other words, if we perfectly compensate the motion for
the object, the bed portion will get blurred and degraded. This will
counterbalance the decrease of the loss function in Eq. 6 due to the
improved motion estimation.

In order to avoid this effect, we virtually remove the bed from the
projection data, and use this new projection data to perform motion
correction. The steps to remove the bed are described as follows,

1) reconstruct the volume with the initial scan geometry;
2) segment the bed (i.e., all static portions) from the volume with

some margin and generate a bed mask;
3) set voxels outside the bed mask to zero in the reconstruction;
4) forward project the obtained bed-only volume to get the bed-

only projections;
5) subtract the bed-only projections from the original projection

data to obtain the desired projections with bed removed for MC.

III. RESULTS

A. Simulation experiment

The benefits of unreliable volume masking and incremental updat-
ing have been investigated through simulation. The additional head
phantom from visible human project [6] is used as our sample, and the
volume is first resampled to have isotropic voxels of size 0.53mm3.
The detector size is 64 rows by 640 columns with a pixel size
of 1mm ⇥ 1mm, and the scanning pitch is 43.13 mm with 984
projections per rotation. To investigate the searching ability of the
method, we do not add noise in our experiments. Two rotations are
performed with motions added to six freedoms shown in Fig. 3, where
Ti and Ri denote the translation and rotation along and around the
ith axis, respectively. These amount of motions cause severe artifacts
in the reconstruction as demonstrated in Fig. 3 (b).

During the MC, the image is reconstructed at a volume size of
240⇥240⇥100 with a voxel size of 13mm3 for motion estimation.
Figure 4(a) shows the MC result using LLE based correction method.
Those images are greatly improved from the original reconstruction.
Despite a few artifacts, they appear close to the ground truth with
perfect motion compensation shown in Fig. 3(b). Figure 4(b) plots
the motion curves, estimated with the absolute type updating and the
unreliable volume masking, against the ground truth along views. The
estimated curves align well with the references especially with those
of rotation motion demonstration the effectiveness of LLE based
correction method.

Fig. 3. The motion added along each freedom (a) and the axial and sagittal
views of corresponding reconstructions without motion compensation and with
perfect motion compensation (b), displayed in window [0, 0.8], unit of cm�1.

The results of different strategy combinations of unreliable volume
masking and incremental updating are compared in Figs.s 4(c)
and 4(d), including: (absolute updating, masking, Ns = 50), (absolute
updating, no masking, Ns = 50), (absolute updating, masking,
Ns = 10), and (incremental updating, masking, Ns = 10), where Ns

denotes the size of the sampling grid, and the masking is the short
for the unreliable volume masking. Figure 4(c) shows the change
of the root mean squared error (RMSE) of the forward projections
of the reconstruction against the measurements during the iterative
updates of the reconstruction. Note that even with the perfect motion
estimation the RMSE does not reach zero due to the large-voxel
reconstruction, and this RMSE is marked as a reference line in the
figure. All four settings converge after 5 iterations and the incremental
updating with masking ranks first even it only uses a five times
smaller sampling grid compared to the second place, the setting with
absolute updating, masking and Ns = 50. The full size sampling
grid makes the absolute updating with masking perform better than
a smaller sampling grid as anticipated, and the absolute updating
without masking performs the worst although it uses a full size
sampling grid. To compare the motion estimation accuracy among
them, we calculate the virtual spatial positions of the source and
detector and virtual normal vector of the detector assuming a static
patient. The positional and angular errors against the ground truth are
plotted in Fig. 4(d). The other three settings except the no masking
one have closely overlapped curves, while the no masking setting
demonstrates a a cupping effect as predicted in section II-C, i.e.,
significantly larger misalignment is observed at the two ends and
extending towards the center compared to the other three. Those
results demonstrate the effectiveness of reducing errors of motion
estimation around two ends with the masking, and the efficiency boost
with incremental type updating while maintaining good accuracy.

B. Physical data experiment

The scan of a patient wrist was performed on a MARS Spectral
clinical scanner equipped with a PCD array tiled from 14 chips, and
each chip with 128⇥ 128 pixels of 110⇥ 110µm2 size. The helical
scan covers a FOV of 120mm in diameter and 100mm in length,
with 373 projections per rotation and 5713 projections in total. The
source is operated at 120 kVp, 310 µA with 0.25 mm Brass filtration.
The source to detector distance and source to iso-center distance are
949 mm and 625 mm, respectively. We select one portion from the
projection data consisting of 746 projections (2 rotations, projection
volume around size 128 ⇥ 1792 ⇥ 746) to test our MC method for
demonstration. To minimize the noise influence, the channel with the
lowest threshold (i.e., counts all photons with energy above 7keV)
is used for MC. The reconstruction has an isotropic voxel size of
1803µm3, resulting a volume of size 746 ⇥ 746 ⇥ 123. We set the
number of samples along each freedom as 50, and the range for
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Fig. 4. Numerical simulation results of MC using four settings, including:
(1) absolute updating, without the unreliable volume masking, Ns = 50
(abs. wo. mask); (2) absolute updating, with the masking, Ns = 50 (abs. w.
mask); (3) absolute updating, with the masking, Ns = 10 (abs. w. mask);
and (4) incremental updating, with the masking, Ns = 10 (inc. w. mask).
(a) shows the axial and sagittal views of compensated reconstructions using
settings 1, 2 and 4; (b) shows the estimated motion curve against the ground
true with respect to the view, obtained with setting 2; (c) is the RMSE of
the reprojections from the reconstruction against the measurements during
the MC iterations; and (d) illustrates the positional error of the virtual source
and detector positions and the angular error of the virtual detector orientation
against the ground truth.

translations in x, y, z and the range for rotations around x, y, z are [-
0.9 mm, 0.9 mm] and [�2�, 2�] respectively. SART algorithm is used
for reconstruction with 200 iterations. For the optimization along each
freedom we iterate two times, and the complete sequential updating
for all six freedoms (the main loop) is repeated for 5 times.

Figure 5 shows the results before and after MC. In Fig. 5 (b),
image becomes sharper (see the structures in the red circle) and subtle
structures are revealed from the blurry clouds after correction (see
the region pointed by the read arrow). Similar results are observed in
Fig. 5 (c), and the blurry double-edge phenomenon has been removed
through correction as shown in the region pointed by the left arrow. In
addition, fine structures are reveal inside the bony region pointed by
the second arrow, showing improved resolution. Figure 5 (e) provides
similar evidence for sharper edges and improved resolution. In Fig. 5
(d), weak structures are also enhanced as shown in the circles. Note
that the missing chunk after reconstruction at the bottom right corner
in Fig.s 5 (b) and (c) is the bed that has been virtually removed.

Figure 6 shows the change of RMSE of the reprojected projections
of the reconstruction volume against the measured projections with
bed removed during iterations. The corrections of six freedoms are
performed sequentially as shown in the curve. The RMSE rapidly
drops in the first two iterations and then converges gradually which
demonstrate the effectiveness of our method. Usually three iterations
are enough and no significant structure difference is observed between
the result with three iterations and that with five iterations.

IV. CONCLUSION

In conclusion, we have presented a LLE-based motion correction
method for helical photon-counting CT which uses iterative method
as the reconstruction core and incorporates unreliable volume mask-
ing and incremental updating strategies. Accuracy improvement of
motion estimation and speed boost due to the significantly reduced
sampling grid size benefitting from the two strategies are observed
in our numerical experiments. We also performed experiments on a
real clinical human wrist data, and show that significant resolution
and contrast enhancement are achieved, which reveals subtle fine
structures hidden by artifacts, after correction with our method.

Fig. 5. Motion correction results for real patient wrist data. (a) The overview
of the reconstruction volume before correction; (b) and (c) different axial
slices before and after correction (the axial positions indicated in (a)); (d) and
(e) are coronal view and sagittal view comparison (the cross-section postions
marked in (a)). All images displayed in the window [0, 0.8], unit: cm�1.

Fig. 6. The RMSE change on projection data during the correction iterations.

REFERENCES

[1] T. Sun, J.-H. Kim, R. Fulton, and J. Nuyts, “An iterative projection-based
motion estimation and compensation scheme for head x-ray ct,” Medical

physics, vol. 43, no. 10, pp. 5705–5716, 2016.
[2] J. Nuyts and R. Fulton, “Iterative fdk reconstruction for helical ct of the

head with rigid motion compensation,” in The 6th Int. Conf. on Image

Formation in X-Ray Computed Tomography, 2020, pp. 248–251.
[3] S. Jang, S. Kim, M. Kim, K. Son, K.-Y. Lee, and J. B. Ra, “Head motion

correction based on filtered backprojection in helical ct scanning,” IEEE

transactions on medical imaging, vol. 39, no. 5, pp. 1636–1645, 2019.
[4] M. Chen, P. He, P. Feng, B. Liu, Q. Yang, B. Wei, and G. Wang, “General

rigid motion correction for computed tomography imaging based on
locally linear embedding,” Optical Engineering, vol. 57, no. 2, p. 023102,
2018.

[5] M. Li, D. S. Rundle, and G. Wang, “X-ray photon-counting data correc-
tion through deep learning,” arXiv preprint arXiv:2007.03119, 2020.

[6] M. J. Ackerman, “The visible human project,” Proceedings of the IEEE,
vol. 86, no. 3, pp. 504–511, 1998.

The 7th International Conference on Image Formation in X-Ray Computed Tomography

311



           

 

Wednesday, June 15 

Modeling and Assessment 

Invited Talk on Deep Learning 

Deep Learning Assessment 

Wednesday Poster Session 

Spectral and Polyenergetic CT Reconstruction 
 
 
  

The 7th International Conference on Image Formation in X-Ray Computed Tomography

312



 

An Attempt of Directly Filtering the Sparse-View 
CT Images by BM3D 
Larry Zeng1,2 
1Department of Computer Science, Utah Valley University, Orem, UT 84058, USA 
2Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA  

 e-mail: larry.zeng@uvu.edu 

This work was supported in part by the National Institutes of Health (NIH) under Grant R15EB024283. 

ABSTRACT The x-ray computed tomography (CT) images with sparse-view data acquisition contain severe 
angular aliasing artifacts. The common denoising filters do not work well. The state-of-the-art methods to 
process the sparse-view CT images are deep learning based; they require a large amount of training data pairs. 
This paper considers a situation where no training data sets are available. All we have is one sparse scan of a 
patient. This paper attempts to use a BM3D filter to reduce the artifacts by introducing an artifact power 
spectral density function, which is calculated with computer simulations. The results in this paper show 
that the proposed method is not effective enough for practice applications. However, some insights 
may lead us to further investigations. 

INDEX TERMS Image processing, Image reconstruction, Biomedical imaging, Computed Tomography, 
Filters

I. INTRODUCTION 
The motivation for using low-dose x-ray computed 
tomography (CT) is to reduce the patient radiation exposure 
[1-3]. Since x-ray radiation exposure may play a role in 
getting cancers, it is advised to reduce the x-ray exposure to 
an As-Low-As-Reasonably-Achievable (ALARA) level [4]. 
One way of low-dose imaging is the sparse view method, but 
sparse angular sampling frequently leads to characteristic 
streak artifacts. This under sampling situation is also a case 
of compressed sensing. 

Many researchers attempted to solve this compressed 
sensing problem. One method is the iterative image 
reconstruction method that minimizes the total-variation 
(TV) norm or other measures of the image [5]-[11]. Most 
recently, research activities are mainly in the deep learning 
area [12]-[19]. It is fair to say that deep learning methods are 
dominating the current publications and conferences. 

This paper investigates a nonlinear filter that is not deep 
learning based. Our filter is based on the BM3D denoising 
method, which was proposed by Dabov et al. [20][21]. The 
BM3D method uses block matching and aggregation 
strategies to obtain three-dimensional image blocks; its 
denoising uses Wiener filtering. The BM3D is currently the 
state-of-the-art in image denoising. 

The BM3D method requires two inputs: the noisy image 
and the noise power spectral density image. The original 
purpose of BM3D is for random noise reduction. In our 

application of sparse-view tomography, our main concern is 
the angular aliasing streak artifacts. These artifact patterns 
are deterministic and object dependent. These artifacts are 
usually more pronounced than the random noise. The 
strategy of this paper is to treat the deterministic artifacts as 
random noise when calculating the ‘noise’ power spectral 
density function (image).  

 
II. METHODS 
A. ‘Noise’ power spectral density 
For a given CT image, G, resulted from sparse-view projection 
measurements, its associated artifact power spectral density 
function, P, is difficult to obtain. This is because the true 
image, T, is not available. 

In this paper, the artifact power spectral density function, 
P, is obtained by noiseless computer simulations, that simulate 
full-scan and sparse-scan projections of some random objects. 
A full scan has sufficient angular measurements. The 
reconstructed images from this full-scan data set are treated as 
(gold standard) true images, Tsimu. 

The artifact image, A, is the differences between the gold 
standard true image, T, and the given sparse-scan image, Gsimu: 

𝐴 = 𝑇𝑠𝑖𝑚𝑢 − 𝐺𝑠𝑖𝑚𝑢. (1) 
In this paper, we use 1000 random simulated objects. 
Therefore, we have 1000 2D artifact images, A’s.  

Let B be the 2D Fourier transform of image A defined in 
(1). For each element in B, we calculate its norm square and 
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denote the resulting frequency-domain image be P. This 
resultant 2D image, P, has the same dimension as the image 
A, is real, and is nonnegative. Even in the noiseless cases, P is 
not zero due to the sparse-view streaking artifacts. In forming 
1000 versions of P, no noise is added. Therefore, the image P 
is better referred to as the artifact spectral function (instead of 
the noise spectral function). 

Let 𝑃̅ be the average artifact power spectral density image 
from our 1000 artifact power spectral density images, P’s. 
This averaged artifact power spectral density image 𝑃̅ is used 
in the proposed algorithm. 
B. The proposed algorithm 

In the conventional BM3D algorithm, the noise is 
assumed to be stationary. The Wiener filter is used for 
denoising in the BM3D algorithm. The Wiener filter assumes 
stationary noise with a noise power spectral density function 
𝑃̅. However, the artifacts are not stationary. Strictly speaking, 
it is not proper to use our artifact power spectral density 
function in the BM3D algorithm. Despite of these concerns, 
we propose an ad hoc algorithm: 

𝐻 = 𝐵𝑀3𝐷(𝐺𝐶𝑇, 𝑃̅), (2) 
where GCT is a 2D given sparse-view CT image, 𝑃̅  is the 
averaged artifact spectral density image, H is the processed 
output image, and BM3D is the conventional BM3D 
algorithm.  

We must point out that in calculating 𝑃̅ , the sparse 
simulation Gsimu in (1) must have the same imaging and 
sampling parameter as the situation when sparse-scan CT 
image, GCT, is obtained. For example, if GCT is reconstructed 
from a data set of 200 views and with a focal-point to axis-of-
rotation of 600 mm, the P image must be obtained using 200 
views and 600 mm as well for the sparse-view data. 
C. Computer simulations 

We generated 1000 noiseless random 256×256 phantoms, 
each of which had 2 random ellipses of random shapes, 
random locations, and random intensities. We generated 2 
versions of projections for each computer-generated phantom: 
one with 60 views over 360° (sparse scan case); the other one 
with 180 views over 360° (full scan case). Images were 
reconstructed using the filtered backprojection (FBP) 
algorithm using all projections for both full scan and sparse 
scan cases. One averaged artifact power spectral density 
image, 𝑃̅, was calculated from these 1000 phantoms. 

We then generated a new random 256×256 phantom and 
generated a sparse scan with 60 views (test case). The FBP 
reconstruction, GCT, was calculated from this new test case 60-
view data. The proposed algorithm (2) was applied to this FBP 
image, GCT, to obtain the final image, H. 
D. Clinical data 

Here we had one set of sparse-scan CT images for one 
patient. The set contained 512×512 2D images. The original 
projections were not available. We knew the imaging 
geometry. The number of views was 200 views over 360°. In 
order to use the proposed method to reduce the angular 
aliasing artifacts, we generated a new averaged artifact power 

spectral density image 𝑃̅  with 1000 512×512 2D random 
computer simulated sparse/full image pairs. 

III. RESULTS 
A. Computer simulation results 
Fig. 1 shows 2 (out of 1000) representative random 
phantoms. Their sparse-view versions using 60 views are 
shown in Fig. 2. Fig. 3 shows the average artifact power 
spectral density image by considering 1000 sparse/full pairs 
of the simulated images.  

Two new random phantoms sparse-scan images are 
shown in Fig. 4. These new phantoms are NOT among the 
1000 phantoms used in estimating the artifact power spectral 
density image, because the new ones contain 3 ellipses while 
the old ones contain 2 ellipses. The results of the proposed 
method are shown in Fig. 5. 
B. Patient data results 
Three patient image pairs are shown in Figs. 6, 7 and 8, 
respectively. The images are sparse-scan images without and 
with the proposed BM3D processing. Fig. 9 shows the 𝑃̅ 
image for the patient study. 

  
Figure 1. Computer simulated random full-scan images. 

  
Figure 2. Computer simulated random sparse-scan images. 
 

 
Figure 3. The averaged artifact power spectral density image for the 
computer simulation study. 
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Figure 4. The test sparse-scan image. 
 

  
Figure 5. The test sparse-scan image processed by the proposed method. 
 

 

 
Figure 6. The sparse-scan patient image slice #160 before (upper) and after 
(lower) processing by the proposed method. 
 

 

 
Figure 7. The sparse-scan patient image slice #120 before (upper) and after 
(lower) processing by the proposed method. 
 

 

 
Figure 8. The sparse-scan patient image slice #100 before (upper) and after 
(lower) processing by the proposed method. 
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Figure 9. The averaged artifact power spectral density image for the patient 
CT image processing. 
 

V. CONCLUSIONS 
We have attempted a method to reduce the sparse-scan 
angular aliasing artifacts without using any patient training 
data. This method is a direct application of the BM3D filter 
by replacing the noise power spectral density function with 
the artifact power spectral density function. 

The BM3D filter assumes stationary noise that is 
characterized by the noise power spectral density function. 
Noise and artifacts are never the same. Noise is random, while 
artifacts are somewhat deterministic. Artifacts are not 
stationary. Strictly speaking, the artifact power spectral 
density function does not exist because it is not stationary.  

Our ad hoc method assumes the norm square of the 
Fourier transform of the error image as the artifact power 
spectral density function, which is calculated with computer 
simulations and depends on the imaging geometry only. 
Patient data is not used in finding the artifact power spectral 
density function. 

Our results indicate that the proposed method is not 
effective enough for practical applications. The artifacts are 
still present, and the images are over-smoothed after 
processing. More work needs to be done. However, insights 
our from this study suggest that some features can be 
obtained my simulations when there is no real data available. 
Another thing we observe is that the Wiener filter is not an 
effective method to remove artifacts, and a better approach 
should be considered. 
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Abstract—Fusion of x-ray projection images obtained with 

different exposure levels is a promising technique to study objects 
with features beyond the dynamic range of the x-ray detector. 
Various multi-exposure fusion techniques are described in the 
literature, yet a direct comparison between these methods is not 
available. This was mainly due to the absence of objective quality 
measures dedicated to multi-exposure x-ray images and 
tomographic reconstructions, a problem remaining unsolved to 
this day. Therefore, we compare several fusion algorithms in terms 
of perceptual quality using recently reported quality measures 
based on structural similarity in this work. Moreover, we 
investigate whether these quality measures apply to tomographic 
slices as well. Our results indicate that the reliability of the quality 
measures is more convincing for fused projection images as 
opposed to reconstructed slices. Additionally, it is shown that 
fusion algorithms developed for optical photography are also 
suitable for multi-exposure x-ray image fusion to increase 
perceptual quality. 
 

Index Terms—dynamic range, multi-exposure fusion, 
structural similarity, quality measures  

I. INTRODUCTION 

Due to the limited dynamic range of x-ray detectors, 
attenuation information may be incomplete in a single exposure 
image or projection series. In radiography, this problem can 
occur when the object is a heterogeneous mixture of materials 
with highly differing attenuation properties [1] or when the 
object has a wide range of thickness components [2]. In 
computed tomography (CT), since the object is scanned under 
many different angles, objects may have an aspect ratio that is 
too large for the dynamic range of the detector [3]. These issues 
cause under- and overexposure in the recorded projections, 
inhibiting correct image evaluation or subsequent tomographic 
reconstruction. 

Apart from hardware modifications to increase the dynamic 
range of detectors, various methods have been proposed to 
increase the information contained in x-ray projections through 
multi-exposure fusion (MEF). In essence, projections are 
recorded with different exposure parameters to capture 
information in multiple attenuation ranges, which are then fused 
to gather the information in different attenuation ranges in the 
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same (fused) projection image. Different exposure situations 
and fusion methods are created by altering the integration time 
[1], the tube current [3], [4], or the voltage [2], [5].  

Although various acquisition and fusion schemes were 
reported, to the best of our knowledge, no direct comparison 
has been made between those methods. This is partly because 
the methods were developed in different fields and for different 
purposes (although the problem is general), but more 
importantly, there was no reported objective quality measure 
for MEF x-ray images. 

For the fusion methods, it is vital to investigate which method 
represents best the fused information from the input images in 
the fused image. This work compares several fusion methods 
and evaluates their perceptual quality using MEF quality 
measures reported recently in the literature. Additionally, we 
investigate the possibility to use these measures to assess the 
perceptual quality of CT slices obtained with MEF projection 
data. The great strength of such a measure is that a subjective 
property, like perceptual quality, can be described with an 
objective measure, independent of the observer. 

II. MATERIALS AND METHODS 

A. Image acquisition 
Radiographs of a preserved piglet specimen were acquired 

using a single source-detector pair of our stereoscopic x-ray set-
up, the 3D²YMOX system [6], [7]. The piglet specimen was 
chosen for its high aspect ratio, resulting in a considerable 
difference in absorption between longitudinal and lateral 
transmission. During the acquisition, the voltage was set to 60 
kVp. A low-exposure dataset was recorded using a tube current 
of 45 mA, and the tube current was put to 90 mA for a high-
exposure dataset. For each dataset, 450 projections (2048 pixels 
× 2048 pixels, pixel size of 0.143 mm) were recorded during 
continuous rotation of the rotation stage (rotation period of 3 s, 
stationary source and detector) with a shutter speed of 0.5 ms. 
The distances from the x-ray source (SRD) and the detector 
(DRD) to the axis of rotation were 1025 mm and 278 mm, 
respectively. As the set-up is highly modular, the geometry of 
the set-up was calibrated using a phantom-based method [8], 
[9]. Prior to geometry calibration and reconstruction, the 
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geometric distortion in the projections induced by the x-ray 
image intensifier was corrected using a method based on digital 
image correlation [10], [11]. 

B. Reconstruction 
Tomographic reconstruction was carried out using the 

ASTRA-toolbox [12] with a Matlab interface (version 2021b). 
The reconstruction algorithm of choice was the simultaneous 
iterative reconstruction technique (SIRT), of which 150 
iterations were performed with a non-negativity constraint. The 
voxel size was isotropic and measured 0.246 mm. As the 
imaging set-up was not calibrated for the attenuation coefficient 
of water, the gray values of the reconstructed volume were not 
scaled to Hounsfield units. Instead, to use the objective quality 
measures, the gray values were scaled between 0 and 4095, 
which is the gray value range of the x-ray detector. 

C. Quality measures and assessment 
Ma et al. [13] proposed an objective quality measure for 

MEF images in optical photography based on the structural 
similarity index measure (SSIM) [14], denoted as multi-
exposure-fusion SSIM, or MEF-SSIM. In their work, the MEF-
SSIM is calculated from the local contrast and structural 
components of corresponding image patches of the input 
sequence and the fused image. The calculation is done on 
multiple scales to incorporate both small-range and large-range 
luminance patterns and structures. 

 A perceptual quality measure dedicated to x-ray projections 
was proposed very recently by Qi et al. [15], which is also based 
on the SSIM. Their method calculates the SSIM from the fused 
maximum gradient amplitude map from the input sequence and 
the gradient map from the fused image, weighted with the 
contrast sensitivity function (CSF) to obtain a final measure 

compatible with the human visual system (HVS). The authors 
did not explicitly name their proposed method, but since it is 
based on the gradient amplitude map weighted with the CSF, 
we refer to their method as weighted-gradient-amplitude SSIM 
or WGA-SSIM. The mathematical framework of both measures 
is not included, as it is well documented in the original 
publications [13], [15]. 

Both of these measures will be used to assess the quality of 
exposure-fused x-ray projections and CT reconstructions 
obtained with different fusion methods. In the present work, we 
consider two fusion methods originating from optical 
photography proposed by Mertens et al. [16] and by Paul et al. 
[17], and two fusion methods dedicated to x-ray images 
recorded with different tube currents proposed by Krämer et al. 
[3] and by Sisniega et al. [4]. The fusion methods will be 
referred to by the corresponding name of their first author. 

III. RESULTS 

A. Radiographs 
High and low exposure sets of projections of the piglet 

specimen were recorded and fused with the fusion methods 
mentioned before. Examples of projections are shown in Fig. 1. 
Visually, from Fig. 1(a), there is little contrast between the 
cervical vertebrae and the surrounding soft tissue when a low 
exposure is used. The contrast is increased when a high 
exposure is used, at the expense of loss of soft tissue attenuation 
(for example, at the snout and tail). By fusion of these 
projections, the contrast in certain regions can be increased 
while retaining the soft tissue attenuation, as is shown in Figs. 
1(c)-(e). The method of Krämer was included intentionally, as 
it produces nearly the same projection as the low-exposure one, 
but with a higher signal-to-noise ratio (SNR), as was reported 

Fig. 1.  The original and fused radiographs of the piglet specimen (lateral transmission). (a) Low exposure. (b) High exposure. (c) Mertens. (d) Paul. (e) Sisniega. 
(f) Krämer. In these projections, the axis of rotation is positioned in the center, from top to bottom. In each panel, the gray values range from 0 to 4095. The scale 
bar in the top center panel applies to all panels. 
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by the authors and observed in our results. 
The fusion methods all produce different results, and the 

main question is which one has the best perceptual quality. To 
answer this question, the MEF-SSIM and WGA-SSIM scores 
of the 450 fused images in the projection series were calculated, 
and the average values with corresponding standard deviation 
are shown in Table I. The MEF-SSIM measure favors the 
method of Mertens, whereas the WGA-SSIM measure favors 
the method of Paul, as a higher score indicates a higher quality 
(with a maximum of 1).  

 
TABLE 1 

QUALITY MEASURES FOR FUSED PROJECTIONS AND SLICES 
 Mertens Paul Sisniega Krämer 
MEF-SSIMP 0.988±0.004 0.986±0.002 0.897±0.003 0.96±0.02 
WGA-SSIMP 0.986±0.002 0.9903±0.0007 0.984±0.003 0.981±0.003 
MEF-SSIMS 0.93±0.06 0.91±0.06 0.90±0.06 0.92±0.06 
WGA-SSIMS 0.986±0.008 0.981±0.006 0.979±0.005 0.98±0.01 
CNRCV 1.65 1.94 2.08 1.73 
CNRST 3.03 3.51 3.53 3.39 

In the names of the SSIM quality measures, subscripts P and S denote projection and 
slice, respectively. The subscripts CV and ST stand for cervical vertebrae and sternum for 
the CNR values. The highest reported values are indicated in bold.  

B. Reconstructed slices 
In addition to the fused projection series, a fused flat-field 

image was obtained with each fusion method from low-
exposure and high-exposure flat-field images, subsequently 
used for flat-field and log correction prior to tomographic 
reconstruction. Examples of reconstructed slices are shown in 
Fig 2. In contrast to the radiographs, the difference between the 
slices is less apparent. Visually, the high-exposure 
reconstructed slice yields a better contrast between bones and 
soft tissue (for example, at the cervical vertebrae), at the 
expense of loss of signal in the soft tissue (missing tail and parts 
of the trotters, top center) and even some bones in the tail are 
not reconstructed. The MEF-SSIM and WGA-SSIM scores of 

the reconstructed slices are shown in Table I. From these 
measures, the method of Mertens appears to yield the best 
results.  

As the HVS is sensitive to contrast, we also present contrast-
to-noise (CNR) values between soft tissue and bone in one of 
the cervical vertebrae and the sternum, found in Table I. It is 
shown that the method of Sisniega yields the greatest CNR in 
both locations. The CNR values were calculated as [4]: 

 𝐶𝑁𝑅 =
|𝜇௕௢௡௘ − 𝜇௧௜௦௦௨௘|

ඥ𝜎௕௢௡௘
ଶ + 𝜎௧௜௦௦௨௘

ଶ
 , (1) 

 
in which 𝜇 and 𝜎 are the mean pixel gray value and 
corresponding standard deviation in an 8 pixels × 8 pixels 
image region. 

IV. DISCUSSION 
Table I shows that the MEF-SSIM measure indicates that the 

projections fused with the method of Mertens yield the best 
perceptual result. However, the error bar overlaps with that of 
the method of Paul. Visually, both projections are indeed very 
similar (Fig. 1). The method of Paul is favored by the WGA-
SSIM measure, which is partly in agreement with the MEF-
SSIM measure. 

 It is quite interesting that both quality measures indicate that 
the fusion methods originating from optical photography 
outperform those dedicated to x-ray imaging, as these optical 
methods were not considered for x-ray imaging before, to the 
best of our knowledge. Visually, the result obtained using the 
method of Sisniega is most dissimilar compared to the others, 
which is well represented by its lower MEF-SSIM score, 
possibly caused by the low contrast between the background 
and the soft tissue. On the other hand, all WGA-SSIM scores 
are very similar (all error bars overlap, except for the method of 

Fig. 2.  Reconstructed slices of the piglet specimen. (a) Low exposure. (b) High exposure. (c) Mertens. (d) Paul. (e) Sisniega. (f) Krämer. 
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Paul), while the fused projections are visually not. The relative 
differences between the MEF-SSIM scores are more 
representative of the perceptual differences of the projections 
than the WGA-SSIM scores. 

In the case of the slices, the quality scores indicate that the 
method of Mertens yields the best perceptual results. However, 
it is important to notice that all error bars overlap for both 
quality measures. Visually, the method of Sisniega provides 
good contrast between soft tissue and bone (for example, in the 
cervical vertebrae), which is also represented by the CNR 
values. Moreover, the tail is reconstructed and most of the soft 
tissue is visible. The highest quality scores for the method of 
Mertens are not supported by the CNR values and actual visual 
perception. The soft tissue near the cervical vertebrae is quite 
dark, as is the case when the method of Paul is used, which is 
probably an amplified cupping artifact due to beam-hardening. 
In comparison, the gray values of the soft tissue are more 
uniform in the result obtained with the method of Sisniega.  

These results suggest that the proposed quality measures are 
not reliable for reconstructed slices, yet the perceptual quality 
scores of the fused projections are very reasonable and in 
agreement with the visual quality. Moreover, the results imply 
that high perceptual quality in the fused projections does not 
guarantee high perceptual quality in the reconstructed slices. 
This indicates that quality measures dedicated to tomographic 
reconstructions are needed to validate the quality of multi-
exposure methods for tomographic purposes. 

V. CONCLUSIONS 
 The results demonstrate that the quality measures are 

reliable for selecting the fusion method that yields the highest 
perceptual quality in fused projections and that optical fusion 
methods are suitable for MEF x-ray imaging as well. Yet, the 
same is not valid for reconstructed slices. As reconstructed 
slices have other demands than projection data, dedicated 
quality measures are needed. In future research, we plan to 
investigate the possibilities for a new quality measure suitable 
for reconstructed slices obtained from fused projection data. 
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Geometric calibration of seven degree of freedom
Robotic Sample Holder for X-ray CT

Erdal Pekel, Florian Schaff, Martin Dierolf, Franz Pfeiffer, and Tobias Lasser

Abstract—We present a geometric calibration method for
integrating a seven degrees of freedom robotic arm as a sample
holder within an existing laboratory X-ray computed tomography
setup. We aim to provide a flexible sample holder that is able to
execute non-standard and task-specific trajectories for complex
samples. The calibration is necessary to identify the accurate
pose of the sample which deviates from the expected pose due
to inaccurate placement of the robotic arm. The robotic arm
is integrated with a unified software package that allows for
path planning, collision detection, geometric calibration and
reconstruction of the sample. With our software the user is able to
command the robotic arm to execute arbitrary trajectories for a
given sample in a safe manner and output its reconstruction to the
user. We present experimental results with a circular trajectory
where the robotic sample holder achieves identical visual quality
compared to a conventional sample holder.

I. INTRODUCTION

In this work we introduce a geometric calibration method
for using a flexible robotic arm with seven degrees of freedom
as a sample holder within a laboratory X-ray Computed To-
mography (CT) setup. The calibration mechanism is required
as a result of the insufficient placement accuracy of the robotic
arm. A purpose-built sample holder with an embedded geo-
metric structure is used to calibrate the position and orientation
of the sample for later use in the reconstruction step.

The robotic arm adds flexibility to the setup as a sample
holder by enabling arbitrary rotation and placement of the
sample. This allows non-standard trajectories that are not
restricted in their sequence, such as conventional circular or
helical trajectories. In addition, the robotic sample holder can
avoid occlusions on the projections that would normally be
introduced by limitations of static setups where the sample is
inherently mounted to non-moving parts (e.g. mounted on a
plate). In the following we present our work on the integration
of a robotic arm with seven degrees of freedom within a lab X-
ray CT setup together with a suitable calibration mechanism.

The system can easily execute specific trajectories that
can overcome the limitations of fixed trajectories which will
enable imaging modalities that require non-standard acqusition
sequences in the future, such as Anisotropic X-ray Dark-
field Tomography, a novel imaging technique that allows the
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extraction of X-ray scattering and phase contrast information
by employing grating interferometers [1], [2]. The robotic
sample holder will enable arbitrary rotations covering the full
sphere and hence expose the 3D structures of the target object
by measuring the full dark-field contrast from all possible
angles.

II. ROBOTIC SAMPLE HOLDER

In this section the methods for operating the robotic arm
as a sample holder in a lab X-ray CT setup are discussed
in detail. After introducing the hardware components of the
system more specific parts like the sample holder, calibration
and reconstruction are described.

A. Hardware Setup
The hardware components of the system are displayed in fig.

1 and 2. The main difference to a conventional X-ray CT setup
is the seven degrees of freedom robotic arm Panda from the
manufacturer FRANKA EMIKA [3]. It has a maximum reach
of 855 mm and a repeatability of 0.1 mm when repeatedly
moved from a specific starting pose to a goal pose. It has two
fingers that can move on a fixed axis and grasp objects. The
maximum allowed payload is 3 kg. The robotic arm and the
depth cameras are connected directly to a computer while the
detector is accessible through a network interface. The robotic
arm can be turned off in case of emergency from outside of
the safety hutch with a power switch (see fig. 2).

Two Intel Realsense D435 depth camera capture the move-
ments of the robot and provide 3D information about the
surroundings as a point cloud. The cameras are connected
directly to the workstation and they are used for the collision
detection mechanism.

The robotic arm is mounted on a table inside a safety
hutch for X-ray CT which houses the X-ray source and the
detector (see fig. 1). The detector has a maximum resolution
of 2880x2880 and is connected to a different workstation on
the network which provides a network interface for triggering
image capturing.

B. Sample Holder
The sample holder is a critical component of the system as

it allows the robotic arm to grasp samples of arbitrary shape
and is a fundamental part of the calibration process where
the position and orientation of the sample is identified. The
3D models of the sample holder and the rail component are
visualized in figure 1. The sample holder consists of two parts.
The bottom part is where the robot’s fingers can grasp the
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Fig. 1. Hardware setup. The robotic arm is mounted on a table with the
source and the detector inside a safety hutch. The source to robot distance is
40 cm and robot to detector distance is 176 cm. The sample holder consists
of two physical parts. The first part is grasped by the robotic arm and houses
the calibration structure. The second part is where the sample is mounted and
slides into the base part.

Fig. 2. Hardware schematics. Two depth cameras monitor the movement of
the robot and send a stop signal to the robot controller when the executed
trajectory interferes with obstacles. The robotic arm can be stopped by a
manual power switch that was routed to the operator table outside of the
hutch.

holder steadily. The upper part fulfills the actual purpose of
placing a geometric structure around the sample on a cylinder.

The cylinder is 5.6 cm tall and 3.5 cm in diameter inside.
The sample holder was designed with a 3D modeling software
and printed using a 3D printer with accuracy of 0.08 to 0.2
mm on all three axes. The printing accuracy is important as
the local coordinates of the spheres in the 3D model are used
as reference points in the calibration algorithm.

The geometric structure embedded in the sample holder is
a helix which is made up of 50 embedded aluminium spheres
of 0.678 mm diameter. These spheres were fixed by hand on
notches that were included in the design process of the holder.
The spheres appear as circles on the detector images that will
be segmented during calibration.

The helix can be parametrized by the following 3D para-
metric curve:

h(⌧) =

0

@
u(⌧)
v(⌧)
w(⌧)

1

A =

0

@
r ⇤ cos(⇢ ⇤ ⌧ + �)
r ⇤ sin(⇢ ⇤ ⌧ + �)

⌧

1

A

⌧, r, ⇢,� 2 R

(1)

⌧ runs between the local w coordinates of the first
sphere and the last sphere of the helix: wmin < ⌧ <

wmax where wmin, wmax 2 R.
The parameters r (radius), ⇢ (frequency) and � (phase shift)

parametrize the helix. They can be determined by fitting the
sphere coordinates from the 3D model of the sample holder
to eq. (1) with a least-squares term. The source code of this
process can be found in the file helix fitter.py in our repository
[4].

The helix can be discretized by choosing a fixed number
H 2 N of points {⌧i}i=1,...,H 2 [wmin, wmax] for the free
parameter ⌧ :

hi =
�
u(⌧i) v(⌧i) w(⌧i)

�>
. (2)

C. Calibration
The calibration procedure tackles the issue that the robotic

arm does not sufficiently accurately place the sample at the
desired position due to inaccurate path planning and inaccurate
electrical motors at its joints. With the calibration procedure
we are able to identify the actual positions and orientations of
the sample for the reconstruction step. For the calibration a
sample holder with an embedded geometric structure that can
be detected on the detector images is necessary. A suitable
sample holder was introduced in section II-B.

The calibration is implemented in multiple steps (see fig. 3).
The first step is the post-processing of the detector image. Its
contrast is enhanced and a median filter with kernel size 5 is
applied to reduce noise and improve the segmentation results.
The calibration circles on the image are detected in the next
step with the circle Hough transform algorithm [5]. The result
is a set of 2D circle center coordinates m̂j =

�
dx,j dy,j

�>

on the detector.
Eq. (1) and the current position of the robotic arm are now

used to project a set of helix points hi (eq. (2)) onto the
detector image for comparison with the segmented points m̂j

and determining the geometry of the sample.
For this projection the intrinsic camera matrix K and the

external parameters R and t are needed. K is fixed for the
current X-ray CT setup and R, t are determined by the robotic
arm’s current position.

There are three critical coordinate systems in our setup. The
first is fixed to the X-ray source with x, y and z-axis. The
second is fixed to the center of the sample holder with u,v
and w-axis and moves with the robotic arm as it is attached
to the arm’s fingers. The third is fixed to the detector with dx

and dy axis.
The rotation R of the sample holder relative to the source

can be parametrized w.l.o.g. by consecutive rotations about the
z, y and x-axis:

R(↵,�, �) = Rz(↵)Ry(�)Rx(�) (3)
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t is the offset of the source center to the sample holder’s
center:

t =
�
x y z

�
(4)

K is fixed for the current setup and can be calculated with
the parameters sdd (source to detector distance), dx,p, dy,p

(principal points on dx and dy-axis) and dw, dh (detector pixel
width and height):

K =

0

@
sdd

dw
0 dx,p

0 sdd

dh
dy,p

0 0 1

1

A (5)

We introduce the short notation ⇣ = (↵,�, �, x, y, z) for the
free parameters. The camera projection matrix P can now be
calculated:

P (⇣) = K
�
R(↵,�, �) | t

�
2 R3⇥4

. (6)

The projection matrix is now used to project a set of H 2 N
fixed points hi 2 R4 on the discretized helix from eq. (2) onto
the detector:
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d
0

i
are the homogeneous detector pixel coordinates and mi

are the projected analytical helix points on the detector. These
points resemble the expected position of the helix structure
and they will be used for constructing an error term in the 2D
detector image domain.

An appropriate cost function for comparing the error be-
tween the current and expected position of a measured circle
center m̂j and a projected point on the helix mi is the
reprojection error:

E(⇣, m̂j ,mi) = m̂j �mi(⇣) 2 R2 (9)

Eq. (9) will only measure the error for a specific pair of
points. In our case there are c (detected) circles on the current
image, s spheres glued onto the holder and H projected points
on the helix from eq. (1). It is important to note that c  s

because the segmentation algorithm might fail to detect all
circles.

We now compare each of the c detected circle centers m̂j

to all H sampled and projected points mi and choose the pair
with the smallest distance.

We can formulate this algorithm as a least-squares problem:

argmin
⇣=(↵,�,�,x,y,z)

cX

j=1

min
1iH

E(⇣, m̂j ,mi) (10)

The optimization problem is nonlinear due to the sine and
cosine terms in the rotation parametrization. In our implemen-
tation we use the Levenberg Marquardt algorithm.

The resulting parameters ↵,�, �, x, y, z can be used for the
reconstruction as the geometry of the given acquisition.

D. Reconstruction

For tomographic reconstruction, the sinogram contained
1000 equidistant X-ray projections along a circular trajectory
sized 720 ⇥ 720 pixels with a spacing of 600µm. The re-
construction volume was sized 720⇥720⇥720 with isotropic
voxel spacing of 100µm. Using our C++ reconstruction frame-
work elsa [6], reconstruction was performed using an iterative
conjugate gradient solver run for 50 iterations on a Tikhonov
regularized weighted least squares problem, with the Josephs
method for X-ray transform discretization and parallel beam
geometry. Further iterations showed no improvement on the
cost function.

E. Software Stack

The central part of our software stack is the Robot Operating
System (ROS) [7]. Robot manipulation is accomplished with
the MoveIt! framework [8], [9] and the franka ros configura-
tion package [10]. For image processing tasks and the circle
segmentation we use OpenCV [11], for multithreading on the
CPU OpenMP [12] and for the tomographic reconstruction
elsa [6]. The scientific calculations in section II-C are imple-
mented with scipy [13].

F. CT measurements

We conducted two experiments: a walnut was measured
with the robotic arm and with a conventional rotational stage.

For each CT measurement, 1000 images were acquired with
a source voltage of 30 kV, source power of 1445µA, and
exposure time of 1s.

In fig. 4 a) the reconstruction of the walnut with the
rotational stage is compared to the robotic arm as the sample
holder. The two volumes were registered manually as we found
automatic registration of the two discretized volumes to be
unreliable. The slices were chosen manually for illustration
purposes. The center slices of the volume from the top and
the front view were extracted and cropped to the region of
interest.

Our observation is that there is no qualitative difference
between the results of the two different sample holders.

G. Future work

In future work the system can be improved in several ways.
The sample holder could be more flexible. Its size currently

limits the size of the sample but this can be tackled in another
design iteration by embedding the geometrical calibration
structure into the base of the holder when it is positioned
upwards of the base and compressed in its height. The cylin-
drical envelope surrounding the sample could be removed and
as a consequence, the sample also doesn’t strictly need to be
inserted from the top.

Moreover, experiments with non-standard trajectories are
subject of future work.
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Fig. 3. Calibration procedure. In a) the flat-field corrected detector image is displayed. This image is contrast-enhanced and subsequently a circle detection
algorithm is executed. The resulting image where the detected circle centers are marked with red crosses is displayed in b). Given the geometry of the sample
holder and the robot’s sensor readings when acquiring the image, an initial guess of the helix location (blue crosses) is projected onto the image plane (c).
The parameters that define the rotation and translation of the helix are optimized in a least-squares problem in the 2D image domain. The resulting parameters
are used to project the helix again to the image domain to display the final outcome of the calibration (d).

Fig. 4. Experimental results. A walnut was measured and reconstructed in
order to compare the conventional rotational stage (reference) with the robotic
sample holder (robot). The reconstruction volumes were registered and aligned
but small differences are still visible. The detector images were binned with
4 ⇤ 4 and the reconstruction volume has dimensions 7203. The front slice is
from the perspective of the x-ray source. The top slice is from the bird’s eye
view. Our observation is that the reconstruction quality is identical despite the
fact that the volumes are not aligned perfectly and hence the contrast does
not match.

Finally, the accuracy of the calibration algorithm could be
improved by improving the circle detection algorithm that is
run on the acquired images. Currently, we are using the circle
Hough transform algorithm which could be replaced by a more
precise algorithm with sub-pixel segmentation accuracy.

III. CONCLUSION

In this work we have demonstrated a geometric calibration
method for the use of a seven degrees of freedom robot
as a sample holder for X-ray computed tomography. Our
findings have confirmed that this kind of robot can be used

for computed tomography with consistent results when com-
pared to more conventional sample holders. A suitably sized
sample holder with a geometric structure that can be used for
calibration must be provided.
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A generalized total-variation-based image
reconstruction method for limited-angle computed

tomography
Xin Lu, Yunsong Zhao, and Peng Zhang

Abstract—Image reconstruction for limited-angle CT is chal-
lenging, because the acquired data are not complete. In order to
improve the quality of the reconstructed images, this paper pro-
poses a generalized total-variation (GTV) -based regularization
model that multiplies the gradient operator ∇ by an adaptive
weighting matrix T in the !1-norm regularization term. The
weighting matrix T in GTV is related to the corresponding image
gradient. So different weights are applied to the regularization
term at each pixel. An alternating minimization type algorithm
is derived to solve the proposed model. Numerical experiments
on both simulated data and real data verify the effectiveness
of the proposed imaging model and the solving algorithm.
The experimental results show that the method can effectively
eliminate image artifacts and blur caused by incomplete data.
Image edges are accurately restored.

Index Terms—limited-angle CT, image reconstruction algo-
rithm, generalized TV, optimization model

I. INTRODUCTION

IN some practical applications, such as breast CT imaging,
plate-shaped object detection, etc., due to the special shape

of the scanned object and the influence of the scanning
environment, it may be difficult to acquire full-angle pro-
jection data, instead, only limited-angle projection data can
be acquired. Reconstructing images from such limited-angle
projection data is called limited-angle CT problem.

The limited-angle CT problem is highly ill-posed because
the projection data do not satisfy the data completeness
condition [1]. Generally, images reconstructed from such data
with traditional reconstruction algorithms, such as FBP [2],
ART [3], etc., will have structural artifacts [4], i.e. there are
strip artifacts along some specific directions closely related to
the scanning angle; while at the same time, the images are
blurred along some other directions.

Despite of the difficulty, limited-angle CT imaging has long
been a hot research topic in view of its wide application
requirements [5], [6], [7]. The ill-posedness as well as the
artifact characteristics of limited-angle CT is deeply analyzed.
Different kinds of reconstruction algorithms are proposed.
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Early methods try to restore the complete projection data
by some kind of “extrapolation” on the limited-angle data,
with smoothness prior or global properties of the projection
data [8]. Recent methods try to incorporate various image
priors, including geometrical shape, distribution of edges or
densities (gray values) about the image, into iterative recon-
struction algorithms [9]. With the development of compressed
sensing (CS) theory, a series of limited angle reconstruction
algorithms based on sparse transform prior and sparse opti-
mization solution are proposed, among which, total variation
(TV) regularization method that take the sparsity of image
gradients as prior information have received extensive attention
[10], and has obtained good reconstruction results in some
specific scenarios. But TV regularization considers mainly
on the image prior, while it is well known that the artifacts
and blurring of the limited-angle CT image are scan angle
dependent, so only sub-optimal results can be obtained with
classic TV regularization. Later, being aware the dependence
between image artifacts and the scan angle, anisotropic total
variation (ATV) model is proposed and improves the recon-
struction results [11]. In [6], a two-term regularization model,
named AEDS, which plays edge-preserving diffusion in the
x-direction and edge-preserving smoothing in the y-direction
respectively, are proposed. In addition, a method based on
similar ideas is also proposed for 3D computed laminography
by Zhao et al [12]. Recently, a new state-of-the-art model,
named DTV, is proposed by Zhang et al [13]. The model is
convex, and therefore has better mathematical properties. In
the paper, the authors also show satisfactory reconstruction
results from projection data of a very small angular range.

In order to further improve the image reconstruction quality
for limited-angle CT, in this paper, we propose a general-
ized total-variation (GTV) -based regularization model that
multiplies the gradient operator ∇ by an adaptive weight-
ing matrix T . The weighting matrix T in GTV is related
to the corresponding image gradient. The main difference
between the proposed model and that of [11] is adaptivity.
The regularizer in [11] is a weighted summation of several
directional derivative’s !1-norms, where the weighting factors
are constants selected empirically. While the regularizer in our
proposed model is a weighted norm of the image gradients, in
which the weighting factors are related to the corresponding
image gradients and update with iterations. An alternating
minimization algorithm is proposed to solve the model. Nu-
merical experiments on both simulated data and real data
verify the effectiveness of the proposed imaging model and
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its reconstruction algorithm. The experimental results show
that the proposed model can accurately reconstruct the image
edges and obtain high-quality reconstruction results.

II. MATERIALS AND METHODS

A. The discrete imaging model of CT
The CT reconstruction problem can be described as solving

a linear system:
Af = p (1)

where f = (f1, · · · , fn, · · · , fN )! represents the image to
be reconstructed, p = (p1, · · · , pm, · · · pM )! denotes the
projection data, A = (am,n) is the system matrix of size
M×N , where M and N denote the total number of projections
and image pixels, respectively. Element am,n of matrix A
represents the intersection length of the mth ray and the nth
image pixel. Generally, for limited-angle CT imaging, the
directions of available rays are constrained in a range which
is generally smaller than π. Without loss of generality, we
assume that the scanning angular range is symmetric relative
to y-axis.

To improve the quality of the reconstructed images, the
imaging problem is usually converted to an optimization
problem, which can be expressed as:

f∗ = argmin
f

{
||Af − p||22 + λR(f)

}
(2)

where ||Af − p||22 is the data fidelity term, measuring the
difference between measured data p and the model data
Af , R(f) is the regularization term modeling some prior
information, λ is the regularization parameter, f∗ denotes the
desired image to be reconstructed.

B. The proposed optimization model
The proposed model can be regarded as an extension of

our AEDS model, which contains a two-term regularizer
performing edge-preserving diffusion in the x-direction and
edge-preserving smoothing in the y-direction respectively. The
AEDS mode can achieve satisfactory results when the edges of
the image are parallel to the horizontal or vertical directions.
But it may fail to restore tilt edges as it focus mainly on
the horizontal and vertical regularizations. In order to further
improve the reconstruction quality for limited-angle CT, we
propose our GTV model as follows:

f∗ = argmin
f

{
||Af − p||22 +

λ

2
||T∇f ||2,1

}
(3)

where ∇ is the gradient operator and T is a weighting matrix
can be expressed as:

T =





1

1 + κ|Gσ ∗ ∇xf |
0

0
1

1 + κ|Gσ ∗ ∇yf |



 ,

where κ is the tuning parameter, Gσ denotes the Gaussian
convolution with the standard deviation σ in order to reduce
the effect of the noise, ||· ||2 and ||· ||1 respectively denote the
%2-norm and the %1-norm of a vector.

In (3), T controls the penalization of image gradient. As
T is pixel-related, the strength of penalization on different
pixels are generally different. Edge pixels with large gradients
are penalized less, while non-edge pixels with small gradients
are penalized more strongly.

C. Algorithm for solving the model
The model (3) is non-convex, so that we can only expect to

get local minimizers. In our practice, we split the problem into
two sub-problems which are solved in alternating iterations.
Let f (k) denote the solution after k iterations, then the two
sub-problems for obtaining f (k+1) can be expressed as:
Sub-problem 1:

f (k+1/2) = argmin
f

{
||f (k) − f ||22 +

λ

2
||T∇f ||2,1

}
.

Sub-problem 2:

f (k+1) = argmin
f

{
||f (k+1/2) − f ||22 + ||Af − p||22

}
.

The alternating direction method of multipliers (ADMM) is
used to solve sub-problem 1, detailed implementation can be
found in [14]. For simplicity, the SART method is use to solve
sub-problem 2, where f (k+1/2) is used as the initial value, and
only one iteration is performed in our implementation.

III. EXPERIMENTS AND RESULTS

In this section, we perform numerical experiments with
both simulated data and real data to validate the proposed
imaging model and the corresponding image reconstruction
algorithm for limited-angle CT. For simplicity, the experiments
are restricted to the 2D fan-beam case.

Fig. 1. The rhombus phantom used for simulation.

A. Simulated data experiments
1) Experiment setup: The phantom used in the simulation

experiments is a rhombus, as is shown in Fig. 1. The rhombus
is tilted to mimic an unideal placement. In addition, the upper
and lower triangles of the rhombus are given different gray
values. Note that it is a very challenge phantom, as the
information of the common edge of the two triangles is lost
almost completely from the limited-angle CT scan. To avoid
the “inverse crime” problem, in our experiments, noise-free
projection data of the phantom are simulated analytically. The
parameters for the simulation are listed in table I.
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TABLE I
GEOMETRIC PARAMETERS FOR SIMULATED DATA EXPERIMENTS.

Parameter Value

Scanning angle range [π/6, 5π/6]
Scanning angular interval 0.5 degree
Number of detector units 1024

Width of detector unit 0.127 mm
Distance of x-ray source to rotation center 311.49 mm

Distance of rotation center to detector 697.9082 mm

The AEDS is used as the comparison method, as it is a
relatively new method, which is also proposed by us, so it is
easier for us to give an objective and unbiased comparison.

2) Reconstruction results: Fig. 2 shows the reconstruction
results with SART (the first row), AEDS (the second row)
and the proposed method (the third row) from 120-degree
projection data, where the left column is the reconstructed
images and the second column is the residual images. The
iterations for the three methods are 10, 2000, and 2000
respectively. The display window is set to [0, 3]. It can be seen
from the image reconstructed with the SART method that the
four edges of the rhombus are blurred to varying degrees as
they are of different tilt angles, moreover the common edge
between the two triangles are totally lost. The AEDS method
improves the reconstruction result in some degree, but the
edge are not restored accurately, especially for the common
edge between the two triangles. In the contrary, the image
reconstructed with the proposed method (Fig. 2(e)) restores
all the edges of the rhombus correctly.

B. Real data experiments
1) Experiment setup: Real data is scanned with an in-

dustrial CT system developed by our laboratory, which is
equipped with an YXLON-FXE-225.48 x-ray source and a
Varian PS2520V detector. The scanning parameters are listed
in table II. The projection data corresponding the central slice
is extracted to mimic a fan-beam scan for the experiment.

TABLE II
SCANNING PARAMETERS FOR ACQUIRING THE REAL DATA .

Parameter Value

Voltage 140 kV
Current 100 mA

Scanning angle range [0, 2π]
Angle range for limited-angle reconstruciton [π/6, 5π/6]

Scanning Angular Interval 0.5 degree
Number of detector units 1920

Width of detector unit 0.127 mm
Distance of X-ray source to rotation center 311.49 mm

Distance of rotation center to detector 697.9082 mm
Size of reconstruction image 512× 512

Pixel size of the object 0.127× 0.127 mm2

Fig. 3(a) shows a photograph of the scanned phantom,
which consists of a cylinder and two triangular prisms with
different shapes. So the cross section contains a disk and
two triangles. Full-angle projection data are acquired, while
projection data corresponding to the angle range [π/6, 5π/6]
is used for limited-angle CT reconstruction.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. The reconstruction results of the SART method (the first row), the
AEDS methd (the second row), and the proposed mehtod (the last row). the
left column is the reconstructed images and the right column is the residual
images.

2) Reconstruction results: Fig. 3(b) shows the image recon-
structed with SART (10 iterations) from full-angle projection
data, which is also used as the reference image.

Fig. 4 shows the reconstruction results with SART (the first
row), AEDS (the second row) and the proposed method (the
third row) from 120-degree real projection data, where the left
column is the reconstructed images and the right column is the
residual images. The iterations for the three methods are 10,
2000, and 2000 respectively. The display window for the left
and right columns are [0.02, 0.03] and [0, 0.01] respectively.

It can be seen that the image edges are severely blurred,
and there are obvious strip artifacts shown in the image
reconstructed with the SART method. The AEDS method
improves the image quality to some extent. But the upper
and lower edges of the disk and the sloping edges of the
triangles are not reconstructed correctly, and new artifacts are
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(a) (b)

Fig. 3. A photograph of the phantom used for the experiment (a) and the
corresponding CT image reconstructed with SART (10 iterations) from full-
angle projection data (b). The display window is set to [0.02, 0.03].

introduced. On the contrary, our method correctly reconstructs
all the edges of the image, furthermore, the artifacts are
elevated effectively.

IV. SUMMARY

A generalized TV-based regularization model is propose
for limited-angle CT, in which the penalization of the image
gradient for each image pixel is adaptively adjusted by a
weighting matrix. Experiments on both simulation data and
real data verify its effectiveness. It is shown that the proposed
method has better performance on recovering the tile image
edges than the AEDS method.

It is meaningful to give a thorough unbiased comparison of
our method with DTV model [13]. Preliminary comparisons
have been made and detailed results will be given after we
confirm with the authors some details of the implementation
of DTV.
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Abstract—Photon counting detectors (PCDs) with energy 

discrimination capabilities allow us to perform quantitative 
material decomposition with high spatial resolution. Although 
PCDs provide more spectral information than conventional 
energy integrating detectors (EIDs), it is more challenging for the 
system to transmit projection data from the detectors across the 
slip ring to the processing computer and store the data, due to the 
increased amount of data with increasing number of energy bins. 
To address this problem, many approaches have been proposed to 
compress the bin data while maintaining the image quality. In this 
work, we compare the performance of strategies to reduce 
projection data and determine the optimal choice of bin 
compression strategies and the number of measurements for 
multiple tasks. 

We first obtain the optimal thresholds for conventional energy 
bins, as determined by minimizing the Cramér–Rao lower bound 
(CRLB) for material decomposition tasks with a realistic silicon 
detector energy response. We then consider the case of reducing 
data from 8 native energy bins by forming weighted sums, either 
with binary weights or continuous weights, by minimizing the 
relative CRLB between the compressed measurements and the 
original 8 bins. We then evaluate their respective performance 
using Monte Carlo simulation for a head phantom. The results 
show that the continuous weights strategy is superior to others, 
with low bias and less than 10% variance penalty for 2 weighted 
sums, with a data reduction of 75% within a large material 
thickness space. The other strategies have up to 50% variance 
penalty compared with the original 8 bins and are less robust when 
there is photon starvation. With additional weighted 
measurements, the continuous weights method can achieve less 
than 1% variance penalty when reducing the 8 native energy bins 
to half the number of measurements. Overall, combining energy 
bins by forming weighted sums with continuous weights is an 
effective strategy for reducing data while preserving spectral 
information. 
 

Index Term—photon counting detector, bin compression, 
Cramér–Rao lower bound 

I. INTRODUCTION 
RANSMITTING projection data from detector arrays on 
the rotating CT gantry through the slip ring to the data 

processing computer and storing them have always been 
challenging for CT systems. Photon counting detectors (PCDs) 
are advanced detectors that provide more spectral and spatial 

information than current dual-energy CT systems using energy 
integrating detectors (EIDs). For example, deep silicon PCDs 
with 8 native energy bins enable more precise material 
decomposition quantification by taking advantage of all the 
spectral information. However, the projection data transmission 
and storage become more challenging for PCDs due to the 
increased amount of data. There are several approaches to 
reducing the projection data by reducing the number of 
measurements. One direct approach is to reduce the number of 
native energy bins by setting fewer energy thresholds. Other 
strategies include splitting the native energy bins into 𝑁 groups 
and summing them up based on a preset figure of merit [1]. 
Instead of transmitting and storing the native energy bins, the 
summed bins are then used for further processing so that the 
data is downsampled. A more generalized method is to combine 
the native energy bins into 𝑁  measurements with binary 
weights. Wang et al had also proposed a weighting method to 
compress spectral information from infinite bins and an ideal 
detector energy response without information loss [2]–[4]. 
More recently, we proposed a generalized version of the 
continuous weights strategy for finite native energy bins under 
realistic non-ideal detector energy response and showed its 
potential in reducing projection data while maintaining material 
decomposition and virtual monoenergetic image quality [5]. 

In this work, we investigate the optimal strategy for bin 
compression that best preserves spectral information for 
specific tasks, such as material decomposition and virtual 
monoenergetic images, with high compression ratio. We 
compare the performance by assessing bias and noise in 
projection and image domains between four strategies – 
conventional bins, summed bins, binary weights, and 
continuous weights – with different compression ratios. 

II. METHODS 

A. Experiment Settings 
We used a published deep silicon detector model with 

0.5 × 0.5 mm2  pixels and 30 mm  thickness to simulate the 
detected binned counts [6]. We used an incident spectrum of 
120 kVp with 0.4 mAs per projection. The energy thresholds 
of the 8 native energy bins were set to be 4, 14, 30, 37, 47, 58, 
67, and 79 keV to maximize the spectral information contained 
in the native binned counts. Performance of material 
decomposition and virtual monoenergetic images (VMI) was 
evaluated for a basis material space that spans 0 to 40 cm water 
and 0 to 5 cm of calcium in cortical bone. These settings were 
used throughout our study. 
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B. Energy Bin Compression Strategies 
1) Conventional Bins 

We use conventional bins to refer to native energy bins 
obtained through selection of N energy thresholds. We fix the 
lowest energy threshold to be 4 keV, which is consistent with 
our 8 native energy bins. To obtain the optimal remaining 
thresholds, we used an exhaustive search to find the thresholds 
that give the lowest average relative Cramér–Rao lower bound 
(rCRLB) over the material space. The CRLB represents the 
minimum variance of a task, such as basis material 
decomposition or VMIs, for an unbiased estimator given the 
measurements. The rCRLB is defined as the ratio of CRLB 
between the proposed methods and the 8 native energy bins,  
 rCRLB= CRLBW

CRLB8
, (1) 

where we use subscript 𝑊  to represent the proposed bin 
reduction method and the subscript 8 to represent the native 8 
bins. Because each method reduces the amount of information, 
rCRLB ≥ 1, but should be minimized to reduce the increased 
variance. An average rCRLB for the tasks of material 
decomposition and VMI (at 60 keV) across a range of 𝑀 
material thicknesses can be expressed as: 
 
rCRLB̅̅ ̅̅ ̅̅ ̅̅ = 1

3𝑀
∑ CRLBW(Ca)

CRLB8(Ca)
|
𝐴

+𝐴
CRLBW(H2O)
CRLB8(H2O)

|
𝐴

+ CRLBW(VMI,)
CRLB8(VMI)

|
𝐴

, (2) 

 
where 𝐴 indexes the material thickness pairs. 
2)  Summed Bins 

In this approach, we assume 8 native energy bins are acquired, 
and they each contribute once and only once to a summed bin. 
We used the same iterative method described in [1] to compress 
the 8 bins to different numbers of summed bins. In each 
iteration, the best combination of 2 bins is summed, using the 
average rCRLB as expressed in Eq. (2) as the figure of merit. 
The process and the results are shown in Figure 1. 

 

 
Figure 1: Optimization process of summed bins method. 

Mathematically, we can use 𝑊𝑖,𝑗  to represent 𝑁  sets of 
weights, such that the 𝑗th summed bin can be written as 𝑏𝑊𝑗 =
∑ 𝑊𝑖,𝑗𝑏𝑖𝑖 , where 𝑏𝑖 represents the original binned counts. For 
summed bins, we have 𝑊𝑖,𝑗 ∈ {0, 1}, and ∑ 𝑊𝑖,𝑗𝑗 = 1 so that 
each native bin contributes once and only once to a summed 
bin. 
3) Binary Weights 

A more generalized bin compression strategy is to use binary 
weights, where the elements of energy weights matrix 𝑊𝑖,𝑗 ∈
{0, 1}, but no longer has the constraint ∑ 𝑊𝑖,𝑗𝑗 = 1.  

To obtain 𝑊𝑖,𝑗 , we start with the energy weight matrix of 
summed bins 𝑊S = [𝒘𝟏, … , 𝒘𝟖]𝑇 , which compressed the 8 
native energy bins to 𝑁 measurements, and update it row by 

row (bin by bin) to select the best binary combinations. The 
pseudocode is listed below. 

𝑖 ← 0 
𝑊 = [𝒘𝟏, … , 𝒘𝟖]𝑇 = 𝑊S 
while 𝑖 < 8 do 

𝑖 ← 𝑖 + 1 

𝑦𝑖,𝑗 ∈ {0,1}, ∑ 𝑦𝑖,𝑗 > 1
𝑗

 

for all possible 𝒚𝒊 do 
if 𝑌 = [𝒘𝟏, … , 𝒚𝒊, … , 𝒘𝟖]𝑇 is full rank then 

Compute rCRLB̅̅ ̅̅ ̅̅ ̅̅ (𝐛𝑌 = 𝑌𝑻𝐛, 𝐛𝑊 = 𝑊𝑻𝐛) 
if rCRLB̅̅ ̅̅ ̅̅ ̅̅ < 1 then 

𝑊 ← 𝑌 
4) Continuous Weights 

For continuous weights, we fully generalize the elements of 
the bin weights matrix to 𝑊𝑖,𝑗 ∈ ℝ. In this case, we use Global-
Search in MATLAB (R2021a) to minimize the objective 
function described in Eq. (2). 

III. RESULTS 
The optimal binary weights and continuous weights are 

presented in Figure  for 2 measurements. The binary weights 
are identical to summed bins, except bin 5 contributes to both 
measurements, which was found to slightly improve 
performance. The continuous weights are normalized to 1 and 
show that the optimal solution leverages the flexibility of real-
valued weights, including negative weights. 

 
Figure 2: (a) Optimal binary weights and (b) optimal continuous weights for 2 

measurements. 

A. rCRLB Vs Compressed Measurements 
We first show our analytical results of the average rCRLB, 

defined in Eq. (1), over the basis material space of 0 to 32 cm 
water and 0 to 4 cm of calcium in cortical bone obtained from 
the four compression methods for different numbers of 
measurements (Figure 3). 

The results show that with increasing number of 
measurements, the noise performance improves for all four 
compression strategies. Of all strategies, the continuous weights 
method is superior to the other three methods, while 
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conventional bins perform the worst. The average rCRLB of 2 
measurements generated from continuous weights (1.1294 and 
1.0876 for calcium and water decomposition in projection 
domain) is less than that of 5 measurements from conventional 
bins (1.1675 and 1.1455 for calcium and water decomposition 
in projection domain), which indicates that with proper bin 
weighting combinations, spectral information from more native 
bins can be preserved better than simply reducing the number 
of native bins. Data reduction using summed bins and binary 
weights has less variance than conventional bins, but is 
substantially higher than continuous weights. 

When we reach 4 measurements, the rCRLB obtained from 
continuous weights is 1.0061  for calcium decomposition, 
1.0053 for water decomposition, and 1.0019 for VMI at 60 
keV in the projection domain. The noise penalty of this strategy 
compared with the original data is less than 1% for all the tasks, 
while the amount of data is only half of the original. With 
continuous weights, the data from 4 compressed measurements 
performs essentially as well as the 8 native bins, which indicates 
that 4 measurements from continuous weights are sufficient to 
recover the information of 8 native energy bins across the full 
range of object sizes. 

B. Projection Domain Monte Carlo Simulation  
Monte Carlo simulation was conducted to validate the 

analytical results, using maximum likelihood estimation to 
perform material decomposition from the compressed 
measurements. 104 realizations were performed at each sample 
point of water and calcium thickness. The relative variance and 
bias of calcium thickness estimates are presented in Figures 4 
and 5, respectively, for compressing to 2 measurements. The 
results of water thickness and VMI estimates are similar.  

The variance penalty is defined as VarW
Var8

− 1, where VarW
Var8

 is the 

ratio between variances of basis material thicknesses estimated 
from the compressed data and the 8 native bins. We found that 
the variance penalties of 2 measurements with continuous 
weights for calcium decomposition in projection domain is less 
than 10% for most material thicknesses, with an average 
variance penalty of 5.55% in the central region, while that of 
the conventional bins is 499.67%, 55.14% for summed bins, 
and 54.29% for binary weights. The binary weights have lower 
variance penalty than summed bins for intermediate 
thicknesses, but higher variance penalty at greater thicknesses. 

From Figure 5, we also observe that the bias of calcium 

material decomposition is small for compressing to 2 
measurements with continuous weights, even for thicker 
material combinations. However, the other three strategies 
suffer increased bias when there are relatively few photons for 
thicker objects. The root mean squared deviation (RMSD) of

 
Figure 4: Relative variance between the bin compression strategies and 8 

native bins for calcium decomposition. 

 
Figure 5: Bias of bin compression strategies for calcium decomposition. 

the thickness bias is 0.0246 cm for continuous weights, which 
is a small increase from that of the 8 native energy bins (0.0153 
cm). However, for summed bins, binary weights, and 

(a) Conventional Bins (b) Summed Bins

(c) Binary Weights (d) Continuous Weights

(a) Conventional Bins (b) Summed Bins

(c) Binary Weights (d) Continuous Weights

(a) (b) (c)
Figure 3: Average rCRLB of conventional bins, summed bins, binary weights, and continuous weights of (a) calcium and (b) water 

material decomposition and (c)VMI at 60 keV, with different number of measurements. 
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conventional bins, the number increases to 0.0457, 0.0640, and 
0.1095 cm, respectively.  

C. Brain Phantom 
We also applied these four strategies on a simulated brain 

phantom, and the resulting of water decomposition images for 
2 measurements are shown in Figure 6. The average variance 
penalty of a region with uniform water is 352.35% for 
conventional bins, 33.54% for summed bins, 12.98% for binary 
weights, and 5.05% for continuous weights.  

The increased noise due to bin compression is visibly 
obvious when we use conventional bins and summed bins. The 
image quality is the best when we use continuous weights and 
is comparable to that of 8 native bins (not shown). In addition, 
there is no structural bias observed between the images from 
compressed data and 8 native bins. 

 
Figure 6: Phantom simulation results of water decomposition using data from 
two (a) conventional bins, (b) summed bins, (c) binary weights, and (d) 
continuous weights. (a2) - (d2) are the corresponding enlarged ROI. The display 
window is [0.9, 1.2] g/cc. The difference of the water decomposition between 
the proposed strategies and the 8 native bins is shown in (a1) - (d1), with display 
window [-0.05, 0.05] g/cc, showing the increased noise but no bias. 

IV. DISCUSSION 
We have compared the bias and noise performance of 4 

different energy bin compression methods in both projection 
and image domains. The results show that using continuous 
weights, the compressed 2 measurements can preserve almost 
as much spectral information as the original 8 native energy 
bins. It enables a 75% data reduction while preserving the 
native spectral information, with only a small increase of less 
than 10% in image variance over a large range of material 

thicknesses. Other strategies, such as conventional bins, 
summed bins, or binary weights, suffer from at least 50% 
increase in image variance when using 2 measurements. With 4 
measurements using continuous weights, there is almost no 
image quality degradation.  

The Monte Carlo simulation showed consistent results with 
the analytical CRLB predictions of noise performance. The bias 
of calcium thickness estimates is visibly higher at thicker 
material combinations when we use two conventional bins, 
summed bins, or binary weights, while the continuous weights 
and 8 native bins do not have this problem. From this 
observation, we infer that due to the lack of sufficient spectral 
information, if we use data from conventional bins, summed 
bins, and binary weights, the maximum likelihood estimator is 
no longer asymptotically unbiased when the detector collects 
fewer photon counts. We also conducted the same Monte Carlo 
simulation with 1 mAs  per projection (not shown), which 
resulted in a smaller bias. This observation shows that the 
continuous weights method is more robust than the other three 
strategies in not only noise but also bias performance. It also 
indicates that extra calibration and higher exposures may be 
needed for large patients when only using 2 conventional bins. 
The silicon detector energy response is complex, with some 
high energy photons recorded in low energy bins due to 
Compton scattering. The 8 native bins and continuous weights 
with as few as 2 measurements contain the spectral information 
needed to account for the detector response, while other 
compression methods may struggle. 

V. CONCLUSION 
We found that compressing the binned data with continuous 

weights can best preserve the spectral information for material 
decomposition and virtual monoenergetic imaging from the 
original data of 8 native energy bins. Other bin compression 
strategies substantially increase image noise. With continuous 
weights, a compression ratio of 4 can be achieved with 2 
measurements that mostly preserves the image quality of both 
basis materials and VMIs. 
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A visible edge aware directional total variation
model for limited-angle reconstruction

Yinghui Zhang, Ke Chen, Xing Zhao, Hongwei Li⇤.

Abstract—The directional total variation algorithm (DTV)
reported in the literature achieves some promising results for
limited angle reconstructions, especially when the scanning
angular range is very small. However, the visible edge prior
for limited-angle CT is not explicitly considered by DTV. In
this paper, a variant of the DTV model is proposed which
explicitly builds into the visible edge prior developed by Quinto
et al. Numerical experiments show that the proposed model and
algorithm produce very competitive results compared to DTV.

Index Terms—limited-angle CT, directional total variation,
iteration reconstruction.

I. INTRODUCTION

IN certain computed tomography (CT) applications, due to
the restrictions on the scanning condition or the geometrical

shapes of scanning objects, the projection data could be only
acquired in a limited angular range which leads to the chal-
lenging limited-angle reconstruction problem. This happens in
both medical diagnosis like breast imaging [7] and industrial
inspection like the C-arm neuro imaging [4].

Conventional reconstruction methods like filtered back-
projection (FBP) and (simultaneous) algebraic reconstruc-
tion technique ((S)ART) perform poorly with limited-angle
data, introducing heavy image blurring along the directions
perpendicular to the missing projection rays. The limited-
angle reconstruction problem has been extensively studied for
decades, including theoretical characterization and practical
reconstruction algorithms.

An early method views it as a projection domain inpainting
problem [5] and incorporate the smoothness prior of projec-
tion data into the reconstruction process. However, since a
local extrapolation error in the projection domain may cause
global artifacts in the image domain, this kind of methods
suffers from severe stability issue. Another method is based
on optimization models encoded with various hand-crafted
priors. In certain applications, CT images can be approximated
well by piecewise constant functions which should possess
the gradient sparsity property. This property can be encoded
by the total variation (TV) regularizer, extensively used in
image processing. The first method adopting TV regulariza-
tion is introduced in [10] for divergent CT reconstruction.
Since then, various modifications and improvements have been
proposed, including the adaptive steepest descent-projection
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Hongwei Li are with the School of Mathematical Sciences, Capital Normal
University, Beijing, 100048, China.

E-mail: hongwei.li91@cnu.edu.cn.

onto a convex set method [11], prior image constrained com-
pressed sensing method [2], adaptive-weighted TV model [6],
TV-l0 gradient minimization [14], etc. These methods could
effectively improve the reconstruction quality and achieve
promising results.

For limited-angle reconstruction, there is a vital prior de-
scribed by the theory of visible and invisible boundaries [8]
developed by Quinto et al. This prior is first considered by
the anisotropic total variation (ATV) method [3]. Later on,
the reweighted ATV [12] method takes projection directions
as prior information and combines them into the TV formu-
lation. Especially, the alternating edge-reserving diffusion and
smoothing (AEDS) algorithm [13] takes the visible edges prior
to its full advantage. By designing separated x- and y-direction
regularizers, the AEDS model encodes explicitly the visible
edges prior, and by adopting the alternating minimization
technique, the AEDS algorithm decouples the x-direction
regularization from the y-direction regularization such that the
visible edges are protected and utilized to their full advantages.

A very recent algorithm named DTV (directional total
variation) is proposed in [15], which shows very promising
reconstructions, especially for very small scanning angular
ranges. The energy functional associated with DTV can be
seen as a reformulation or constrained version of the AEDS
model when the regularizers are specified by x-direction TV
(TVx) and y-direction TV (TVy). The workhorse of DTV is
the primal-dual based Chambolle-Pock (CP) algorithm.

Motivated by the success of the DTV algorithm, we propose
to reformulate the DTV model such that the new model treats
the visible edges prior (corresponding to TVx) differently from
TVy . This is achieved by exchanging the roles of TVx and the
data fidelity terms. Since the TVx term goes into the energy
functional while the TVy term is specified as a constraint, the
new model shall treat them differently. In this way, we think
that the visible edges prior could be better utilized.

The remainder of this paper is organized as follows. We
present our approach to the limited-angle CT reconstruction
problem in Section II. In Section III, experiments are carried
out to validate the proposed method. Finally, we conclude the
paper in Section IV.

II. METHOD

A. The limited-angle CT reconstruction problem

Assume that the size of reconstruction image u is M ⇥N .
The vector �!u 2 RJ , J = M ⇥ N is a concatenate form
along the columns of u, and ui describes the ith entry of
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Fig. 1: Illustration of the theory of visible and invisible
boundaries. (a) The rectangle phantom; (b) the scanning con-
figuration; (c) the limited-angle reconstruction for the scanning
angular range ([⇡4 ,

3⇡
4 ]).

�!u , i = 1, 2, . . . , J . The CT reconstruction problem could be
formulated as solving a linear system

A�!u =
�!
b +�!✏ , (1)

where A 2 RI⇥J is the system matrix and
�!
b is a vector of

length I = V ⇥ D which represents the acquired projection
data. V and D denote the number of projection views and
the number of detector cells, respectively. �!✏ accounts for any
measurement bias and additive noise.

For limited-angle data, the linear system (1) with I ⌧ J
is severely ill-posed, therefore, images reconstructed by con-
ventional reconstruction algorithms will introduce streak and
blurring artifacts. This is demonstrated in Fig.(1). Without loss
of generality, here, we consider the fan-beam scanning with
limited-angle range ([⇡4 ,

3⇡
4 ]). The rectangle phantom and the

scanning configuration are shown in Fig.(1a) and Fig.(1b),
respectively. Under this scanning configuration, according to
the theory of visible and invisible boundaries, the edges close
to vertical are visible and can be easily reconstructed, while
for the edges close to be horizontal will be invisible and cannot
be recovered well by conventional reconstruction algorithms
like FBP or SART, as shown in Fig.(1c).

B. The DTV model

The DTV algorithm [15] is to solve the following minimiza-
tion problem

�!u ? = min
u

1

2
kA�!u �

�!
b k22

s.t. krx
�!u k1  tx, kry

�!u k1  ty,
�!u � 0,

(2)

where rx and ry represent matrices size of J⇥J , correspond-
ing to the discrete x-direction and y-direction gradient opera-
tors, respectively, and tx and ty are two scalars, specifying the
allowed total variations along the x-direction and y-direction,
respectively. Since the model (2) is convex, the CP algorithm
could be employed to compute a global minimizer. It should be
noted that for limited-angle problems, the matrix A has a very
large kernel space, so that the model (2) could possess multiple
global minimizers. In this case, different parameterizations or
different initializations could lead to different solutions.

C. The visilbe edge aware DTV model (VEA-DTV)

As mentioned earlier, to better utilize the visible edges prior,
we reformulate the DTV model (2) as the following one

�!u ? = min
u

krx
�!u k1

s.t. kA�!u �
�!
b k2  ✏, kry

�!u k1  ty,
�!u � 0.

(3)

The parameter ✏ controls the noise-level of reconstructed
image, which has a clear physical meaning [9]. It’s easy to
check that

ker(A) \ (ker(rx) [ ker(ry)) = {0}, (4)

so the proposed VEA-DTV model (3) is theoretically equiva-
lent to the DTV model (2). However, since the two formula-
tions are not the same, when applying the CP algorithm, the
resulting solving algorithms would be different. As mentioned
earlier, for limited-angle problems, the models (3) and (2) are
not strictly convex and since the system matrix A has a large
kernel space, each of the two models admits multiple solutions,
in which case different algorithms might reach different global
minimizers. So, starting from the formulation (3), the CP
algorithm might compute a solution different from that of
the DTV algorithm. This is also the case when comparing
AEDS and DTV. The model AEDS(l1, l1) coincides exactly
with that of DTV, since condition (4) is met. However, since
AEDS and DTV employ different minimization algorithms,
their performance could be different. In fact, the alternating
minimization algorithm adopted by AEDS takes constant step-
sizes, according to the framework of incremental methods [1],
it only converges to a neighbourhood of the optimum. On the
other hand, the CP algorithm can be proved to converges to a
saddle point corresponding to a optimum.

D. Numerical algorithm

The CP algorithm is adapted to develop an iterative algo-
rithm for solving (3) by

�!u ? = min
u

⌫1krx
�!u k1 + �Ball(✏)(A

�!u �
�!
b )

+ �Diamond(⌫2ty)(⌫2|ry
�!u |1) + �P(µ

�!u ),
(5)

where indicator functions �Ball(
�!x ), �P (

�!x ), �Diamond(a)(
�!x )

are defined as:

�Ball(✏)(
�!x ) =

(
0, k�!x k2  ✏

1, k�!x k2 > ✏
, �P(

�!x ) =

(
0, �!x � 0

1, �!x < 0
,

�Diamond(a)(
�!x ) =

(
0, k�!x k1  a

1, k�!x k1 > a
.

Then, the min-max formulation of (5) is given by
⇣�!u ?,�!w ?,�!p ?,�!q ?,

�!
t ?

⌘
= min�!u

max
�!w,�!p ,�!q ,

�!
t
h⌫1rx

�!u ,�!p i

� �Box(1)(|�!p |) + hA�!u �
�!
b ,�!w i � ✏k�!w k2 + h⌫2ry

�!u ,�!q i
� ⌫2tyk(|�!q |)k1 + hµ�!u ,

�!
t i � �P(�µ

�!
t ),

(6)
where

�Box(✏)(
�!x ) =

(
0, k�!x k1  ✏

1, k�!x k1 > ✏
.
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Applying the proximal point algorithm to solve (6) and taking
an additional extrapolation step, we thus obtain the VEA-DTV
algorithm described in Algorithm 1, where k ·k2 is computed
by the power method suggested in [9], 1J 2 RJ denotes the
constant vector with all elements set to 1, operator sgn(·)
returns the sign of a real number, and l1Balla(·) projects a
vector onto the l1 ball with radius of a. The symbol neg(·)
represents the negative thresholding function, i.e. projects any
positive elements of its argument to zero.

Algorithm 1 (VEA-DTV)

Input A,
�!
b , ✏, ty, a

1: L kKk2,K =
�
A>, ⌫1r>

x , ⌫2r>
y , µI

�>, �  1
aL ,

⌫1  kAk2

krxk2
, ⌫2  kAk2

kryk2
, µ kAk2

kIk2

2: k  0
3: Initialize: �!u (0),�!w (0),�!p (0),�!q (0) and �!t (0) to zero
4:
�!̄
u (0)  �!u (0)

5: repeat
6: �!w 0(k) = �!w (k) + �

⇣
A
�!̄
u (k) �

�!
b
⌘

�!w (k+1) =
�!w 0(k)

k�!w 0(k)k2
max(k�!w 0(k)k2 � �✏, 0)

7: �!p 0(k) = �!p (k) + �⌫1rx
�!̄
u k

�!p (k+1) =
�!p 0(k)

max(1I ,
�!p 0(k))

8: �!q 0(k) = �!q (k) + �⌫2ry
�!̄
u k

�!q (k+1) = �!q 0(k) � �sgn
��!q 0(k)� l1Ball⌫2ty

⇣
|�!q 0(k)|

�

⌘

9:
�!
t 0(k) =

�!
t (k) + �µ

�!̄
u k

�!
t (k+1) = neg(

�!
t 0(k))

10: �!u (k+1) = �!u (k) � ⌧(A>�!w (k+1) + ⌫1r>
x
�!p (k+1)

+⌫2r>
y
�!q (k+1) + µ

�!
t (k+1))

11:
�!̄
u (k+1) = 2�!u (k+1) ��!u (k)

12: k  k + 1
13: until stopping criterion is met

Output : �!u (k)

III. EXPERIMENTS

Numerical experiments with simulated data against SART
and the DTV algorithm are carried out to validate the effec-
tiveness of the proposed reconstruction algorithm VEA-DTV.
The simulated analytic projection data are acquired by the
open source software CTSim (http://www.ctsim.org), while the
astra toolbox (https://www.astra-toolbox.com/) is utilized to
perform the forward and backward projections when they are
required.

In terms of parameter selections, since the general CP
framwork is adopted, there are totally three parameters subject
to tuning, i.e. a, ty and ✏ for applying VEA-DTV. Corre-
spondingly, there are parameters: a, tx, ty , are involved in the
DTV algorithm. Ideally, tx, ty should be computed in terms
of the ideal image. In our experiments, we apply the SART
method with 10 iterations on the full-angular data to provide
an approximation which then acts like the ideal image. The
parameter ✏ relies on noise estimation of the projection data,
which might be not easy to acquire. In this work, we tune the
parameters to arrive at best performance in terms of artifacts

Full-angle SART SART DTV

10
0 

no
is

e-
fr

ee
10

0 
no

is
y

VEA-DTV

Fig. 2: The analytic rectangle phantom. From left to right,
the images are reconstructed by full-angle SART, SART,
DTV, VEA-DTV, respectively. The first row shows the re-
constructions without noise, while the second row shows the
results with added Poisson noise, with incidence intensity
I0 = 1.5⇥ 105. The display window is set to [0, 0.5].

removal and structure-preserving by sampling the parameter
space.

A. Inverse crime test

The inverse crime occurs when employing the same forward
reconstruction model to generate, as well as to invert, synthetic
data. To avoid the inverse crime, analytic projection data are
acquired in CTSim. Both noise-free and noisy projection data
are tested. The scanning angular range is set to [ 2⇡9 , 7⇡

9 ].
Poisson noise with incidence intensity I0 = 1.5⇥105 is added
to the analytic projection data.

The results are shown in Fig.2. From left to right, the
columns 1 and 2 show the SART (10 iterations) reconstruc-
tions, with full data and limited data, respectively, and the
columns 3 and 4 show the reconstructions of DTV and VEA-
DTV, respectively. As Fig.1 has demonstrated, in the limited-
angle reconstructions, the invisible edges are too blurred to be
recognized. The first row and second row show the noise-free
and noisy reconstructions, respectively. We can easily observe
that for the noise-free case, DTV and VEA-DTV achieves
similar high quality reconstructions, while for the noisy case,
VEA-DTV demonstrates superior results. Distortions and blur-
ring could be easily recognized in the DTV reconstructions,
especially at the right bottom part. For the proposed VEA-
DTV, blurring has been completely removed, and just small
local distortions could be identified along the diagonal of the
big parallel gram. Same conclusion could be drawn from the
quantitative measures listed in Table I.

TABLE I: PSNR, SSIM and NRMSE for the analytic rectangle
phantom.

Index SART DTV VEA-DTV

noise-free
PSNR 22.9650 38.7488 39.0063
SSIM 0.81761 0.99175 0.99195

NRMSE 0.12726 0.00336 0.00317

noisy
PSNR 21.8880 31.8155 34.2304
SSIM 0.58396 0.93394 0.99195

NRMSE 0.16308 0.02899 0.00951
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Fig. 3: The rhombus phantom. From left to right, the images
are reconstruction results from full-angle SART, SART, DTV,
VEA-DTV, respectively. From up to bottom, each row shows
the reconstructions with different angular ranges. The display
window is set to [0, 0.18].

B. Invisible edges recovery capability test

One rhombus phantom with tilt angle of 5 degrees is
constructed in CTSim. Its projection data without noise are
also acquired in CTSim. Both of them are analytic, which
are used to test VEA-DTV’s capacity to recover invisible
edges. Since the boundary between the two triangles are
completely invisible and not distributed along the axes, it is
quite challenging to recover it.

The results are shown in Fig.3. From top to bottom, the
images are reconstructed with angular ranges 130, 120 and
110 degrees, respectively. From left to right, the columns 2,
3, and 4 show the reconstructions by SART, DTV and VEA-
DTV, respectively. As shown in the second column, the SART
method fails to recover the invisible edge. For both DTV
and VEA-DTV, the quality of the reconstructions decreases
with reducing angular ranges, as demonstrated in the last
two columns of Fig.3. When the scanning angular range is
130 degrees, both DTV and VEA-DTV recover the invisible
edge nearly perfectly. However, when reducing the angular
ranges, the performance of DTV deteriorates quickly, while
the proposed VEA-DTV could demonstrate certain resistances
to such changes. Same conclusion could be drawn from the
quantitative measures listed in Table II.

TABLE II: PSNR, SSIM and NRMSE for the rhombus phan-
tom.

Angular range Index SART DTV VEA-DTV

[ 5⇡36 ,
31⇡
36 ]

PSNR 24.2663 33.8890 35.3223
SSIM 0.53365 0.99449 0.99557

NRMSE 0.55199 0.01048 0.00754

[⇡6 ,
5⇡
6 ]

PSNR 21.8979 31.8155 33.7639
SSIM 0.89156 0.99177 0.99376

NRMSE 0.16742 0.01690 0.01079

[ 7⇡36 ,
29⇡
36 ]

PSNR 19.78663 29.9508 30.5150
SSIM 0.85852 0.98734 0.98829

NRMSE 0.27222 0.02597 0.02279

IV. CONCLUSION

We have proposed a visible edge aware convex model for
limited-angle reconstruction which is derived by reformulating
a DTV model. By treating the visible edges and the invisible
ones differently, the proposed algorithm could make better use
of the visible edges prior and achieve better reconstructions.
Numerical experiments suggest that, compared to DTV, the
proposed VEA-DTV demonstrates improved stability against
noise and angular range reducing.
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Dual-task Learning For Low-Dose CT
Simulation and Denoising

Mingqiang Meng, Yongbo Wang, Manman Zhu, Xi Tao, Zhaoying Bian, Dong Zeng, and Jianhua Ma

Abstract—Deep learning (DL) are being extensively investi-
gated for low-dose computed tomography (CT). The success of
DL lies in the availability of big data, learning the non-linear
mapping of low-dose CT to target images based on convolutional
neural networks. However, due to the commercial confidentiality
of CT vendors, there are very few publicly raw projection
data available to simulate paired training data, which greatly
reduces the generalization and performance of the network. In
the paper, we propose a dual-task learning network (DTNet)
for low-dose CT simulation and denoising at arbitrary dose
levels simultaneously. The DTNet can integrate low-lose CT
simulation and denoising into a unified optimization framework
by learning the joint distribution of low-dose CT and normal-
dose CT data. Specifically, in the simulation task, we propose
to train the simulation network by learning a mapping from
normal-dose to low-dose at different levels, where the dose level
can be continuously controlled by a noise factor. In the denoising
task, we propose a multi-level low-dose CT learning strategy
to train the denoising network, learning many-to-one mapping.
The experimental results demonstrate the effectiveness of our
proposed method in low-dose CT simulation and denoising at
arbitrary dose levels.

Index Terms—Computed tomography, dual-task learning, de-
noising network, simulation network.

I. INTRODUCTION

X -RAYcomputed tomography (CT) is widely used in
clinical diagnosis and treatment because of its ability

to image the body’s three-dimensional anatomy in a non-
invasive manner. However, ionizing radiation generated during
CT scanning will accumulate in the human body, and high
radiation doses will induce the risk of cancer in human tissues
and organs [1]. Given these risks, efforts have been made on
reducing the radiation dose and the principles of As Low As
Reasonably Achievable (ALARA) is profoundly practiced in
clinical CT imaging [2]. However, reducing the radiation dose
inevitably increases the noise and artifacts of reconstructed
CT images, which compromises the diagnostic performance.
Consequently, improving the image quality of low-dose CT
(LDCT) has become a hot topic in medical imaging over the
past decade.

Recently, with the rapid development of deep learning (DL)
technology, the LDCT imaging algorithm is dominated by
convolutional neural network and has achieved unprecedented

This work was supported in part by the NSFC under Grant U21A6005
and Grant U1708261, the National Key R&D Program of China under Grant
No. 2020YFA0712200, and the China Postdoctoral Science Foundation under
Grant 2021M701641. (Corresponding author: Jianhua Ma.).

M. Meng, Y. Wang, M. Zhu, X. Tao, Z. Bian, D. Zeng and J. Ma are with the
School of Biomedical Engineering, Southern Medical University, Guangdong,
China; and the Guangdong Artificial Intelligence and Digital Economy
Laboratory (Guangzhou), Guangdong, China (e-mail: jhma@smu.edu.cn).

success. DL-based algorithm learns the mapping from LDCT
projection/image to normal-dose CT (NDCT) ones by design-
ing an elaborate convolutional neural network (CNN), such
as RED-CNN [3], Wavelet networks [4], and Tensor-Net [5].
A key factor in the success of these supervised algorithms
is the availability of big data, that is, a large amount of
paired LDCT and NDCT images [6], [7]. Despite its superior
denoising results, some issues still must be resolved before the
DL models can be widely deployed in clinic. First, given the
increase in total radiation dose, matched LDCT and NDCT
data cannot be obtained in clinical practice. As a result,
true NDCT and LDCT paired data are not available. Second,
traditional LDCT simulation methods [8] usually insert noise
into the raw projection data, however, very few raw data
are publicly available to simulate paired training data, which
degrades the generalization performance of the network. Third,
most of DL-based models are designed for specific dose levels
but perform poorly at lower doses.

To solve above problems, in this work, we propose a dual-
task learning network (DTNet) for low-dose CT simulation
and denoising at arbitrary dose levels. The presented DTNet
can integrate LDCT simulation and denoising into a unified
framework by learning the joint distribution of LDCT and
NDCT data. Specifically, we first propose to train the sim-
ulation network by learning a mapping from NDCT to LDCT
at different levels, where the dose level can be continuously
controlled by a noise factor. In the denoising task, we present
a multi-level LDCT learning strategy, which uses LDCT data
of different levels to train the denoising network. Once trained,
DTNet can be used for multi-level LDCT images simulation
and denoising simultaneously, which greatly improves the
applicability and generalization performance of the model.

II. METHODOLOGY

A. Low-dose CT Simulation Network

Let x ∈ IH×W denotes a NDCT image and y ∈ IH×W

denotes the corresponding LDCT image. Low-dose CT simu-
lation is an inverse process of LDCT denoising, which learns
the opposite mapping from x to y. To precisely control the
noise level of the generated LDCT image, we propose a noise
control factor guided LDCT simulation scheme, as illustrated
in Fig. 1 (a). Specifically, given a NDCT image and a mask
image with value of 1, the simulator network encodes them
into high-dimensional features for coupling and progressively
decoding to reconstruct LDCT image of different levels, where
the dose level can be continuously controlled by a noise factor.
In addition, instead of directly applying the pixel-wise loss to
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(a)LDCT Simulation module

(b)LDCT Denoising module

(c)Dual-task Learning module

Fig. 1. The overall structure of the proposed DTNet framework. (a) Low-Dose CT simulation module, (b) Low-Dose CT denoising module, (c) Dual-task
learning module. m is the mask image with value of 1. kj is the noise scale factor.

the target image, we use a gaussian filter to extract the first-
order statistics information of simulation and reference LDCT
noise, and then constraint it with the MAE loss function, which
can be formulated as:

LS = argmin
θS

N∑

i=1

||GF (S(xi,m·kj)−xi)−GF (yi
j−xi)||1.

(1)
Here, m is the mask image with value of 1, kj = 1, ..., j is
the noise factor that controls the simulated dose level j. θS
represents the parameters of simulation network S. GF is a
2d Gaussian filter convolution kernel with a size of 5× 5.

B. Low-dose CT Denoising Network

Typically, the DL-based denoising problem is to build a
prediction network R(·) that learns the non-linear mapping
from y to x, i.e., R : y → x. In clinical, CT images of various
dose levels may be obtained to meet the clinical diagnosis
demands. In Fig. 1 (b), we propose a multi-level low-dose CT
learning strategy to train the denoising network with different
levels low-dose CT data by minimizing the mean absolute
error (MAE) loss function, which is expressed as:

LR = argmin
θR

N∑

i=1

||R(yi
j)− xi||1. (2)

Here, yij , i = 1, ..., N, j = 1, ...,M represents the LDCT
images, where N is the total number of LDCT images and
M is number of dose levels. θR represent the parameters of
denoising network R. Once trained, the denoising model can
be applied to LDCT reconstruction at different dose levels in
the clinic.

C. Dual-task Learning Network
To jointly optimize low-dose CT simulation and denoising

tasks, we adopt the dual-task learning network (DTNet), which
uses a joint discriminator to alternately optimize the simula-
tion and denoising network by learning the joint distribution
p(x, yj) of LDCT and NDCT data, as shown in Fig. 1
(c). Let pS(x, yj) and pR(x, yj) represent the pseudo joint
distribution of simulation and denoising task, respectively. The
dual adversarial loss can be defined as follows:

min
S,R

max
D

(S,R,,D) = E(x,yj)!p(x,yj)[D(x, yj)]

− λS · E(x,ŷj)!pS(x,yj)[D(x, ŷj)]

− λR · E(x̂,yj)!pR(x,yj)[D(x̂, yj)].

(3)

Here, E[·] denotes the expectation operator, D represents the
discriminator, which is used to receive the image pair (x, yj),
(x̂, yj), (x, ŷj) and distinguish them as real or fake samples.
The hyper-parameters λR and λS controls the weight of GAN
loss.

The final objective function for optimizing DTNet can be
formulated as:

min
S,R

max
D

(S,R,D) + α · LS + β · LR, (4)

where α and β are the weight parameters that control the trade-
off between adversarial loss and fidelity loss of simulation and
denoising tasks.

III. EXPERIMENTS

A. Dataset
The 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand

Challenge dataset [9] published by Mayo Clinic is used to
evaluate the effectiveness of the proposed DTNet model.
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Fig. 2. The simulation and denoising results at different dose levels of proposed DTNet. The display window of images and zoomed-in ROIs is [−140, 260]
HU. The display window of NPS maps is [0 3000] HU2mm2.

NDCT 1/2 1/3 1/4 1/5 1/6 1/91/7 1/8 1/10
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noise factor
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Fig. 3. Arbitrary dose levels simulation results of proposed DTNet. From the left to the right column, the noise level of CT image gradually increases as the
noise factor kj increases. The display window is [−140, 260] HU

This dataset contains 10 anonymized patient normal-dose raw
projection data, which were acquired using the Somatom
Definition AS+ CT system under 100kV or 120kV and auto-
matic exposure controlling mode, and simulated quarter-dose
projection data. In order to obtain LDCT data at different dose
levels, we re-simulated 1/4, 1/8, 1/16, 1/20-dose projection
data using the corresponding simulation algorithm [8] to insert
quantum and electronic noise into the normal-dose projection
data. In this study, we selected seven patients with a total
of 17056 image data pairs for training. Specifically, 4568
image pairs collected from two patients are used to validate

the performance of DTNet, and 2100 image pairs from the
remaining one patient are selected as the testing set.

B. Implementation details
In our experiments, the proposed DTNet model consists of

three sub-networks: simulator S, denoiser R and discriminator
D. For S and R, we use the same generator network structure
UNet [10], which contains an encoder and decoder. The
discriminator D has a similar structure to the PatchGAN [11].
The DTNet model is optimized in an alternating manner using
Adam algorithm. The learning rates of S, R and D are set
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to 1e−4, 1e−4, and 2e−4, respectively. The hyper-parameters
of loss function are selected to be α = 100, β = 10,
λR = λS = 0.5. During training, we randomly extracted 4
patches of size 128 × 128 as input in each iteration, D is
updated three times while S and R are updated once. All
networks are implemented using Pytorch and trained with an
GeForce RTX 3090 GPU.

IV. RESULTS

Fig. 2 shows the simulation and denoising results of abdom-
inal CT image at five different dose levels: normal-dose, 1/4,
1/8, 1/16, 1/20-dose. In the simulation task, the corresponding
simulation noise factors are set to 0, 1/4, 1/8, 1/16, and 1/20,
respectively. Note that the noise factor equal to 0 means that
it does not insert any noise into the NDCT image. It can
be observed that the proposed method can simulate LDCT
images of different dose levels and the learned noise intensity
and characterization are similar to the reference images. In
addition, we also calculate the noise power spectrum (NPS)
maps of magnified ROIs to evaluate the statistical property of
noise. We can observe that the NPS of generated LDCT images
is very close to the reference images. When the noise factor
is set to 0, only little noise is embedded in the output image,
which can be seen from the ROI and the corresponding NPS.
To verify the robustness of DTNet in simulating other dose
levels which are not including in training data, as shown in Fig.
3. It can be seen that the noise intensity of simulated LDCT
images continuously increases with the increase of noise factor
kj . This demonstrates that the proposed DTNet has the ability
to simulate the realistic LDCT images and can control the
noise level well.

In the denoising task, the last row in Fig. 2 shows that
DTNet can efficiently suppress noise and artifacts at difference
dose levels. In particular, for normal-dose images with a
small amount of noise, we can also remove the noise without
smoothing the image content. And for ultra-low doses, such as
1/20-dose, some small structures are completely drowned out
by noise and are difficult to recover well. Therefore, ultra-low
dose scanning can be used for special imaging tasks where
anatomical details are not important, such as localization
imaging. To quantitatively analyze the denoising performance
of DTNet, we calculate the peak-to-noise ratio (PSNR) and
structural similarity (SSIM), as summarized in Table I. We
can see that DTNet obtains the best quantitative values at
different dose levels compared to RED-CNN [3] and WGAN-
VGG [12], which is consistent with the visual evaluation.

V. CONCLUSION

In this paper, we have presented a dual-task learning net-
work (DTNet) for LDCT simulation and denoising tasks. In
the simulation task, the simulation network encodes the NDCT
image and mask image into high-dimensional features for
coupling and decoding to generate LDCT images at different
dose levels, where the dose levels can be controlled by a noise
factor. The presented DTNet integrates the LDCT simulation
and denoising tasks into a unified optimization model. In the
denoising task, the multi-level LDCT learning strategy is used

TABLE I
PSNR AND SSIM QUANTITATIVE COMPARISON OF DTNET DENOISING

RESULTS AT DIFFERENT DOSE LEVELS.

Dose RED-CNN WGAN-VGG DTNet

1/20
36.5572± 2.3307 33.3125± 2.5499 36.6999± 2.3983

0.8665± 0.0573 0.7543± 0.0994 0.8677± 0.0583

1/16
36.8386± 2.3549 34.0276± 2.5127 36.9687± 2.4371

0.8705± 0.0561 0.7795± 0.0908 0.8715± 0.0574

1/8
37.6845± 2.5182 35.8733± 2.5104 37.7859± 2.5292

0.8839± 0.0533 0.8371± 0.0712 0.8866± 0.0515

1/4
38.6890± 2.6873 37.4532± 2.5651 38.9779± 2.7158

0.9024± 0.0472 0.8789± 0.0557 0.9101± 0.0426

to train the denoising network, which can learn many-to-one
end-to-end mapping. Both the quantitative and qualitative eval-
uation results have demonstrated the promising performance
of DTNet in terms of LDCT simulation and denoising. In the
feature, we will further improve the performance of DTNet by
incorporating advanced network and prior information.
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Statistical Iteration Reconstruction based on
Gaussian Mixture Model for Photon-counting CT

Danyang Li, Zheng Duan, Dong Zeng, Zhaoying Bian, and Jianhua Ma

Abstract—Photon-counting computed tomography (PCCT) can
simultaneously obtain multi-energy data with abundant energy-
dependent material-specific information of the scanned object.
However, the photon counts in each energy bin are decreased
and the collected data suffers from photon starvation effects,
which degrades the quality of the reconstructed PCCT images. To
solve it, many statistical iteration reconstruction (SIR) methods
have been proposed by constructing data-fidelity and prior terms
to suppress noise and remove artifacts. However, most of the
current SIR methods assume the noise in PCCT images follows
a Gaussian distribution, which deviates the real distribution of the
noise in PCCT images. Therefore, we propose a new statistical
iteration reconstruction method by considering more complex
noise distribution in reality. Specifically, Gaussian mixture model
(GMM), which is an universal approximator for any continuous
density function, is utilized to model the noise in PCCT images.
Moreover, the multi-energy PCCT images are treated as a 3-order
tensor which is regularized by three dimensional total variation
(3DTV) prior term. Finally, a statistical iteration reconstruction
model based on GMM and 3DTV is established for PCCT
imaging. For shorten, we call the presented reconstruction model
as “GMM-3DTV”. We then develop an expectation-maximization
(EM) algorithm to solve the presented GMM-3DTV method. Nu-
merical studies demonstrated the improvements of the presented
GMM-3DTV method over the competing methods.

Index Terms—Photon-counting CT, statistical iteration recon-
struction, Gaussian mixture model, 3DTV.

I. INTRODUCTION

RECENTLY, photon-counting computed tomography (PC-
CT) has been developed in clinics. It utilizes the photon

counting detectors (PCDs) to simultaneously count photons in
multi-energy bins. By obtaining abundant energy-dependent
material-specific information and high contrast-to-noise ratio
(CNR) for soft materials, PCCT has the advantages on material
decomposition and lesion diagnostic [1], [2].

However, the narrow energy bin receives decreasing photons
and the spectral data suffers from serious quantum noise [3].
This challenge significantly degrades the quality of the re-
constructed PCCT images in multi-energy bins and effects
the imaging performance of PCCT imaging. To obtain high
quality PCCT images, several iteration reconstruction methods
have been exploited. It incorporates the statistical property of
X-ray photons and prior information of the desired PCCT
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Grant U1708261. (Corresponding author: Zhaoying Bian and Jianhua Ma.)
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images to build reconstruction model with data fidelity and
regularization terms, respectively. For examples, Xu et al.
introduced a statistical interior tomography method with TV
regularization to reconstruction PCCT images [4], Kim et al.
stacked similar image patches at the same position and utilized
a low-rank regularization to suppress image noise [5]. Zhang et
al. utilized a nonlocal mean regularization of the full-spectrum
image to maintain the image details [6]. Yao et al. proposed
to improve the reconstruction performance by utilizing a
nonlocal spectral similarity of a weighted image [7]. Liu et al.
developed a nonlocal total variation (TV) regularization term
to construct the weights from the full-spectrum images [8].
Tao et al. utilized the structural redundancy between the
base materials and the spectral images to establish a prior-
knowledge-aware material decomposition method [9]. Zeng et
al. analyzed the intrinsic tensor properties of the PCCT images
and constructed a full-spectrum-knowledge-aware tensor mod-
el for PCCT imaging [10]. These methods have been shown
great potential in preserving image structures and suppressing
noise. Moreover, deep learning (DL) based methods have been
utilized in spectral CT. For examples, Li et al. constructed a
cascade DNN to estimate the high-energy image from low-
energy image [11], and Cong et al. estimated the PCCT images
from the data of energy-integrating detectors by using DNN
based method [12].

However, most of the current SIR methods assume the
noise in PCCT images follows a Gaussian distribution, which
deviates the real distribution of the noise in PCCT images.
Because the artifacts, which maybe induced by beam harden-
ing effect in lower energy bins or photon starvation effect of
high density materials, would complicate the noise distribution
in the image and may invalidate the performances of the
aforementioned iteration methods. In addition, the DL-based
methods need quantity of paired data to obtain a desired
network, and the collection of training data is time-consuming
and the clinical PCCT data is hard to be obtained. To solve it,
we propose to utilize Gaussian Mixture Model (GMM) [13],
which is a universal approximator for any continuous density
function, to model the noise in the PCCT images. Moreover,
we treat the PCCT images as a 3-order tensor and serve
the three dimensional total variation (3DTV) [14] as image
prior. Finally, we construct a statistical iteration reconstruction
method based on GMM and 3DTV. For shorten, we call the
presented reconstruction method as “GMM-3DTV”.

In summary, the main contributions of this work are:
• We present a statistical iteration reconstruction method,

called GMM-3DTV, by modelling the complex distribu-
tion of the noise with GMM and serving the 3DTV as
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Fig. 1. Illustration of the approximated results by the GMM for complex
noise in multi-energy bin PCCT images. First row (from left to right): Noisy
PCCT images, noise and ground truth. Second row: three noise components
of GMM in Bin 1.

the PCCT image prior.
• Considering the GMM parameters, we also employ an

expectation-maximization (EM) algorithm to numerically
optimize the presented GMM-3DTV method.

• We evaluated the presented GMM-3DTV on simulated
and synthesized clinical data and demonstrated its effec-
tiveness in terms of qualitative and quantitative metrics.

II. METHODS

PCCT receives spectral data among multi-energy bins. Con-
sidering the spatial and energy dimensions of the measure-
ments, the 3D PCCT imaging model can be expressed as
follows:

Y = AX , (1)

where Y = {yn, n ≤ N} and X = {xn, n ≤ N} denote the
measurements and desired PCCT images among multi-energy
bins, respectively. N is the total number of the multi-energy
bins. A is a linear projection operator. It should be note that
additional constraints are incorporated to stable the solution
of the above model.

Due to the variance of the material attenuations for X-ray
along the whole spectrum, the feature of the noise is different
among multi-energy-bins. Specifically, the reconstructed im-
ages in lower bins suffer from strip artifacts due to the beam
hardening, and the ones in higher bins are corrupted by the
photon starvation induced noise. Therefore, a single Gaussian
is no sufficient to approximate the complex noise distribution
in the PCCT images.

Fig. 1 shows the noisy PCCT images, noise and ground truth
in Bin 1. It can be seen that the PCCT images has multiple
modalities of noises, as illustrated by the three Gaussian
components, and a simple Gaussian noise model may deviate
the real cases. In order to solve the complex noise distribution,
we model the noise in the PCCT images as a parametric
probability distribution by GMM for more flexibly adapting
different cases. Specifically, the noise term εn in the nth
energy bin is expressed as follows:

εn ∼
K∑

k=1

πnkN
(
εn|µnk,σ

2
nk

)
, (2)

where πnk, µnk and σ2
nk denote the mixture rate, mean and

variance values of the kth Gaussian compound in nth energy
bin, respectively. In this work, the mean values are set to
be zero. K is the total number of Gaussian compounds, and∑K

k=1 πnk = 1.
Considering the sparsity structures and low rank property of

the PCCT images, a general 3D total variation (3DTV) term
is utilized as the prior, as follows:

R3DTV (X ) =
3∑

m=1

‖∇mX‖1, (3)

where ∇m is different operations along spatial height, width
and spectrum modes of X , ‖ · ‖1 is the L1 norm. There-
fore, coupling the GMM approximation for noise and sparse
regularization for PCCT images, we can formulate a robust
penalized weighted least squares method for PCCT imaging
as follows:

min
X

1

2
‖Y −AX‖22 + αR3DTV (X ) ,

εn ∼
K∑

k=1

πnkN
(
εn|µnk,σ

2
nk

)
, n = 1, ..., N,

(4)

where α is a hyper-parameter of the image prior term. Simply,
we call the above method as “GMM-3DTV” method. Finally,
by imposing the negative form of likelihood function of the
GMM, Eq. (4) is rewritten as follows:

min
X ,Π,Σ

1

2
‖Y −AX‖22 + αR3DTV (X )

− β
N∑

n=1

log
K∑

k=1

πnkN
(
εn|0,σ2

nk

)
,

(5)

where β is the hyper-parameters of GMM likelihood terms.
Π = {πnk, n ≤ N, k ≤ K} and Σ = {σ2

nk, n ≤ N, k ≤ K}
are the sets of mixture coefficients and variance values, respec-
tively. Moreover, we adopt an Expectation Maximization (EM)
algorithm [15] to iteratively optimize the presented GMM-
3DTV method.

The whole EM algorithm for optimizing Eq. (5) can be
summarized in Algorithm 1.

Algorithm 1: Algorithm for Solving Eq. (5)
Input : The PCCT multi-energy measurements Y ,

regularized parameters α and β, and stopping
criteria ϑ.

Output: Reconstructed PCCT multi-energy images X .
1 Initialization: Π,Σ, GMM number K;
2 while not satisfy stopping criteria ϑ do
3 E step: calculate the expectation of posterior

probability of GMM parameters;
4 M step: maximum the augmented Lagrangian

function.
5 end
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Fig. 2. Reconstructed images of the presented and compared methods on
XCAT phantom. The display windows from Bin 1 to 5 are [0.00, 0.02], [0.00,
0.010], [0.00, 0.017], [0.00, 0.015] and [0.00, 0.010] mm−1, respectively.
Zoomed ROIs indicated by the red box are displayed for better visualization.

III. RESULTS
A. Implementation details

In this work, we compared the presented GMM-3DTV
method with the filtered back projection (FBP) method using
a ramp filter and a tensor-based dictionary learning regular-
ization (TDL) method. In addition, two more methods were
implemented to investigate different parts of the presented
GMM-3DTV method. The one is GMM-based reconstruction
model, and the other is 3DTV-based reconstruction model. The
images at normal dose serve as the ground truth. Two numer-
ical phantoms are utilized to validate the performance of the
presented method. Specifically, XCAT phantom [16] contains
alcohol, water, bone and gadolinium, and the synthesized clin-
ical phantom with water, bone and iodine. The phantoms were
scanned under the simulated 120 kVp X-ray spectrum with 1.6
mm Al filtration by SPEKTR toolbox [17]. Five energy bins
with equal photon counts are determined by the thresholds:
25, 50, 60, 70 and 85 keV. The PCCT imaging parameters
are set as follows: (1) source-to-detector and source-to-center
distances are 1040.0 and 570.0 mm, respectively. (2) 1160
projection views are evenly scanned the objections over 360o.
(3) 816 detector channels are placed along the parallel X-
ray beam. To generate the noisy projections, Poisson noise is
applied into the simulated noise-free projections.

B. Qualitative analysis
Fig. 2 shows visual comparisons of the presented and

compared methods on XCAT phantom. It can be observed
that: 1) the FBP method suffers from noise-induced artifacts,

line

Fig. 3. Reconstructed images of the presented and compared methods on
synthesized clinical phantom. The display windows from Bin 1 to 5 are [0.007,
0.0105], [0.0032, 0.0072], [0.003, 0.004], [0.0022, 0.0035] and [0.0018,
0.0027] mm−1, respectively. Zoomed ROIs indicated by the blue box are
displayed for better visualization.

and the other methods outperform the FBP method in terms
of improving the image quality; 2) the 3DTV-based method
suffers from blocky artifacts and the GMM-based method
remains produces noisy images; 3) the TDL method smooths
the images and enhances the texture of the noise-induced
artifacts; 4) the presented GMM-3DTV method better handles
the noise-induced artifacts and preserves the image details.
Moreover, zoomed in regions-of-interest (ROIs) indicated by
the red boxes in each images are illustrated. It can be observed
that the presented GMM-3DTV maintains the details of the
anatomic structures.

Fig. 3 illustrates the results of different methods on syn-
thesized clinical phantom. Similar with the results on XCAT
phantom, the TDL method fails to denoise among the multi-
energy bins, the 3DTV induces additional block artifacts for
the denoising results, and the GMM-based method hardly
removes the noise. On the contrary, the presented GMM-3DTV
method can effectively remove the noise-induced artifacts
and recover the images details. For better visual inspection,
ROIs indicated by the blue boxes are shown, which also
demonstrates the same conclusion.

Fig. 4 shows the profiles of different methods on synthesized
clinical phantom indicated by the green line in Fig 3. From the
results, we can seen that the TDL and 3DTV-based methods
produce blurry results, and the GMM-based method fails to
suppress the noise. In contrast, the results of the presented
GMM-3DTV method are the closest to the ground truth.
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Fig. 4. Profiles of the results from different methods on synthesized clinical
phantom. The location of the profiles is indicated by the green line in Fig. 3
for each reconstructed images in Bin 1.

C. Quantitative analysis
In this work, root-mean-square-error (RMSE) is calculated

to quantify the errors between the ground truth and the results
reconstructed by different methods. As shown in Table I
and Table II, the presented GMM-3DTV method achieves
consistently better metrics with smallest RMSE on both phan-
toms. In addition, it can be observed that the reconstruction
performance is significantly heightened by fusing the GMM
and 3DTV terms.

TABLE I
QUANTITATIVE MEASUREMENTS ON THE RECONSTRUCTION RESULTS ON

XCAT PHANTOM FROM THE DIFFERENT METHODS

RMSE (×10−4)
FBP 14.066

3DTV 14.534
GMM 8.957
TDL 5.244

GMM-3DTV 5.233

TABLE II
QUANTITATIVE MEASUREMENTS ON THE RECONSTRUCTION RESULTS ON

SYNTHESIZED CLINICAL PHANTOM FROM THE DIFFERENT METHODS

RMSE (×10−5)
FBP 11.528

3DTV 4.719
GMM 10.530
TDL 4.076

GMM-3DTV 3.928

IV. DISCUSSION AND CONCLUSION

Due to the beam-hardening and photon starvation effects,
the reconstructed PCCT images suffer from noise-induced
artifacts with complex noise distribution in image domain.
Most of the SIR methods hardly handle the artifacts and
produce suboptimal results. To address this issue, in this

work, we presented a novel SIR PCCT reconstruction method.
Specifically, we utilized GMM to approximate the complex
noise distribution in the PCCT image domain. Moreover, a
3DTV term, which serves as the image prior, is also incor-
porated into the reconstruction model to encourage structural
similarity of the PCCT images along the multi-energy bins.
Experiments were conducted to demonstrate the effectiveness
of the presented GMM-3DTV method. In the future, clinical
and more scene studies would be included to further demon-
strate the reconstruction performance of the presented GMM-
3DTV method.
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Abstract—Photon-counting spectral CT is a novel technology
with a lot of promise. However, one common issue is detector
inhomogeneity which results in streak artifacts in the sinogram
domain and ring artifacts in the image domain. These rings
are very conspicuous and limit the clinical usefulness of the
images. We propose a deep learning based image processing
technique for ring artifact correction in the sinogram domain. In
particular, we train a UNet using a perceptual loss function with
VGG16 as feature extractor to remove streak artifacts in the basis
sinograms. Our results show that this method can successfully
produce ring-corrected virtual monoenergetic images at a range
of energy levels.

I. INTRODUCTION

Photon-counting spectral computed tomography (CT) is a
promising novel technology for next-generation CT scanners
[1], [2], [3]. Advantages of photon-counting detectors, com-
pared to standard energy-integrating detectors, include higher
contrast-to-noise ratio and spatial resolution, and improved
low-dose imaging. One common issue in photon-counting CT
is detector inhomogeneity, which results in energy threshold
variation across detector elements, and, if not corrected for,
leads to streak artifacts in the sinogram domain and ring
artifacts in the image domain. This type of inhomogeneity
can emerge due to an insufficiently calibrated forward model,
temperature differences, and defective pixels [4]. Many meth-
ods have been suggested for artifact and noise reduction in CT
imaging and lately there has been a shift towards deep learning
as a way to tackle these problems [4], [5], [6], [7], [8], [9]. In
this work, we add to this literature by training a deep neural
network for ring artifact correction in the sinogram domain
and demonstrating its effectiveness in reducing ring artifacts
for virtual monoenergetic images at a range of energy levels
in photon-counting spectral CT.

II. METHOD

A. Photon-counting spectral CT

1) Material decomposition: Consider a multi-bin system
with B > 2 energy bins and, for simplicity, a 2-dimensional
image space. The material decomposition starts with the ansatz
that the X-ray linear attenuation coefficient µ(x, y;E) can be
approximated by a linear combination of M basis materials

µ(x, y;E) ⇡
MX

m=1

am(x, y)⌧m(E), (1)

where am and ⌧m(E) are the basis coefficients and basis
functions, respectively. It is usually resolved in the sinogram
domain and thus the target variables are the material line
integrals

Am(`) =

Z

`

am(x, y)ds = R(am), (2)

where R denotes the Radon transform operator. The expected
number of photons in energy bin j follows the polychromatic
Beer-Lambert law

�j(A) =

Z 1

0
!j(E) exp

 
�

MX

m=1

Am⌧m(E)

!
dE. (3)

This is our forward model. Finally, the measured data is the
vector y := [y1, ..., yB ] where for each j we assume that

yj ⇠ Poisson(�j(A)). (4)

Hence, the (non-linear) inverse problem is to map the photon
counts y to the material line integrals A := [A1, ..., AM ].
The most common approach to this problem is maximum
likelihood [10], [11], [12]. Setting up the objective as the log
likelihood and simplifying yields

min
A

BX

j=1

(�j(A)� yj log(�j(A)))

s.t. Ai � 0 8i = 1, ...,M.

(5)

This is subsequently solved using some iterative algorithm,
e.g., the logarithmic barrier method [13].

2) Data generation: After generating numerical basis ma-
terial phantoms (soft tissue, bone and iodine) by segmenting
CT images from the KiTS19 dataset [9], photon-counting
imaging was simulated using the fanbeam function in Matlab
and a spectral response model of a photon-counting silicon
detector [14] with 0.5⇥ 0.5 mm2 pixels. The simulation was
performed for 120 kVp and 200 mAs with 1579 detector
pixels and 1600 view angles. After simulating Poisson noise,
the maximum likelihood method was used for material de-
composition of the simulated sinograms into bone and soft
tissue basis sinograms, which were then reconstructed on a
583 ⇥ 583 pixel grid. To avoid streak artifacts due to photon
starvation, a logarithmic barrier function was used to penalize
large negative basis projection values. To simulate the effect
of threshold variations, the simulation was performed with a
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Fig. 1. Illustration of UNet [15].

random threshold shift (� = 0.5 keV) applied independently
to each of the eight thresholds of each detector pixel, and two
material decompositions were performed: one with the actual
bin thresholds that were used in the simulations, including the
random shift, and one with the nominal bin thresholds, where
the latter configuration yields images with ring artifacts.

B. Deep learning

1) Problem statement: We propose an image processing
technique for ring artifact correction based on deep neural
networks. More formally, let x 2 RM⇥H⇥W denote the streak
corrupted basis sinograms and y 2 RM⇥H⇥W their streak
artifact free counterpart, where M,H and W are the number of
basis materials, view angles and detector pixels, respectively.
Then our objective is to learn

f : x ! y. (6)

We let f✓ be a neural network and learn the map (6) by
learning parameters ✓.

2) Network architecture: UNet is an widely utilized archi-
tecture for a range of different tasks in biomedical imaging.
The defining feature is the encoder-decoder structure. We use
a version of the original UNet [15] shown in Fig. 1.

3) Loss functions: Mean square error (MSE) is perhaps the
most commonly used loss function for applications of deep
learning in biomedical imaging

`mse =
1

MHW
||f✓(x)� y||22. (7)

Using MSE loss will encourage the output to match the target
pixel-by-pixel. This low-level per-pixel comparison is well
known to produce output that is overly-smooth and lacking fine
details that affect the perceptual quality [16], [17]. For several
image transformation tasks, it has proved useful to instead
employ a perceptual loss function which, instead of compar-
ing pixel-by-pixel, compares high-level feature representations
between the output and target. These feature representations
are extracted from a pretrained convolutional neural network.
We follow [16] and use VGG16 [18] pretrained on ImageNet
[19] as feature extractor, or loss network. Let �j denote the
j-th layer of VGG16, then our perceptual loss is defined as

`vgg =
1

CjHjWj

||�j(f✓(x))� �j(y)||22, (8)

where Cj is the number of channels in layer j. We will set
j = 9 which corresponds to “relu2 2” in [16].

III. TRAINING DETAILS

From each of the 1600 ⇥ 1579 basis sinograms we extract
20 256⇥256 patches. A total of 630 samples, yielding 12600
patches, are split 70/30 into a training and validation set. The
network is trained using Adam [20] with �1 = 0.5,�2 = 0.9,
and learning rate � = 1⇥10�4 for 100 epochs with a batch size
of 16 on one NVIDIA GeForce RTX 3070 Laptop GPU. We
standardize the input by diving by the channel-wise standard
deviation. We can obtain ring corrupted data with a range of
different artifact magnitudes by taking a linear combination
of streak corrupted and streak free basis sinograms. In this
work, we are mainly concerned with the case when the rings
are barely perceptible. Let w denote the weight given to the
ring corrupted basis sinogram and (1 � w) the weight given
to its ring free counterpart. We found that w = 0.4 produces
a realistic level for the artifacts and w = 1 a suitable level to
train on.

IV. RESULTS

A. Qualitative results
Qualitative results are available in Fig. 2 and 3. First, in

Fig. 2, we have the results from the sinogram domain. Here, a
pair of streak corrupted basis sinograms are passed through
the network to produce the corresponding predicted pair.
Note that despite training on 256 ⇥ 256 patches the network
generalizes sufficiently to be able to deal with the entire
1600⇥ 1579 basis sinograms. The network does a fairly good
job at removing the streaks. We subsequently reconstruct basis
images from these sinograms and form virtual monoenergetic
images at 40, 70, and 100 keV displayed in Fig. 3. Streak
correction in the sinogram domain translates well into ring
correction in the image domain. However, some residual rings
are still visible. Note that, somewhat surprisingly, there is no
significant difference in the performance of the network trained
using MSE loss and the network trained using the perceptual
loss.

B. Quantitative results
Quantitative results are available in table I. We employ the

standard metrics used in this type of literature. Namely, struc-
tural similarity index measure (SSIM) [21] and peak signal-to-
noise ratio (PSNR). However, we appreciate the fact that these
are not necessarily great metrics of perceptual quality1 and
instead stress our qualitative results. Note that, surprisingly,
the network trained with a perceptual loss achieves higher
PSNR than the network trained with MSE loss. However, this
difference is sufficiently small to reasonably be attributed to
stochastic variation in the optimization procedure. We also
investigate the resolution by adding a central circular insert in
the KiTS19 phantoms and retrieving the edge spread function
as an average over radial profiles in the region of interest
(ROI). We then fit a Gaussian error function to estimate the
resolution as its standard deviation. Both networks produce a
slight decrease in resolution.

1See e.g., [16] for a brief discussion.
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Fig. 2. Basis sinograms. The square in top right corner shows a magnification of the indicated ROI. (a-d) soft tissue, (a) truth, (b) observed, (c) observed +
UNet mse, (d) observed + UNet vgg, (e-h) bone, (e) truth, (f) observed, (g) observed + UNet mse, (h) observed + UNet vgg.

TABLE I
QUANTITATIVE RESULTS

Network SSIM PSNR Resolution (mm)
Truth NA NA 0.46

Observed 0.69 45.96 NA
UNet mse 0.88 49.30 0.62
UNet vgg 0.82 50.17 0.61

V. CONCLUSION

Detector inhomogeneity, a common issue in photon-
counting spectral CT, results in streak artifacts in the sinogram
domain and ring artifacts in the image domain. In this work,
we propose a deep learning image processing technique for
ring artifact correction in the sinogram domain. Artifact cor-
rupted data is generated by solving the material decomposition
problem with a correctly and an incorrectly calibrated forward
model. We trained a deep neural network to remove the streaks
in the basis sinograms, which are subsequently reconstructed
to produce ring corrected basis images and virtual monoener-
getic images. Instead of training a network to produce output
that is similar to target pixel-by-pixel, we use a perceptual
loss function that encourages the feature representation of the
output to be similar to that of the target. Unexpectedly, we
found that the network trained using the standard MSE loss
essentially performs on par with the network trained using
the perceptual loss. Future research will address the slight
degradation in resolution caused by the networks, investigate
why the networks perform so similarly, and further develop
this method on a larger and more diverse dataset.
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Photon Counting Detector-based Multi-energy Cone
Beam CT Platform for Preclinical Small Animal

Radiation Research
Xiaoyu Hu, Yuncheng Zhong, Kai Yang, and Xun Jia

Abstract—We reported our developments of a photon counting
detector (PCD) based multi-energy cone beam CT (ME-CBCT)
for preclinical small animal radiation research. The development
was based on an existing preclinical small animal irradiator that
includes a gantry mounted x-ray tube for imaging and radiation
experiments in a self-shielded cabinet. We installed a PCD on the
gantry and developed the data acquisition, processing, and image
reconstruction pipeline to reconstruct CBCT images at three
energy channels. We determined the optimal energy thresholds
as 26, 56, and 90 keV to achieve uniform signal-to-noise ratio
among energy channels. Pixel-based detector response calibration
was performed to remove ring artifacts in the reconstructed
CBCT images. The average difference between measured x-
ray attenuation coefficients of targeted materials from ME-
CBCT images and analytically calculated values was 10%. We
decomposed the ME-CBCT images into images of water and bone
material via an optimization model. The PCD-based ME-CBCT
is expected to facilitate critical tasks in preclinical small animal
irradiation researches, such as improved accuracy of radiation
dose calculations in experiment planning.

Index Terms—Photon counting detectors, Cone Beam CT,
Small animal irradiation platform.

I. INTRODUCTION

D edicated image-guided small animal irradiation platform
plays an essential role in advancing cancer radiation

therapy and research [1]. In the current preclinical irradiation
platforms, cone beam CT (CBCT) is widely used as an
image guidance device to precisely guide the delivery of
a radiation beam to the targeted area with sub-millimeter
geometric accuracy [2]. Over decades, along with the advance-
ments of preclinical radiobiology researches, there has been
a strong growth of the desire for advanced and quantitative
CBCT imaging to support tasks such as Monte Carlo-based
radiation dose calculation in experimental planning [1], or
identification of certain x-ray imaging contrast agents [3]. To
meet these needs, we have previously developed multi-energy
CBCT (ME-CBCT) imaging function on a SmART preclinical
radiation platform (Precision X-ray Inc., North Branford, CT,
USA) via a multiple-scan approach due to the restriction of
using the existing flat-panel based CBCT imaging system
[4]. However, the inevitably prolonged scan time leads to
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issues such as animal motion between scans that affects
some imaging tasks such as reduced material decomposition
accuracy, increased anesthesia use and hence the risks to
the animal subject, as well as the increased x-ray radiation
dose. One possible solution to overcome this limitation is
photon-counting detector (PCD) based multi-energy CBCT.
PCD has been asserted having a great potential in delivering
more advanced CBCT functions than the widely-employed
energy-integrating detectors (EIDs). Compared with EIDs,
PCDs do not need to convert the photon into visible light but
directly convert the x-ray photon energy to electrical charges
in the form of electron-hole pairs [5]. The detected signal is
then compared with a calibrated photon energy (threshold),
and a count is added when the charge is greater than the
specified threshold. This feature enabled by an application-
specific integrated circuit (ASIC) allows the PCD-based CT
system to simultaneously count photons above several selected
energy thresholds, hence ME-CBCT in a single scan.

Over the years, significant efforts have been made in
evaluating the performance of PCD-based imaging platforms
[6] including preclincial imaging systems [7]. However, to
our knowledge, PCD-based CBCT dedicated for preclinical
radiation research has not been available, although several
table-top systems have been previously built [8]. In this paper,
we will report our recent developments of a PCD-based ME-
CBCT on our preclinical small animal irradiator including
the installation of the PCD on the gantry, the optimization of
energy thresholds, and the development of a pipeline for data
acquisition, processing, image reconstruction, and material
decomposition.

II. METHODS

A. ME-CBCT setup

The experiment in this work was based on the SmART
preclinical radiation platform shown in Fig. 1, which included
a rotating C-arm gantry and an small animal couch assembled
in a self-shielded cabinet. The gantry can perform CBCT
scanning using an x-ray tube (Comet iVario 225 kV, JME
Ltd, Suffolk, UK) mounted on the gantry and an amorphous
silicon flat-panel detector (FPD) (XRD 0820 AN3-ES, Perkin-
Elmer, Wiesbaden, Germany). An XC-Thor Cadmium telluride
(CdTe) PCD (Direct Conversion AB, Sweden) was mounted
on an aluminum frame attached to the gantry. The PCD has an
active sensor area of 51.2⇥ 100.0 mm2 with a 0.1⇥ 0.1 mm2

pixel size. The source to isocenter distance was 30.5 cm and
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Fig. 1. Installation of the PCD on the SmART preclinical radiation platform
(left) and the front view of of the PCD (right).

source to detector distance was 44.2 cm. This PCD was able
to output the number of photon counts for each pixel above a
user-specified energy threshold T for a time interval �t.

We used a 100 kVp x-ray beam for CBCT data acquisition,
with a rotation time of 1 min. The data acquisition of the PCD
was controlled via the Application Programming Interface
provided by the vendor. Specifically, we triggered the PCD to
acquire projection data at a frequency of 30 frame/sec and each
data frame receive photons for �t = 20 msec. The remaining
⇠ 13 msec time interval was allocated for data processing
and readout. The energy threshold T was set to sequentially
cycle through three energy thresholds T l, l = 1, · · · , 3. PCD
operated under anti-coincidence high sensitivity mode for all
acquisitions. For each projection, the projection angle was read
out from the encoder of the gantry motor. With this setting,
we acquired 600 projection images for each energy threshold.

The workflow covered by this study is summarized in Fig. 2.
We will present details of key steps in subsequent sections.

Fig. 2. Flowchart of PCD-based ME-CBCT imaging procedures.

B. Selection of energy thresholds

The lowest energy threshold T1 was set to be 26 keV to
avoid electronic noises [9]. The other two energy thresholds
were determined to balance signal-to-noise ratio (SNR) in log-
transformed projection images of all three energy channels,
as the SNRs are directly related to those of the subsequently
reconstructed images from each channel. As such, we acquired
air projection images at 0 degree gantry angle under 3 mA for
Nt = 42 thresholds Ti, i = 1, . . . , Nt ranged from 28 to 110
keV, with increment of 2 keV. Note that the thresholds were

nominal input values to the PCD, therefore our search range
went beyond the 100 kVp used. At every threshold Ti, we
acquired Nf = 200 projections and denote the count image
M0

Ti,k
(x), where x is the index of each pixel, k = 1, 2, ..., Nf .

For a given threshold combination T l, l = 1, 2, 3 selected
among possible Ti, i = 1, . . . , Nt values, the count images at
the three energy channels E1 = [T 1, T 2] keV, E2 = (T 2, T 3]
keV and E3 = (T 3, 100] keV, were C0

l,k(x) = M0
T l,k(x) �

M0
T l+1,k(x) for l = 1, 2 and C0

3,k(x) = M0
T 3,k(x). Note

that we wrote the upper bound 100 keV in the third energy
channel because of the 100 kVp x-ray beam, yet in practice
this channel represents photons counts with energy above the
threshold T 3. Following the same procedure, we acquired
projection images of a CT calibration phantom, denoted as
Cl,k(x) for the energy channel l and frame k.

We then computed the log-transformed projection image
gl,k(x) = � ln[Cl,k(x)/hC0

l (x)i], where hC0
l (x)i is the av-

eraged counts of the air projection images over all frames.
Using the repeatedly acquired 200 projections, we calculated
the mean and standard deviation of gl,k(x), denoted as ḡl(x)
and �gl(x), respectively. Finally, the SNR at coordinate x was
calculated as Sl(x) = ḡl(x)/�gl(x). We averaged Sl(x) over
100 pixels inside the phantom region on the projection image,
and denoted the averaged SNR as S̄l. It was our objective
to find proper thresholds such that S̄l approximately equal
among all energy channels l = 1, 2, 3. As such, we considered
the metric � = maxl S̄l/minl S̄l. We enumerated all possible
combinations of thresholds T 2 and T 3, and found out the
combination that minimized � as the optimal thresholds for
subsequent studies.

C. Detector calibration
To calibrate the non-uniform pixel responses of PCD, we

acquired air scan under the threshold-sweeping mode as in
the actual CBCT scan using the energy thresholds determined
from Sec. II-B. We repeated this with x-ray tube current I
in the range of [0, 3.4] mA with 0.2 mA increment. Let us
denote the count image at energy threshold T l, l = 1, . . . , 3
with the jth tube current I0j , j = 1, 2, ..., as M0

l,j(x). Note
that we repeatedly acquired 200 frames and took the average
of these frames to reduce noise. Count images C0

l,j(x) at the
three energy channels were computed by taking the difference
between data with subsequent energy thresholds.

With the count images acquired for each energy channel
l = 1, 2, 3 and tube current level j = 0, 1, 2, ..., for each
pixel x and energy channel, we fit the tube current as a
function of counts using I0j and C0

l,j(x) in a polynomial form.
The coefficient of determination R2 was used to evaluate the
goodness of the fitting model. In the fitting procedure, we
gradually increased the number of polynomial order, until the
resulting R2 reached R2

c = 0.9999. If this was not achievable
at 4th order polynomial, the pixel was considered as a ‘dead
pixel’.

D. Image processing, reconstruction and material decompo-
sition

After data acquisition of a CBCT scan, we converted raw
count images Cl(x, ✓) of energy channel l to the corresponding
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images of current Il(x, ✓) using the established calibration
model of each pixel. Here we explicitly write the projection an-
gle ✓. In this step, nearest-neighbor interpolation was applied
to handle all ‘dead pixels’. For each flat-fielded projection
image at angle ✓, we identified a region that was not blocked
by the phantom and computed the averaged pixel value in
this region as the air norm I0l (✓). Compared to using the
nominal tube current in the scan as the air norm, this approach
deriving I0l (✓) considered the tube current fluctuation among
projections during the CBCT data acquisition.

After these stpes, we computed the projection image
gl(x, ✓) = � ln[Il(x, ✓)/I0l (✓)]. Finally, CBCT image f =
(f1, f2, f3)> were reconstructed using the projection data and
the GPU-based Feldkamp-Davis-Kress (FDK) reconstruction
code [10], [11], where fl, l = 1, 2, 3 represents reconstructed
image of energy channel l.

In this study, we considered a two-material decomposition
model that expressed each image voxel as a linear combination
of two basis materials: water and bone. However, with three
energy channels, in principle, it is possible to perform three-
material decomposition. With our model, f = Am, where
m = (mw,mb)> is a two-component image representing mass
density image of the two basis materials, and A 2 R(3⇥2)

is the system matrix. The two columns of A are x-ray mass
attenuation coefficients of corresponding materials in the three
energy channels, which was obtained in the reconstructed CT
calibration phantom images. To solve for the material images
without amplifying noise, we performed material decomposi-
tion by solving an optimization problem

m = argmin
m

1

2
kAm� fk22 + �krmk1, (1)

where the first term of the objective function ensured fidelity
of the solution to the CBCT images, and the second one was
a Total variation regularization term to reduce noise while
preserving edges in the solution. � is a weighting factor
controlling the relative importance of the two terms. Note that
the operator r was applied to the spatial direction only. This
model was solved with the Alternating Direction Method of
Multipliers.

E. Evaluation

Two phantoms (SmART Scientific Solutions B.V., Maas-
tricht, Netherlands) were utilized to calibrate the ME-CBCT
system and evaluate the imaging procedure and image quality.
The first one was a preclinical CT calibration insert phantom
that contained 10 inserts of different materials plugged into
a 30 mm diameter background base representing water. After
the CBCT images were reconstructed, we picked two regions
of interest with water and bone materials and used the average
voxel values normalized by the known material density to
construct the material decomposition system matrix A. We
then decomposed the CBCT images into the two material
images using the model in Eq. (1). The second phantom was a
plastinated mouse specimen. Due to the small size of the PCDs
(5.0 cm along the rotation axis), only the head was scanned.

Fig. 3. Left: projection images at ✓ = 90 degree in energy channel E1 with
and without detector calibrations; blue boxes show the location of two ROIs.
Right-top: average counts of the two ROIs. Right-bottom: averaged mA of
the two ROIs after detector calibration.

III. RESULTS

A. Energy thresholds and detector calibration
With the method described in Sec. II-B, we computed the

SNR ratios � for all threshold combinations of (T 2, T 3). The
SNR ratio that was closest to 1 was � = 1.05, when the two
energy thresholds were T 2 = 56 keV and T 3 = 90 keV. The
corresponding SNRs of projection images were 7.07, 7.32 and
6.98 for the three energy channels, respectively.

Fig. 3 presents the impacts of detector calibration. Without
calibration, we can clearly see different detector sub-panels
to assemble the entire detector. The boundaries among panels
would cause ring artifacts in the reconstructed images. We
selected two regions of interest (ROIs) that were not blocked
by the phantom. Due to flat x-ray beam fluence, the projection
data in these two ROIs are expected to be the same. However,
without calibration, we observed a large difference between
the raw counts in the two ROIs across all projection angles.
The calibration step was able to reduce this discrepancy.
The fluctuation among projections was ascribed to x-ray tube
output fluctuation, which was taken care of before image
reconstruction by the choice of projection-specific air norm.

B. CBCT images and material decomposition
The reconstructed CBCT images of the CT calibration

insert phantom and the mouse phantom with three energy
channels are shown in Fig. 4. The object contrast reduced
with increasing photon energies. For the calibration phantom,
we compared measured x-ray attenuation coefficients and
those computed by averaging the known x-ray attenuation
data weighted by x-ray beam spectrum in the three energy
channels. The difference was 10% on average. The difference
can be ascribed to multiple factors including the reconstruction
model, the discrepancy between nominal and actual energy
thresholds, the ignored detector response variation over energy,
etc.

To perform image-based material decomposition, we se-
lected solid water and bone as two basis materials, and
obtained the attenuation coefficients by averaging the voxel
values over the corresponding ROIs indicated by the blue
and red circles in Fig. 4. The mass attenuation coefficients
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Fig. 4. CBCT images of the CT calibration insert phantom (top) and the
plastinated mouse specimen (bottom) in the three energy channel. Display
window: [0,0.5] cm�1. The blue and red circles indicate the solid water and
the bone basis materials.

in the three energy channels were [0.240, 0.198, 0.186] cm2/g
and [0.489, 0.296, 0.261] cm2/g for water and bone materials,
respectively.

Fig. 5 presents the material images of water and bone of CT
calibration insert phantom and the plastinated mouse phantom
in the axial plane. The two basis materials were differentiated
clearly in the material images. Note that the animal skin also
appeared in the bone image. The manufacture process of the
plastinated mouse caused accumulation of polymer materials
at the skin, which appeared as bone-like materials under x-ray
imaging.

Fig. 5. Water (left) and bone (right) maps of the CT calibration insert phantom
(top) and the plastinated mouse specimen in the axial plane (bottom).

IV. CONCLUSION AND DISCUSSIONS

In this work, we reported our initial study on a PCD-based
CBCT for a preclinical small animal irradiation platform.
We developed the data acquisition, processing, and image
reconstruction pipeline to reconstruct CBCT images at three
energy channels. We determined the optimal energy thresholds
of 26 keV, 56 keV, and 90 keV to equalize SNR among energy
channels. The average difference between measured x-ray
attenuation coefficient from ME-CBCT images and calculated
values was 10%. We decomposed ME-CBCT images into
images of water and bone via an optimization model.

This study only serve as the preliminary step to enable
PCD-based ME-CBCT function on a preclinical small animal
irradiation platform. Despite the initial results achieved so
far, there are a number of task down the road to further
characterize and improve this system. For instance, the current
CBCT reconstruction assumed an ideal circular trajectory,
but the actual trajectory is known to deviate from this ideal
case due to gravity. Geometry calibration is hence needed to
improve geometry accuracy and resolution of reconstructed
CBCT images. Additionally, the detector calibration can be
improved via deep learning neural networks [12], [13]. The
method of selecting energy thresholds proposed in this work
was based on the objective of balancing the SNRs over all
energy channels. In general, the choice of energy thresholds
depends on the specific applications. One of the intended use
of this ME-CBCT system is to visualize low-concentration
gold nanoparticles, which requires optimization of energy
thresholds for that task. Lastly, the utility of the CBCT system
in terms of supporting preclinical radiobiology studies will
be demonstrated in specific tasks, such as improvement in
radiation dose calculations in experiment planning.
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Design of Novel Loss Functions for Deep Learning
in X-ray CT

Obaidullah Rahman, Ken D. Sauer, Department of Electrical Engineering, University of Notre Dame
Madhuri Nagare, Charles A. Bouman, School of Electrical and Computer Engineering, Purdue University

Roman Melnyk, Jie Tang, Brian Nett, General Electric Healthcare

Abstract—Deep learning (DL) shows promise of advantages

over conventional signal processing techniques in a variety of

imaging applications. The networks’ being trained from examples

of data rather than explicitly designed allows them to learn signal

and noise characteristics to most effectively construct a mapping

from corrupted data to higher quality representations. In inverse

problems, one has options of applying DL in the domain of

the originally captured data, in the transformed domain of the

desired final representation, or both.

X-ray computed tomography (CT), one of the most valuable

tools in medical diagnostics, is already being improved by

DL methods. Whether for removal of common quantum noise

resulting from the Poisson-distributed photon counts, or for

reduction of the ill effects of metal implants on image quality,

researchers have begun employing DL widely in CT. The selection

of training data is driven quite directly by the corruption on

which the focus lies. However, the way in which differences

between the target signal and measured data is penalized in

training generally follows conventional, pointwise loss functions.

This work introduces a creative technique for favoring recon-

struction characteristics that are not well described by norms

such as mean-squared or mean-absolute error. Particularly in a

field such as X-ray CT, where radiologists’ subjective preferences

in image characteristics are key to acceptance, it may be desirable

to penalize differences in DL more creatively. This penalty may

be applied in the data domain, here the CT sinogram, or in the

reconstructed image. We design loss functions for both shaping

and selectively preserving frequency content of the signal.

Index Terms—Deep learning, neural network, X-ray CT, novel

loss functions, spectral shaping.

I. INTRODUCTION

A
RTIFICIAL neural networks (ANN) have been increas-
ingly finding success in X-ray computed tomography

(CT) [1]–[10]. ANN in imaging are designed by adjusting
strengths of interconnections among artificial neurons with
the goal of making the network’s output, on the average, as
close as possible to the ideal form of the image. This ideal
form may be well known in training phase of the ANN, in
which one may start with a perfect signal as the “target”
and then corrupt it according to the character of noises and
artifacts typically encountered in application. Alternatively, the
target image may be imperfect, but far less afflicted with
error than those encountered as measurements. In training,
simple multiplicative coefficients or other representations of
neural interconnections are iteratively adjusted to minimize
some average measured error, or loss, between an ensemble
of network-processed input data and their respective target
images, as represented in Figure 1. The measured loss is
backpropagated through the ANN to provide gradients to

correct the connections and reduce loss, thus “learning” the
inverse operator. Following training, the network may be
applied to new data sets in order to reduce their content of
error as described by the system’s loss function. The process is,
with increasing frequency, titled “deep learning” because more
powerful computational resources have allowed more layers in
the ANN, hence a “deeper” network.

Fig. 1: Training of neural network. Parameters governing
system behavior are denoted by ✓. The gradient of the loss
function’s penalization of error (L), as a function of ✓, is used
to improve the averaged match between target and output of
network during training.

Probably the most common loss function applied has been
mean-squared error. Let us define Y as the input data, which
we model as a function of some ideal, target image X , or Y =
h(X). The task of the ANN is to extract from Y a rendering
close to the unknown, ideal image. If we define g = h�1, our
training would seek to learn g to produce X = g(Y ). Equality
is seldom achievable due to noise or other corruption, and we
optimize in the sense of average, possibly weighted, error. If
we use the variable k to index among training pairs, n to index
entries in vectors Xk and Yk, and ✓ to represent the variable
parameters of the ANN, our DL-trained mapping g✓ for the
mean-squared error case may be expressed in terms of

✓ = argmin
✓

X

k,n

wk,n[Xk,n � (g✓(Yk))n]
2 (1)

in which the weightings wk,n may be fixed in either or
both variables, or may be adapted according to relative local
characteristics of data. This weighted, mean-squared penalty
on the standard error, Sk , Xk�g✓(Yk), has a number of po-
tential advantages, including being statistically well-matched
to Gaussian noise. In cases where less severe penalization
of large errors is desired, squared error may be replaced
by absolute error, similarly to penalty adjustment in edge-
preserving regularization.

While simple norms such as expressed above provide highly
useful loss metrics, it has long been recognized in the image

The 7th International Conference on Image Formation in X-Ray Computed Tomography

353



processing community that they may be less than ideal for
applications in which the final receiver for the system’s output
is a human observer. Various metrics for perceptual loss have
been designed in hopes of optimizing the elusive human-
interpreted quality of audio [1] and visual data [2]. For
diagnostic CT imaging, in which much analysis is performed
by radiologists, more subjective quality metrics are applied
by the end users of the technology, and spectral content of
residual noise, plateauing of image levels in low-contrast areas
and other context-dependent evaluations must be addressed.

This work consists of a novel class of loss metrics which
may expand the usefulness of DL in X-ray CT. We generalize
the sense of optimality to

✓̂ = argmin
✓

X

k

L[Xk, Yk, g✓(Yk)], (2)

where L is now a function that may capture any number of
spectral and spatial characteristics in the error. In the X-ray
CT arena, we may choose to improve the signal in either
the sinogram domain, where measurements are made directly,
or in the image domain after reconstruction by any existing
algorithm. The signal and error statistics in these two differ,
leading to designs tailored for each case. In the following, we
describe one embodiment of the design.

II. METHOD

Conventional, point-wise mean-squared error as loss may be
thought of as a flat spectral penalty. However, in cases where
we wish to focus on removing artifacts with low or medium
spatial frequency content, penalizing all frequencies equally
may be counter-productive. Given that many well-developed,
edge-preserving techniques are available for removing high-
frequency noise, particularly in the image domain, low-signal
correction in CT may in some cases be better served by train-
ing the network to remove errors only in lower frequencies.
In this case, we propose a loss function L in eq. (3) that may
take the form

L[Sk] , �[f1(Sk)], (3)

where � is a suitable error metric applied only within the
passband of the lowpass filter f1. The higher frequency error
becomes a “don’t care” element for the network. Alternatively,
band-pass or high-pass filtering may focus loss on those por-
tions of the error spectrum. Particularly in three-dimensional
image vectors, frequencies may be treated differently along the
three axes. This forms the first part of our novel loss function.

The discussion above is most commonly addressed to
conventional CT imagery in two or three dimensions, in
which spatial frequency has roughly equivalent meaning in
all dimensions. However, the present methods are intended
at least as importantly for use in the native domain of the
data, the sinogram. Application of the type of loss function
in eq. (3) in the sinogram requires modeling behavior in such
coordinates as row, channel and view, where the first two index
in the detector panel of the CT gantry, and the last indexes the
distinct rotating, two-dimensional views of patient or object. In
this case, the error filtering operation will need to be spatially

adapted, as statistics of both the underlying signal and the
corrupting noise vary spatially in the sinogram domain.

It has been widely observed in the DL community that
networks appear to have a strong tendency toward elimination
of high frequencies in the output and this may occur even
when the penalized loss is restricted to low frequency error
as in eq. (3). An example application is using DL for low
signal correction, where some of the most problematic artifacts
are of low to medium spatial frequency. Here, it may be
advantageous to retain parts of the error spectrum in the
output when the correction network is applied in the sinogram
domain. Powerful, adaptive denoisers in the image domain
can capitalize on the relatively stationary underlying image
statistics to remove higher frequency noise with little damage
to edge resolution. Thus, we may wish to actively discourage
suppression of this part of the error signal in the first stage of
processing in order to preserve both resolution and desirable
texture. We propose a second part of the loss function that will
penalize removal of components of the signal Yk according
to their spectral content. This component of the loss may be
expressed similarly to eq. (3), but with the argument redefined
as

Tk , Yk � g✓(Yk) (4)
L[Sk, Tk] , �[f1(Sk) + ↵f2(Tk)], (5)

An realization of the system is shown below in Figure 2. It
includes the two loss functions discussed previously. The first
loss, realized by the right branch, penalizes the error from eq.
(3) filtered by f1. The left branch features the error from eq.
(4), where a different portion of the spatial frequency spectrum
of error within the passband of f2 is penalized. The two types
of error signals are combined before the application of the
norm � and the gradient for backpropagation. The weighting
factor ↵ could be any positive value, with increase resulting
in more of the desired frequency components preserved in the
output. The responses of filters f1 and f2 plus the parameter

Fig. 2: Training of system to encourage the output to mimic
the target content as selected by filter f1, but refrain from
removal of input signal content as selected by filter f2

.

↵ appear to provide a great deal of control over the inference
behavior of the network. In an extremely conservative case,
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with f1 = f2 = 1.0 8 ! and ↵ = 1, the composite error
becomes

Xk + Yk � 2g✓(Yk), (6)

which will simply place the optimum output midway between
the target and the input.

III. RESULTS

Parts of this method have been preliminarily tested with
phantom and clinical data. Below are a few results with the
latter. In this configuration, the training loss was the weighted
sum of low pass (LP) filtered error between output and target,
and high pass (HP) filtered error between input and output.
The filters are shown in the Figure 3. The DL network was
trained to operate in the original domain i.e. counts domains.
Training data consisted of high-dosage Kyoto phantom scans
as targets, with synthetic photon counting and electronic noise
added to form input sinograms. We can see in Figure 4 the
increase in fine-grain texture i.e. high frequency components
in the output with increase in ↵.

Fig. 3: Filters used. The LP filter is f1 and the HP filter is f2

The noise power spectra (NPS), shown in Figure 5, were
measured in the liver region of reconstructed clinical images.
The NPS resulting from the use of only low pass in the loss
function (↵ = 0) can be seen to lack much high frequency
content. Use of the high pass filter on the error between the
input and the output preserves some of the high frequency
components, retaining resolution along with high-frequency
noise. The value of ↵ can be adjusted based on the balance
between NPS qualities and noise tolerance in the image. To
assess the flatness of the NPS curve, entropy measurement was
performed as

Entropy =

!s/2X

!i=0

NPS(!i)log2
1

NPS(!i)
, (7)

where !i is the discrete spatial frequency and !s is the spatial
sampling frequency. It can be seen in Table I that the flatness
of the NPS increases with ↵ as far as 0.8, but it suffers from
excessive high frequency emphasis for ↵ of 1.0. This case
exhibits undesirable streaks in the image as well.

(a)

(b)

Fig. 4: Reconstructed image (Upper left) Uncorrected; (Upper
right) corrected with low pass filter loss (↵ = 0); (Lower left)
↵ = 0.6; (Lower right) ↵ = 0.8. (a) Chest exam. (b) Liver
exam

IV. CONCLUSION

This paper presents a combination of two frequency-
weighted loss function components for a deep network, fur-
nishing potentially better control of the behavior of the net-
work in removing signal corruption. The first part of the DL
loss function employed here restricts training loss to lower
frequency error between a target data set and the input set
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Fig. 5: Normalized NPS curves

Flatness metric (entropy in bits of information)
Ideal case Uncorrected ↵ = 0 ↵ = 0.6 ↵ = 0.8 ↵ = 1.0

8.00 7.76 7.07 7.46 7.90 7.87

TABLE I: Entropy as a measurement of flatness of NPS
curves. Higher value indicates flatter, more desirable NPS

processed by the network. The second component of the
loss ensures the preservation of select error content from the
uncorrected data, with the intent of delegating any removal
of that error to a later stage of processing. This results in
network’s ability to retain desired traits in the data according
to chosen models for training loss. In our example application,
improvement in the texture of the reconstructed image was ob-
served and confirmed with the NPS metric. Further work will
test the value of this design in improving the noise/resolution
trade-off in the presence of image-domain postprocessing. We
have developed this novel DL loss function design for X-ray
CT imaging, but it can easily find application in other areas.
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Effect of Attenuation Model on Iodine
Quantification in Contrast-Enhanced Breast CT
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Abstract—Accurate models of the x-ray attenuation process
are required for quantitative estimation of iodine concentration
with model-based reconstruction methods. The choice of model
is influenced not only by the accuracy sought but also by the
increasing complexity when more free parameters need to be
reconstructed. The applicability of three attenuation models was
investigated in a single pixel problem using either two or three
monochromatic beams near the K-edge energy of iodine.

We found that an empirical model with 5 components, pro-
posed by Midgley, leads to the lowest error when modeling iodine
free materials and small error in estimating iodine concentration
(0.1% and 3.39%), whereas the decomposition into contributions
due to photoelectric effect and incoherent scatter results in more
accurate estimation of the iodine concentration (0.72%) but has
larger error (8.9%) when reconstructing iodine free materials.
Decomposition into base materials shows the worst results on
both objectives (8.9% and 62%).

I. INTRODUCTION

Tumor characterization through quantitative functional
imaging may allow for better treatment decisions in patients
with breast cancer [1]. Dynamic contrast-enhanced breast
CT is a new imaging modality being developed with aim
to provide such functional information at good spatial and
temporal resolutions. However, to maximize its clinical poten-
tial, accurate estimation of iodine concentration in the breast
CT images is crucial. Current knowledge based on body CT
imaging and computer simulations of contrast-enhanced breast
CT indicate that the iodine concentration in the areas of
interest, especially the tumor, can be expected to be in the
range of 0.5 to 3.5 mg I per mL blood [2]. Coupled with
sparse projections of typical breast CT systems and low photon
energies that are required to increase the contrast (typically
around 30 keV), the estimation of iodine concentration is a
challenging task. In our implementation of contrast-enhanced
breast CT, to save acquisition time and dose to the patient,
individual projections are acquired only once with one of the
x-ray spectra being used. This makes the use of decomposition
methods in the projection domain not applicable.

Model-based methods are well suited to solve this recon-
struction problem since they can use all available information

M. Mikerov, K. Michielsen, and I. Sechopoulos are with the Depart-
ment of Medical Imaging, Radboudumc, Nijmegen, The Netherlands, e-mail:
mikhail.mikerov@radboudumc.nl.
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I. Sechopoulos is with the Dutch Expert Centre for Screening (LRCB),
Nijmegen, The Netherlands

I. Sechopoulos is with the Technical Medicine Centre, University of Twente,
Enschede, The Netherlands

about the acquisition, such as system geometry, utilized spec-
tra, and physics models of attenuation processes. The latter
determines, among other things, the number of free parameters
that need to be estimated. Accurate modeling of the attenuation
process is more difficult at low photon energies, where, in
addition to photoelectric effect and incoherent scatter, coherent
scatter also plays a role. Various parameterization schemes
with different amounts of free parameters have been proposed
to model attenuation.

In this work, we present the results of two experiments in
which we examine the performance of three different param-
eterization schemes for energy dependent linear attenuation
coefficients in a single pixel reconstruction problem. We focus
on biological materials in the breast at x-ray energies below 49
keV and on accuracy of constrast quantification after adding
iodine in the attenuation models, so we can determine which
parameterization is most suitable to extend for our application,
and include in our reconstruction method for quantitative
breast CT imaging.

II. METHODS

To avoid confounding influences, we focus on estimation
of the energy dependent linear attenuation coefficient between
10 keV and 49 keV in a single pixel with monochromatic
beams in dual and triple energy systems. Therefore, we are not
solving the geometric aspect of the CT reconstruction problem,
but are rather showing the adequacy of possible models of the
energy dependency of linear attenuation.

A. Forward model
All values in the projection domain are obtained using the

Beer-Lambert law:

pE = I0 exp (�L · µE), (1)

where µE is the linear attenuation coefficient at energy E,
I0 is the signal before attenuation, and L is the intersection
length of the ray with the pixel of interest. The values of I0
and L were set to 1 for all experiments.

B. Solution of linear systems
Limiting the estimation of the linear attenuation coefficient

to a single pixel allows us to solve the linear system Ax = b
using two analytical methods. The first is non-negative least
squares, which is applied when the linear system has either
full rank or is overdetermined [3]. We solve underdetermined
systems of equations using the conjugate gradient method [3],
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an iterative method that requires a good initial guess. It
can be shown that for underdetemined systems of equations,
conjugate gradient methods applied to ATAx = AT b, such
as CGLS and LSQR, will converge to the minimum norm
solution AT (AAT )�1b, making their application feasible [3].

C. Models of attenuation
We consider three different models for the energy dependent

attenuation. The first model consists of a decomposition into
base materials. In breast imaging, decomposition into adipose,
fibro-glandular, and iodine components is the most evident
choice. The system of equations for the single pixel problem
in dual energy systems then takes the following form:
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The subscripts L and H refer to low and high energies. The
last row puts a constraint on the otherwise underdetermined
system of equations by enforcing conservation of volume,
possibly causing undesirable behavior when the selected base
materials are suboptimal to represent all expected tissues.
When more than two spectra are used to acquire the images,
additional rows can be added, making this system overdeter-
mined.

The second model makes use of the physical processes
underlying the attenuation of x rays. It decomposes the attenu-
ation profile into contributions due to photoelectric effect and
incoherent scatter. The energy dependency of the photoelectric
effect is usually modeled using the power law

� (E) = 1/E3, (3)

where E is the x-ray energy, whereas the Klein-Nishina
equation is employed to describe incoherent (Compton) scatter

⇥ (E) =
(1 + ↵)

↵2

✓
2 (1 + ↵)

1 + 2↵
� ln (1 + 2↵)

↵

◆
(4)

+
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2↵
� 1 + 3↵

(1 + 2↵)2
,

where ↵ = E/511 keV. However, this parameterization cannot
model K-edges. Thus, in order to use this model to estimate the
concentration of contrast agents, the attenuation characteristics
of iodine must be included in the model. Consequently, the
linear system of equations becomes:
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meaning that measurements at three different energies are
required for the linear system to have full rank.

This model can be used in dual-energy setups following
the method that was proposed by Depypere et al [4], [5].
If one can write � and ⇥ as piece-wise linear functions of
some parameter, e.g., the attenuation coefficient at a given
energy, only two different measurements are needed. Hence,
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Fig. 1. Fitted contribution due to incoherent scatter as function of linear
attenuation coefficient at 30 keV for materials present in the breast.

two parameters — the attenuation coefficient at a fixed energy
and the iodine volume fraction — can be reconstructed using
dual-energy setups. The difficulty of applying this method for
breast imaging is that it is not possible to write the attenuation
coefficient as a piece-wise linear function, as indicated in
figure 1. Blood, skin, adipose and glandular tissues have very
similar properties. Since any possible combination of materials
in the triangle adipose-glandular-blood is theoretically possi-
ble, a systematic error is introduced as soon as the background
tissue does not lie on the chosen line.

The third parameterization we included in our experiment
was proposed by Midgley [6]. It decomposes the linear atten-
uation coefficient into energy-dependent S-parameters that are
weighted by composition-dependent a-parameters:

µE =
5X

k=1

akSk. (6)

The number of S-parameters is not fixed and more parameters
will lead to more accurate models. However, five S-parameters
are sufficient to keep the maximum error below 2% in the
energy range up to 50 keV [6]. Moreover, following that
ak+1 � ak, µE monotonically decreases with energy. The S-
parameters for biological tissues in breast imaging are shown
in figure 2. They were calculated by taking into account that
a-parameters are functions of atomic number and electron
density. Thus, the S-parameters are obtained by solving a
least-squares problem [7], in our instance for elements that are
found in breast tissues, specifically H, B, C, N, O, Na, Al, Si,
P, S, Cl, Ar, K, Ca and Fe. As with the previous model, this
parameterization scheme cannot account for K-edges. Thus,
we extended this model to include the attenuation coefficient
of iodine

µE =
5X

k=1

akSk (1� f) + fµiodine. (7)

Assuming that the iodine volume fraction f is very small,
the resulting system of equations in a dual-energy setup can
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Fig. 2. The S-parameters were calculated using compositions of materials
found in the breast.
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D. Experiments

We examine the effect of the attenuation model on the
accuracy of skin and iodine reconstruction in dual- and triple-
energy acquisitions. We use skin as a good example of a back-
ground material that needs to be modeled correctly in order to
avoid systematic errors that will otherwise propagate into the
estimated iodine concentration in model-based reconstruction.
Since model-based reconstruction tries to minimize the mis-
match in the projection domain, incorrect linear attenuation
coefficients in background material must be compensated by
adjusting iodine concentration, which leads to lower accuracy.

The tissue background for the experiment including iodine
contrast consists of a mixture of 50% adipose tissue, 50%
fibro-glandular tissue; the volume fraction of blood is 30%.
Varying amounts of iodine (0–20 mg/mL) were then added
to the blood fraction. Our contrast agent is modeled as pure
iodine. We assume that the attenuation of the contrast agent
suspension medium is equal to that of blood. All materials
were modeled with corresponding tissue substitutes [8]–[10].
and the attenuation profiles of elements were obtained from
XrayDB [11].

The energies of the low and high energy spectra in the dual-
energy setup were set to 30 keV and 34 keV, and the third
energy for the triple-energy setup was set to 38 keV. Water
was used as initialization for Midgley’s parameterization.
No initialization was needed for the other models since the
resulting systems of equations were not underdetermined. The
decomposition into photoelectric effect and incoherent scatter
was considered only in the triple-energy setting.
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Fig. 3. Proportional error between reconstructed and true linear attenuation
coefficient of skin when using different models of attenuation and number of
spectra.
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Fig. 4. Error in estimated iodine concentration as function of the difference
between the linear attenuation of the mixture below and above the K-edge of
iodine and concentration in blood. The negative region indicates rise in the
attenuation due to K-edge. The background tissue was 50% adipose and 50%
fibro-glandular tissues; volume fraction of blood was 30%.

III. RESULTS

A. Reconstruction of skin

Figure 3 shows the relative error of the reconstructed
attenuation coefficient of skin with three methods. The largest
deviation (8.9% at 10 keV and 1.44·10�4 volume fraction
of iodine) results from the model that decomposes the back-
ground into adipose and glandular tissues. The most accurate
result is achieved with Midgley’s model in a triple-energy
setup (0.1% at 10 keV and -2.27·10�6 volume fraction of
iodine). Complete results are shown in table I.

TABLE I
MEAN AND MAXIMUM ABSOLUTE RELATIVE ERRORS ON ATTENUATION
BETWEEN 10 KEV AND 49 KEV, AND RECONSTRUCTED IODINE VOLUME

FRACTION FOR SKIN.

attenuation model mean maximum iodine volume
error error fraction

PE + Compton (double) 0.71% 4.95% 0.00
Base materials (double) 3.50% 8.88% 1.44·10�4

Base materials (triple) 3.50% 9.28% 1.14·10�4

Midgley (double) 1.13% 2.25% -3.80·10�5

Midgley (triple) 0.07% 0.18% -2.27·10�6
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B. Estimation of iodine concentration

Figure 4 shows the error in iodine concentration estimation
as a function of the difference between linear attenuation
at 30 keV and 34 keV, resulting from the iodine K-edge
when reconstructed using Midgley’s model in dual- and triple-
energy setups. The corresponding concentration of iodine is
shown on top. The error is 62% and 3.39% at 0.97 mg I
per mL of blood with double-energy and triple-energy setups,
respectively. An even lower error (0.72%) is achieved with the
decomposition into photoelectric effect and incoherent scatter
with monochromatic radiation.

IV. DISCUSSION

The aim of this study was to find the most accurate param-
eterization scheme for model-based reconstructions methods
for breast CT with a focus on quantitative accuracy of the
estimation of iodine concentration. Unsurprisingly, the base
material decomposition into iodine, adipose and glandular tis-
sues is the least accurate method to reconstruct skin. The error
is substantial as it clearly shows that the iodine concentration
in skin will not be zero. The accuracy improves only slightly
when using a triple-energy system.

Decomposition into contributions due to photoelectric effect
and incoherent scatter on the other hand, is very accurate above
25 keV. However, its accuracy drops noticeably in the lower
energy range. This can be explained by the contribution due
to coherent scatter in this low-energy range, which is absent
from this model.

Finally, Midgley’s parameterization in the triple-energy
setup leads to the most accurate results for skin. The pa-
rameterization with three energies achieves better results than
the one with two. In particular, triple energy optimization
has negligible iodine signal in skin even though the linear
system remains underdetermined. This is most likely explained
by our initialization which assigns a good approximation of
the relative contributions of the scatter processes. Parameters
not well constrained in the problem would then not end up
far from a reasonable value. Further examination of how the
initialization with water holds up for calcifications will give an
indication on the limitations of using a simple homogeneous
initialization in patient images.

Our experiment shows that the decomposition into contri-
butions due to photoloelectric effect and incoherent scatter is
equally good as Midgley’s parameterization at energies above
25 keV. However, the result shown in figure 3 represents the
ideal case. Introduction of real polychromatic spectra will
complicate the situation. Besides, one of the spectra must
have mean average energy below the K-edge of iodine to
capture it, which leads to nonzero fluence in the low energy
range. Taking into account that the attenuation coefficients are
highest in this range, it is favorable to avoid systematic errors
that are introduced due to less accurate models when using
model-based reconstruction methods. Nevertheless, the mono-
energetic simplification is the main limitation of this study that
needs to be addressed.

The triple-energy system leads to better results in the
relevant concentration range in our application, i.e., below 3.5

mg I per mL blood. Notably, it is not enough to just have beam
energies on either side of the K-edge. Accurate quantification
requires the K-edge that causes an increase in attenuation at
relevant energies, otherwise, the accuracy quickly decreases
when the K-edge is not causing such increase as can be
observed in figure 4. Since any allowed combinations of S-
parameters are monotonically decreasing functions, the K-
edge does not need to be modeled in order to connect the
points on the linear attenuation profile at relevant energies.
The continuous decrease in accuracy can be explained by
different slopes of iodine before and after the K-edge, which
means that there is still some information about iodine content
present. The situation changes when the measurement at the
third energy is added. Now, the only way to account for rise in
attenuation and different slopes below and above the K-edge
is to add the correct fraction of iodine.

V. CONCLUSION AND OUTLOOK

In this simplified numerical study we have shown that the
attenuation model influences accuracy of iodine reconstruction
in contrast-enhanced breast CT at energies below 49 keV.
Such models could lead to underdetermined linear systems.
Nevertheless, an accurate solution can be found if triple-energy
systems and appropriate initialization are used. In our future
research, we will examine if these conclusions remain valid
for polychromatic spectra before incorporating the preferred
attenuation model in our model-based reconstruction for breast
CT.
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Abstract—Motion during CT scans causes artifacts that can 

severely degrade the image quality. We propose a motion 
compensation algorithm that can be combined with reconstruction 
algorithms that contain a rebinning step like the weighted filtered 
backprojection algorithm. Therefore, we assume that the motion 
present during acquisition is known, and we extend the 
backprojection step in the reconstruction to consider this motion, 
reducing the motion artifacts in the resulting images. 
Furthermore, we propose a combination of our motion 
compensation algorithm with two versions of an iterative weighted 
filtered backprojection algorithm. 
 

Index Terms—Computed Tomography, Motion Compensation, 
Rebinning, Weighted Filtered Backprojection, Iterative Weighted 
Filtered Backprojection 
 

I. INTRODUCTION 
OTION during image acquisition in a CT scan causes 

artifacts that can severely degrade the image quality and 
lower the diagnostic value of the reconstructed images. The 
motion leads to an inconsistency in the acquired data and hence 
to artifacts like blurring, streaking or ghost images. The motion 
is often caused by patient movement, however it can also 
originate in motion of the scanner itself, for example in mobile 
scanner systems like a moving or sliding gantry. Since a 
complete prevention of motion during the scan can be difficult, 
a solution is required that compensates the present motion and 
thus improves the quality of the resulting images.  

There are many algorithms proposed in the literature that 
attempt motion compensation in CT reconstruction. One 
method worth mentioning is the one by Hahn et al. [1], based 
on partial angle reconstruction. Another interesting motion 
compensation method is proposed by Bhagalia et al. [2]. 

In this paper we focus on cases where the motion present 
during acquisition, or an approximation thereof, is already 
known. The motion can either be measured with sensors or 
estimated using a motion estimation method like the one 
proposed by Bruder et al. [3].  

A commonly used method for motion compensation in CT 
reconstruction with known motion is the method described by 
Schäfer et al. [4]. Their motion correction algorithm is applied 
in the reconstruction process during the backprojection step. 
Every voxel of the voxel volume that should be reconstructed 
is virtually shifted according to the motion present at the 
 

N. Steinich, J. Sunnegårdh, and H. Schöndube are with the Siemens 
Healthineers, Forchheim, Germany. 

moment of acquisition. They included their method into the 
reconstruction algorithm of Feldkamp, Davis, and Kress [5] and 
achieved very good results.  

However, there are several popular reconstruction 
algorithms, like the weighted filtered backprojection (WFBP) 
algorithm by Stierstorfer et al. [6] which rely on a rebinning 
step that, when combined with the method of Schäfer et al., will 
cause artifacts remaining in the final result. 

In the following we propose an extension of the algorithm by 
Schäfer et al. that can also handle reconstruction algorithms 
containing a rebinning method. Furthermore, we propose the 
combination of the described motion compensation algorithm 
with an iterative reconstruction method.  

II. METHODS 

A. Motion Compensated Weighted Filtered Backprojection 
In this paper we combine the motion compensation method 

proposed by Schäfer et al. [4] with the WFBP algorithm of 
Stierstorfer et al. [6], a 3D filtered backprojection algorithm for 
multislice spiral CT. However, our proposed motion 
compensation method works with any CT reconstruction 
algorithm using rebinning and backprojection steps.  

In the rebinning step of the WFBP algorithm the projection 
images acquired in the cone beam geometry are virtually 
rearranged to form semi-parallel projection images better suited 
for the backprojection step. The cone beam geometry is 
described using 𝛼 as the rotation angle, 𝛽 as the horizontal 
opening angle of a ray and 𝑞 as the cone parameter describing 
the vertical cone angle of a ray. For the semi-parallel projection 
images the rotation angle is described as 𝜃 and (𝑝, 𝑞) denote the 
detector columns and rows, respectively. The geometry is only 
semi-parallel, as the rays are only parallel along the detector 
rows, but not along the columns. In the rebinning step the rays 
of the initially obtained cone beam projection images 𝑃(𝛼, 𝛽, 𝑞) 
are rearranged to form semi-parallel projection images 
𝑃(𝜃, 𝑝, 𝑞) using the rebinning formulas  

 
 𝜃 = 𝛼 + 𝛽             𝑝 = 𝑅 sin (𝛽) (1) 

 
with 𝑅 describing the distance from source to isocenter.  

The backprojection step in the WFBP algorithm iterates 
through all rebinned and filtered projection images 𝑃(𝜃, 𝑝, 𝑞) 
and for each projection image it iterates through all voxels 𝒙 of 
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the voxel volume to be reconstructed. For each voxel 𝒙, the 
corresponding position (𝑝, 𝑞) in the projection image 𝑃(𝜃, 𝑝, 𝑞) 
the voxel has been projected to during acquisition is calculated. 
The value at position (𝑝, 𝑞) is then added to voxel 𝒙 in the voxel 
volume. This is performed for all voxels and all projection 
images until the entire voxel volume has been reconstructed. 

For our motion compensation method we assume that the 
motion present during acquisition is known. For every 
projection image 𝑃(𝛼, 𝛽, 𝑞) a motion state 𝑴𝛼 is required. Each 
motion state 𝑴𝛼 holds the information about the position of the 
scanned object relative to the scanner at the moment of the 
acquisition of 𝑃(𝛼, 𝛽, 𝑞).  

Our proposed algorithm is based on the method by Schäfer et 
al. [4], extending it to work with reconstruction algorithms 
containing a rebinning step like the WFBP algorithm. When 
combining the WFBP algorithm with Schäfer’s method the 
backprojection step of the reconstruction algorithm is extended 
by moving every voxel 𝒙 in the voxel volume to be 
reconstructed according to the known motion pattern. As 
described above, the backprojection is performed by iterating 
for each projection image 𝑃(𝜃, 𝑝, 𝑞) through all voxels 𝒙. 
Knowing the motion state 𝑴𝛼 present during the acquisition of 
the projection image 𝑃(𝛼, 𝛽, 𝑞)  obtained at rotation angle 𝛼, 
we can use this information to move each voxel 𝒙 accordingly, 
assuming 𝛼 = 𝜃. For each projection image 𝑃(𝜃, 𝑝, 𝑞) each 
voxel position 𝒙 is recalculated to 𝒙𝑴,𝜶 considering the motion 
state 𝑴𝛼=𝜃. Using the new position 𝒙𝑴,𝜶 the corresponding 
position (𝑝, 𝑞) in the projection image 𝑃(𝜃, 𝑝, 𝑞) is calculated 
and the value of this position is added to the value at voxel 
position 𝒙. This is then repeated for all voxels in the voxel 
volume and for all obtained projection images. This leads to a 
more accurate reconstruction, as the motion present during 
acquisition is considered. However, when combining the 
WFBP algorithm with the motion compensation method 
proposed by Schäfer et al. in this manner, some motion artifacts 
remain in the final result, as the rebinning process is not 
considered. 

Due to the rebinning the assumption that for every projection 
image 𝑃(𝜃, 𝑝, 𝑞) one motion state 𝑴𝛼 needs to be considered 
during backprojection is not accurate. This assumption only 
holds for the projection images 𝑃(𝛼, 𝛽, 𝑞). The rebinning 
process however rearranges the rays such that the rebinned 
projection images each consist of information obtained at 
different time points and hence depicting different motion 
states. The available motion state 𝑴𝛼 is no longer correct for 
the entire projection image 𝑃(𝜃, 𝑝, 𝑞), but only for the column 
where 𝑝 = 0, as only there 𝜃 = 𝛼 holds. Using our geometry, 
the columns right of the column 𝑝 = 0 contain previous motion 
states and columns towards the left contain subsequent motion 
states. Hence using a motion state 𝑴𝛼 for an entire projection 
image 𝑃(𝜃, 𝑝, 𝑞) in the backprojection will lead to motion 
artifacts remaining in the final result. 

We propose a motion compensation method as described in 
algorithm 1 extending Schäfer’s method to consider the 
rebinning process, enabling a combination with the WFBP 
reconstruction algorithm. 

Algorithm 1 Motion Compensated WFBP 
1:   for all projection images 𝑃(𝜃, 𝑝, 𝑞)  do 
2:       for all voxels 𝒙 of the voxel volume do 
3:           1) Calculate new voxel position 𝒙𝑴,𝜃 using 𝑴𝛼=𝜃  
4:           2) Calculate (𝑝, 𝑞) using 𝒙𝑴,𝜃 
5:           repeat 
6:               3) Calculate 𝑴′ using 𝑝/𝑝′ 
7:               4) Calculate 𝒙′𝑴,𝜃  using 𝑴′ 
8:               5) Calculate (𝑝′, 𝑞′) using 𝒙′𝑴,𝜃 
9:           until convergence 
10:          6) Add value at position (𝑝′, 𝑞′) to voxel 𝒙 
11:      end for 
12:  end for 

 
Steps 1) and 2) are the steps as described in the method of 

Schäfer et al., while steps 3)-6) are our proposed extension. Our 
method uses the motion state 𝑴𝛼=𝜃 to calculate a new position 
𝒙𝑴,𝜃 of the voxel 𝒙, which is then used to calculate an initial 
position (𝑝, 𝑞) in the projection image 𝑃(𝜃, 𝑝, 𝑞) just as 
described by Schäfer et al. This position (𝑝, 𝑞) is then used to 
choose a more accurate motion state 𝑴′. Using the column 
position 𝑝 and the rebinning formulas described in equation (1) 
the cone beam projection image 𝑃(𝛼, 𝛽, 𝑞) from which the 
information in this column 𝑝 was taken in the rebinning and 
hence which motion state 𝑴′ was present can be calculated. 
With this new more accurate motion state 𝑴′ the voxel position 
𝒙 can be recalculated to 𝒙′𝑴,𝜃, followed by the calculation of 
the new position (𝑝′, 𝑞′) in the projection image 𝑃(𝜃, 𝑝, 𝑞). This 
more accurate position (𝑝′, 𝑞′) can then be used to write its 
values to the voxel 𝒙. The steps 3) to 5) can be repeated to 
achieve even more accuracy, however experiments have shown 
that even one iteration is able to yield good results. 

For a more efficient implementation, we propose a 
modification of the algorithm stated above. Instead of using the 
exact motion state 𝑴′ that was calculated for every position 𝑝 
in the projection image 𝑃(𝜃, 𝑝, 𝑞), we suggest choosing 3 
motion states per projection image, whilst interpolating the 
motion states in between. Specifically, we chose to use the 
motion state at position 𝑝 = 0 which corresponds to the initial 
motion state 𝑴𝛼=𝜃 as well as one motion state for one column 
left and one column right of 𝑝 = 0. However, we are not 
choosing the left and rightmost columns in the projection image 
𝑃(𝜃, 𝑝, 𝑞),  but the columns furthest to the left and right that are 
actually reached in a projection. These columns need to be 
calculated individually, as they depend on several parameters. 
For the three chosen columns the corresponding motion states 
are calculated using the rebinning equations (1). For a position 
(𝑝, 𝑞) in the projection image 𝑃(𝜃, 𝑝, 𝑞) the corresponding 
motion state is then obtained from the motion states of the two 
closest chosen columns using linear interpolation of the motion 
values. 

B. Motion Compensated Iterative Weighted Filtered 
Backprojection 

The method described above can also be combined with an 
iterative weighted filtered backprojection algorithm, as the one 
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described by Sunnegårdh et al. [7]. The iterative reconstruction 
algorithm can be described with the vectors 𝒑 and 𝒇 denoting 
the projection data and the resulting image data, and the 
matrices 𝑸 and 𝑷 denoting backprojection and forward 
projection operators, respectively. In our case, 𝑸 is the 
weighted filtered backprojection by Stierstorfer et al. [6] and 𝑷 
is the forward projection by Joseph [8]. The iterative 
reconstruction process can then be described as  

 
 𝒇𝑘+1 = 𝒇𝑘 − 𝛼𝑸(𝑷𝒇𝑘 − 𝒑). (2) 

 
An initial result 𝒇0 = 𝑸𝒑 is calculated by backprojecting the 

rebinned and filtered projection data. The initial result 𝒇0 is then 
forward projected and the difference to the initial projection 
data 𝒑 is calculated. This difference image is backprojected and 
subtracted from the previous result 𝒇0 using a factor 𝛼. This is 
repeated multiple times, improving the result with every 
iteration.  

Including the proposed motion compensation method into 
this iterative reconstruction process consists of two parts. First, 
the motion compensation is included into the backprojection 
operator 𝑸 as described above. Second, the motion also needs 
to be considered in the forward projection operator 𝑷. However, 
in the forward projection the motion is included again rather 
than removed, as the forward projected result is compared to 
the original not motion compensated projection data 𝒑. 
Including the motion in the forward projection operator 𝑷 is 
performed similar to the motion compensation in the 
backprojection operator 𝑸. In the forward projection, we are 
assuming an implementation that iterates through all positions 
(𝑝, 𝑞) in the projection image 𝑃′(𝜃, 𝑝, 𝑞) that should be 
calculated. For each position (𝑝, 𝑞), the corresponding ray 
through the voxel volume is calculated and the values along its 
path are accumulated. This is repeated for all projection images 
𝑃′(𝜃, 𝑝, 𝑞). Knowing the position (𝑝, 𝑞) the corresponding 
motion state at this position can be interpolated as described 
above. The motion state can then be included in the calculations 
of each ray changing its path through the voxel volume 
accordingly. The value accumulated along the rays path is 
written to the initial position (𝑝, 𝑞) of the projection 
image 𝑃′(𝜃, 𝑝, 𝑞). However, the motion compensation 
calculations need to be included in every backprojection and 
every forward projection step of every iteration. 

Hence, we propose to use a modification of the iterative 
reconstruction algorithm used above, as the one described by 
Sunnegårdh et al. [9], that allows for a more efficient 
implementation of the proposed motion compensation 
algorithm. The algorithm stated in equation (2) is adapted by 
considering the combination of forward projection followed by 
backprojection to be the sum of a low-pass filter 𝑳 and a linear 
operator 𝑨 that causes artifacts: 

 
 𝑸𝑷 = 𝑳 + 𝑨. (3) 
 
Hence the iterative reconstruction equation (2) can be 

rewritten to 

 𝒇𝑘+1 = 𝒇0 − (𝑸𝑷 − 𝑳) 𝒇𝑘 (4) 
 
as described in more detail by Sunnegårdh et al. [9]. This 

modification allows to include the motion compensation 
algorithm only in the first backprojection step, without the need 
to repeat the motion compensation calculations in every 
iteration. Furthermore, there is no need to adapt the forward 
projection operator to consider motion.   

 

 
Fig. 1.  Example reconstructions of the Turbell clock phantom (a) 
without introducing motion, (b) introducing a translation in x-direction 
performing a 5mm sinus without motion compensation, (c) introducing 
the same motion and compensating it with the combination of 
Schäfer’s method and the WFBP algorithm, and (d) introducing the 
same motion and compensating it with our proposed method. 
Greyscale window C: 0 HU, W: 100 HU. 

III. RESULTS 
To evaluate the proposed motion compensation algorithm the 

Turbell clock phantom [10] is used, simulating a helical cone 
beam CT scan, followed by reconstruction with and without 
motion compensation.  

To evaluate the motion compensation the phantom was 
simulated to be moving along a predefined path. In this case a 
rigid motion was introduced, moving the entire phantom via 
translation, rotation, and moving of the rotation center. For the 
acquisition of each projection image 𝑃(𝛼, 𝛽, 𝑞)  a motion state 
𝑴𝛼 of the phantom was defined, consisting of values for 
translation, rotation, and the position of the rotation center. The 
values of all motion states 𝑴𝛼 used for the simulation are saved 
for later use in the motion compensated reconstruction as it is 
assumed throughout this paper that the motion present during 
acquisition is known.  

Fig. 1 (a) shows the phantom simulated without any motion 
and reconstructed using the WFBP algorithm [6] as reference.  
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Fig. 1 (b) shows the WFBP reconstruction of the phantom for a 
simulated scan including motion. The motion included in this 
example is a translation in 𝑥-direction describing a sinus curve 
with an amplitude of 5mm and one oscillation per scanner 
rotation. Fig. 1 (c) shows the reconstruction of a scan of the 
phantom with the same motion, now including the motion 
compensation method proposed by Schäfer et al. [4] but 
combined with the WFBP algorithm. Fig. 1 (d) shows the 
reconstruction result of the scan simulated with the same 
motion, using our proposed motion compensation method. In 
this case only one iteration of steps 3) to 5) of our proposed 
algorithm was performed. It can be seen that for the 
combination with the WFBP algorithm our proposed method 
shows significant improvement regarding the motion artifact 
reduction, when compared to the combination of the WFBP 
algorithm with Schäfer’s method, even if only one iteration of 
our proposed algorithm is performed.     

Fig. 2 shows the results for the two motion compensated 
iterative reconstruction methods. Again Fig. 2 (a) and (b) show 
the reference images without and with the introduced motion, 
the same translation introduced in the experiments shown in 
Fig. 1. Fig. 2 (c) shows the result for the iterative reconstruction 
where the motion compensation is included in every 
backprojection and every forward projection step. Fig. 2 (d) 
shows the iterative reconstruction result, for the version, where 
the motion compensation is only included in the first 
backprojection step.  

 

 
Fig. 2.  Iterative reconstructions of the Turbell clock phantom (a) 
without introducing motion, (b) introducing a translation in x-
direction performing a 5mm sinus without motion compensation, (c) 
introducing the same motion and compensating it with the motion 
being considered in every backprojection and every forward 
projection, and (d) introducing the same motion and compensating it 
only in the first backprojection. Greyscale window C: 0 HU, W: 100 
HU. 

IV. CONCLUSION 
With their motion compensation algorithm Schäfer et al. [4] 

proposed a solution for motion artifacts in CT images that 
yields very good results, if the motion present during 
acquisition is known. However, they proposed the combination 
of their motion compensation with the reconstruction algorithm 
of Feldkamp, Davis, and Kress [5]. Combining their method 
with reconstruction algorithms containing a rebinning step like 
the WFBP algorithm [6] does not yield similarly good results 
as different motion states are mixed.  

In this paper we propose an extension of the method by 
Schäfer et al. that considers the rebinning process in the 
backprojection step, making a combination with the WFBP 
reconstruction algorithm possible. Furthermore, we propose the 
combination of our motion compensation method with iterative 
weighted filtered backprojection. 

Our experiments show promising motion compensation 
results both with the WFBP algorithm and the iterative 
reconstruction algorithm that are comparable to the results 
achieved with the method by Schäfer et al. combined as 
suggested with the reconstruction algorithm of Feldkamp, 
Davis, and Kress. 

In our experiments we focused on the introduction and 
compensation of rigid motion, however the proposed algorithm 
should also work with non-rigid motion, considering the motion 
states of individual voxels, rather than the entire phantom. 
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On the use of voxel-driven backprojection and
iterative reconstruction for small ROI CT imaging

Leonardo Di Schiavi Trotta, Dmitri Matenine, Margherita Martini, Yannick Lemaréchal, Pierre Francus,
and Philippe Després

Abstract—In this work related to the use of a commercial med-

ical CT scanner for the non-destructive analysis of highly atten-

uating materials (mineral samples), the effect of backprojection

techniques and truncation artifacts corrections were explored.

For small ROIs, the CT couch interferes significantly in images

of small samples (few centimeters). An iterative reconstruction

algorithm (OSC-TV) was used to perform reconstructions from

uncorrected raw projection data made available through a collab-

oration with the CT vendor, who provided binaries and methods

to remove low-level, proprietary data corrections (for beam

hardening). The OSC-TV algorithm is customizable, allowing

for the use of different forward-projection and backprojection

techniques. Reconstruction parameters were tuned by performing

simulations in a virtual phantom involving highly attenuating

materials. Strategies to reconstruct small ROIs were also ex-

plored, with the objective of reducing truncation artifacts. Three

samples were scanned to compare a ray-driven backprojection

and a voxel-driven backprojection technique based on bilinear

interpolation. The voxel-driven approach led to better results

in terms of noise and reconstruction artifacts. An iterative ROI

reconstruction technique was used to reconstruct small ROIs.

This technique allows obtaining a sinogram with the projections

of the ROI only. With that, truncation artifacts were reduced,

which led to images with less blurring.

Index Terms—tomographic reconstruction algorithm, Iterative

reconstruction, Proprietary data format, backprojection by bi-

linear interpolation, GPU acceleration

I. INTRODUCTION

X-ray Computed Tomography (CT) is nowadays ubiquitous
in medicine for diagnosis, treatment planning and treatment
responses purposes. This technology is also increasingly used
for non-medical purposes in many fields, providing several
advantages such as: (i) non-destructive testing and (ii) high
spatial and density resolution [1].

In clinical CT scanners, raw acquisition data are stored as
sinograms and are typically processed by proprietary methods,
notably to reduce beam hardening artifacts in reconstructed
images. Raw sinograms are relatively large from a storage
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perspective and are typically not kept on the long term, as
opposed to reconstructed images which are normally sent to a
PACS. Even though it is possible to archive sinograms, their
proprietary format typically prevents users from reading them.
The sinograms could also be preprocessed (e.g. calibration,
beam-hardening correction), and in this respect might not truly
represent raw CT data, i.e. measures of the attenuation along
a ray. In some cases, including for research purposes, it might
be desirable to access this raw attenuation data.

Previous works have shown the importance of the forward
projection model on image quality [2]. The aim of this work
was to explore how the reconstruction of small samples with
small voxel size (e.g. 512 pixels ⇥ 512 pixels, and a pixel size
in x and y of 0.00977 cm), are affected by the backprojection
technique implemented on a iterative reconstruction algorithm,
OSC-TV (Ordered subset convex algorithm with total variation
minimization) [3].

Besides, a technique used to reconstruct regions-of-interest
with this class of algorithms was also analyzed [4], as they
allow reducing truncation artifacts caused by objects outside
the reconstruction matrix.

II. MATERIALS AND METHODS

We have developed a framework where an in-house iter-
ative algorithm can be used to reconstruct images based on
genuinely raw attenuation data. First, the sinogram data in
proprietary format are converted through the use of binaries
provided by the manufacturer. The conversion generates usable
sinogram data, and also provides associated geometry data.
These data provided by the vendor is then used to perform
the reconstruction with the iterative algorithm OSC-TV. Two
backprojection techniques were evaluated in this work with
regards to their impact on image features: a Siddon-based
(ray-driven) [5] and a bilinear interpolation (voxel-driven)
approach.

A. Projection and backprojection techniques

In the OSC-TV algorithm, the estimated image is forward-
projected and backprojected several times, depending on the
number of iterations and subsets [3].

In this work, the estimated image is forward projected using
Siddon’s algorithm [5], which is a ray-based technique that can
be efficiently implemented on the GPU [3]. Backprojection
was performed in this work with two techniques: (i) ray-based
or (ii) voxel-driven by bilinear interpolation.
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In the voxel-driven backprojection by bilinear interpolation
(BLI), the center of each voxel is projected on the detector
and the reading corresponds to the weighted sum of the four
neighboring pixels (the position is calculated relative to the
detector pixel centers).

On the other hand, for a ray-driven backprojection, the
detector readings are smeared back across the image. The
voxels that are incremented in this process depend on the ray
path, from the detector reading to the source. Typically, a finite
number of rays are defined (e.g. one ray per detector). In this
approach, depending on the angle between rays and the voxel
size, some voxels might not be traversed by a given ray, or
they are under-utilized, for the intersection length is negligible.
This problem is not unique to the backprojection, but it is also
present in the forward-projection in different techniques (e.g.

Siddon, Joseph’s method and bilinear interpolation) [2].

B. Working with proprietary format

For this work, a Siemens SOMATOM Definition AS+ 128
scanner was used. This device is installed at the Institut

national de la recherche scientifique, in Québec City, Canada.
This platform is used for several non-medical applications, in-
cluding material characterization and custom beam hardening
corrections with dual-energy techniques [6], [7].

The process of using raw data from this medical CT
scanner is illustrated in Fig. 1. In summary, a vendor-provided
calibration table is used for acquisitions to cancel any vendor-
specific beam hardening corrections (detector calibration is
still applied). The raw data is stored in the host system and
copied to a different machine for archiving purposes, along
with calibration data. These raw data, free of vendor-specific
beam hardening corrections, can be read with vendor-provided
binaries. These genuinely raw data (except for detector cal-
ibration), can thereafter be used in custom reconstruction
algorithms designed to handle corrections from first principles,
notably through dual-energy approaches [7].

Fig. 1. Flowchart depicting how raw data is processed to perform tomographic
reconstructions with OSC-TV.

C. Convergence of OSC-TV in numerical simulations

In order to verify the convergence of the reconstructed
image, a virtual phantom was defined (see Fig. 2). It is
composed of a water cylinder with 25.2 cm of diameter and

9 cylinder rods of distinct materials, each one with a diameter
of 2.4 cm. The X-ray absorption properties of the phantom,
defined by the linear attenuation coefficient, was retrieved from
the NIST XCOM database [8].

H2O

Mg

Ti

Al C2F4

SiO2 C5O2H8

C

CaCO3

Si

Fig. 2. Virtual phantom.

A noise-free monoenergetic step-and-shoot acquisition of
the virtual phantom at 83 keV was simulated by using the
geometry of the medical CT scanner Siemens SOMATOM
Definition AS+ 128.

The convergence of the reconstruction to an optimal result is
tuned by the reconstruction parameters: number of iterations,
number of subsets, final number of subsets, and initial image;
regularization parameters also play an important role in de-
creasing the overall noise and controlling the spatial resolution:
gradient steps and strength of regularization (rms) [3].

A high number of subsets, equivalent to half the number
of projections and a final number of subsets representing 1/10
of that value, can be used to achieve optimal convergence, as
already suggested with few-view acquisitions [9].

Different combinations of reconstruction parameters are
used to reconstruct the virtual phantom in order to assess the
convergence: 5, 9 and 12 iterations; 84, 576 (1/4 projections)
and 1152 (1/2 projections) subsets. A total of 9 reconstructions
are performed (3 ⇥ 3), with the regularization constant and
gradient steps fixed at 0.02 and 20, respectively.

D. Scanning protocols

Four samples were imaged in the experimental protocol
(see Fig. 3): (a) water phantom, (b,c) small mineral sample
(approximately 5 cm) of granite and chalcopyrite, respectively,
and (d) a sandstone, with a diameter of 10.0 cm, henceforth
called BEC A196-6.

Fig. 3. Samples: (a) water phantom, (b) granite, (c) chalcopyrite, (d) BEC
A196-6.

Different scan protocols were used for the samples, and for
some cases proprietary beam-hardening correction (BHC) was
neutralized (neutral): water phantom and chalcopyrite (neutral)
at 140 kVp, BEC A196-6 (neutral) and granite (neutral) at
100 kVp. Tomographic reconstructions performed with the
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Siemens algorithm, filtered backprojection, used the B30s
(smooth) kernel.

E. Conversion calibration

Tomographic reconstruction performed by the OSC-TV
algorithm are inherently in units of linear attenuation (cm�1),
while the ones obtained with the Siemens algorithm are in
Hounsfield units (HU). The relation between these quantities
is given by: µ =

�
HU

1000 + 1
�
⇥ µwater. Reconstruction of

the water phantom, at 100 kVp and 140 kVp, are performed
with OSC-TV, and the mean value in a ROI of each case is
calculated. The average of the results provides µwater. This
value is independent of the tube voltage, for the projections
are always normalized for water, so HU is always close to 0
(proprietary preprocessing of raw data).

F. Reconstruction of raw data using OSC-TV

Following the workflow depicted in Fig. 1, and the
numerically-determined optimal reconstruction parameters de-
fined in Section II-E, images were reconstructed with well-
defined parameters of the OSC-TV code.

For the cases where small voxels are used with a regular grid
(512 pixels ⇥ 512 pixels), a modified iterative reconstruction
of a region-of-interest (IR ROI) technique based on the work of
Ziegler et al. 2008 [4] was applied. The CT table lies outside
the image reconstruction matrix for some cases. This technique
allows us to perform reconstruction with a normal grid and
small pixel size (e.g. 0.00977 cm), avoiding truncation artifacts
caused by objects outside the reconstruction matrix.

Contrariwise, high-resolution reconstructions (e.g. 2048 pix-
els ⇥ 2048 pixels) would have to be made to cover the
entire field-of-view (FOV) (e.g. 50 cm), for the table presents
an important attenuation, even though a small object (few
centimeters) is being reconstructed.

Variations of the OSC-TV algorithm are identified by
acronyms, where BLI stands for backprojection by bilinear
interpolation (voxel-driven), Siddon for ray-driven backpro-
jection, and ROI for the IR ROI technique

III. RESULTS AND DISCUSSION

A. Convergence of OSC-TV in numerical simulations

The visual convergence of the OSC-TV algorithm in terms
of number of iterations and subsets is depicted in Fig. 4.
As one can notice, 84 subsets is insufficient even when 12
iterations are performed, giving rise to beam-hardening-like
artifacts. As those images were reconstructed from monochro-
matic projections (83 keV), such artifacts were not expected,
and so are due to a non-optimal convergence. By increasing the
number of subsets (576, or 1/4 of the number of projections),
and the number of iterations, such artifacts are decreased.
Finally, it is only when a high number of subsets (1152,
which is equivalent to half the number of projections) is
used that those artifacts are removed, as a result of high rate
convergence.

Fig. 4. Convergence of virtual phantom. Percent error maps.

B. Samples

From the measurements in the central slice of the water
phantom, at 100 kVp and 140 kVp, it was obtained an average
value µwater = 0.1918 cm�1, which allows conversion from
HU to linear attenuation coefficient to be performed (see
Fig. 5).

Fig. 5. Water phantom: (left) 100 kVp, (right) 140 kVp. Window: [0.18:0.22]

C. Reconstruction of ROI and small samples: OSC-TV ROI

The importance of the backprojection technique for artifact
mitigation and the IR ROI technique for removing truncation
artifacts is shown in Fig 6. In (a), the CT table was not
included in the reconstruction matrix. It is worth noting that
the setup uses a custom table, with much more important
absorption properties than a medical one. Secondly, in (b), the
image is reconstructed using Siddon backprojection and IR
ROI technique, so the table is removed from the projection
data. As not all voxels are incremented by the correspon-
dent detector read during backprojection, more artifacts arise,
producing a noisy image. Finally, in (c), the IR ROI and
the voxel-driven backprojection by bilinear interpolation are
combined. These two techniques are capable of mitigating both
artifacts: truncation and lack of data in voxel increment during
backprojection.

In Figs. 7 and 8, the reconstruction of a small sample
of granite and chalcopyrite (approximately 5 cm) is shown
with different techniques: (a) Siemens with the B30s kernel
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Fig. 6. BEC A196-6 100 kVp, reconstructed with OSC-TV applying dif-
ferent techniques: (a) backprojection by bilinear interpolation, (b) ray-driven
backprojection and region-of-interest strategy, (c) backprojection by bilinear
interpolation and region-of-interest strategy. Window [0.5:0.6] cm�1.

Fig. 7. Granite 100 kVp: (a) Siemens algorithm (B30s), (b) OSC-TV and
the Siddon backprojection, (c) OSC-TV and backprojection by bilinear inter-
polation, (d) OSC-TV, backprojection by bilinear interpolation and region-of-
interest strategy, (e) plot of the line profiles. Window [1.0:1.8]

(smooth); (b) OSC-TV with Siddon’s backprojection; (c) OSC-
TV with backprojection by bilinear interpolation; (d) OSC-
TV with IR ROI technique and backprojection by bilinear
interpolation. As a smooth kernel was selected for the Siemens
reconstruction, its natural its OSC-TV counterpart (d) is less
blurry. Image (b) suffers from the inherent problem of the
Siddon’s backprojection, where some voxels are not properly
incremented by the backprojection and the artifacts are scat-
tered from the center of the image, and the presence of noise.
When (c) and (d) are compared, it is clear that the first is
smoother. The increased blurring is also caused by truncation
artifacts due to the CT scanner table, which is outside the
reconstruction matrix. Contrariwise, the edges are smoother in
general with the OSC-TV technique. The iterative technique
also provides images with less beam-hardening artifacts: at the
left edge of the granite in Fig 7, pixels values are steady, while
a smooth decrease is observed in the Siemens reconstruction.

IV. CONCLUSION

In this work, a framework for working with proprietary
data from a commercial CT scanner was presented. Binaries
provided by the manufacturer allows research to be performed
in both the projection and the image space, where beam-
hardening preprocessing can also be neutralized, so custom
BHC can also be applied. Ray-driven backprojection, with a
limited number of rays, is insufficient for small geometries
and samples. With a backprojection by bilinear interpolation

Fig. 8. Chalcopyrite 140 kVp: (a) Siemens algorithm (B30s), (b) OSC-
TV and the Siddon backprojection, (c) OSC-TV and backprojection by
bilinear interpolation, (d) OSC-TV, backprojection by bilinear interpolation
and region-of-interest strategy, (e) plot of the line profiles. Window [1.0:1.6]

(voxel-driven), results with less noise and free of reconstruc-
tion artifacts were obtained for studied cases. Strategies to
reconstruct regions-of-interest were also applied, where trun-
cation artifacts were reduced, and less blurring was observed.
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A Decomposition Method for Directional Total
Variation With Application to Needle

Reconstruction in Interventional Imaging
Marion Savanier, Cyril Riddell, Yves Trousset, Emilie Chouzenoux and Jean-Christophe Pesquet

Abstract—In interventional radiology, 3D reconstruction of
devices such as needles would increase the precision of proce-
dures. Doing so with CBCT is time-consuming and increases
the X-ray dose. Needles being sparse, a compressed-sensing
reconstruction approach seems viable. We thus investigate the
interest of directional total variation as an adequate prior for
anisotropic devices. We introduce a decomposition method that
allows several a priori directions to be considered at once as well
as excludes the anatomical background that is not sparse. The
capacity of the method is illustrated on simulations of limited-
angle acquisitions. It is shown to allow good reconstruction of the
needles from a small angular coverage, even if the anatomical
background cannot be recovered.

Index Terms—CT, directional total variation, limited-angle
reconstruction, optimization-based reconstruction

I. INTRODUCTION

FLAT-panel based C-arm systems provide real-time 2D
imaging to guide the navigation of therapeutic devices

during minimally invasive vascular or percutaneous proce-
dures. In the following, we shall focus on interventions
that make use of metallic needles, such as vertebroplasty,
radiofrequency ablations, or biopsies. Cone-beam computed
tomography (CBCT) is available through the rotation of the
C-arm around the patient. It allows the 3D reconstruction of
highly attenuating metallic devices together with the patient
background anatomy. In the guidance phase of the procedure,
the patient is positioned to optimize the real-time visualization
of the device and its trajectory. At any time, CBCT scans
could be performed to precisely assess the position of the
device according to the planned trajectory. But such repeated
acquisitions increase the X-ray dose received by the patient.
Furthermore, the patient may need to be moved to another
position to avoid collisions during the 200° rotation required
by tomography. Rotating over a smaller angular coverage
would reduce the number of times changing the position
of the patient is needed, and would reduce the number of
projections, and the amount of X-ray dose. Model-based
iterative reconstruction methods (MBIR) have proven useful to
reconstruct soft tissues from a reduced number of projections
over a full tomographic angular coverage. In [1], a least-
squares criterion regularized with total variation (TV) was used

M. Savanier, C. Riddell and Y. Trousset are with GE Healthcare, Buc,
France. E-mail: first.last@ge.com

E. Chouzenoux and J.-C. Pesquet are with Université Paris-Saclay, Cen-
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to remove the undersampling streaks of dense objects over the
less dense soft tissues. However, TV regularization is isotropic:
in 2D, it penalizes the `1 norm of the image partial derivatives
along the vertical and horizontal directions equally. TV is not
able to recover the edges along directions not sampled by the
limited angular coverage. Only edges and details tangent to the
projection directions are recovered [2]. For piecewise constant
geometrical objects, successful results have been obtained with
the anisotropic total variation (ATV). ATV assigns different
weights to the vertical and horizontal partial derivatives of
the image. This strategy allows for considering the angular
range as an additional prior information [3]. Since the non
convex `0 pseudo-norm is the most direct measure of sparsity
of an object, `1-reweighting strategies and heuristics have been
investigated to incorporate the idea of an independence on the
magnitude of the `0-norm into the ATV approach. But, due to
non-convexity, it is not clear that the resulting optimization
methods converge to a global minimum [3]–[5]. Recently,
ATV constrained formulations (instead of regularization-based
ones) allowed for the reconstruction of complex patterns from
limited angle acquisitions [6]. The anisotropic regularizer pro-
posed in [7] is particularly suited to thin objects like needles
because it emphasizes one specific direction. In the following,
we call it directional total variation (DTV). With DTV, the
gradient norm is computed along one selected direction that
is not necessarily aligned with the pixel grid. Applications
on denoising and reconstructing images of fiber materials
have been successful [8]. Additionally, DTV with a spatially
varying direction and strength [9]–[11], that includes higher
order derivatives [8], [12] has been proposed to extend the
applicability of DTV, for instance to vessels and fingerprints.
In this work, we consider the simple geometric shape of
needles that is very sparse and can be reconstructed from
a limited-angle acquisition. However, we here allow more
directions than one and superimpose them over an anatomical
background that is not assumed sparse. We propose to adopt
an image decomposition approach that applies DTV over
multiple directions for the needles and TV to approximate
the background. Decomposition was first proposed for texture-
geometry decomposition [13] and has also been applied to CT
imaging to decompose the reconstruction into three compo-
nents of object, subsampling artifacts and noise [14].
In Section II, we review the DTV regularization for incorpo-
rating directional information and the decomposition method
to selectively apply separate directional constraints on separate
components as well as to exclude the anatomical background.
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Numerical experiments are then provided and discussed in
Section III to illustrate the potential of the proposed method.

II. METHOD

A. Scanning model

Data collected in X-ray tomographic imaging can be mod-
eled by the following discrete linear system

y = Hx+ b (1)

where H 2 RM⇥N is the discretized model of forward
projection [15], x 2 RN is the unknown attenuation image,
y 2 RM represents the log-transform of the data measured by
the detector and b 2 RM is an additive noise term.
In a limited angle setting, (1) is a severely underdetermined
system of linear equations. The lack of data must be com-
pensated by a priori knowledge that constrains the problem
by limiting the space of feasible solutions. To estimate x,
we consider the sum of a least-squares data fidelity term and
a convex regularizer g embedding this prior information, in
particular sparsity and direction:

minimize
x2RN

1

2
ky �Hxk2D + g(x). (2)

Matrix D stands for the ramp filter which provides faster
convergence through an approximate inversion [1], [16], [17].
We now discuss the choices for g.

B. Directional total variation (DTV)

DTV enforces the prior that the object is piecewise constant
and follows one main direction. For an image x 2 RN , its
DTV can be defined as DTV⌦(x) =

PN
n=1 k(r⌦x)nk1 =

k⇤R✓(rx)k1,1 where r⌦ 2 R2⇥N contains two directional
derivatives at pixel n, �✓

nx and �✓+⇡/2
n x, parameterized by

direction angle ✓ 2 [0°, 180°[, and a so-called stretching factor
s 2]0, 1] for anisotropy, ⌦ = {✓, s}, i.e.

(r⌦x)n =

✓
�✓

nx

s�✓+⇡/2
n x

◆
= ⇤R✓

✓
�h

nx

�v
nx

◆

=

✓
1 0
0 s

◆ ✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆ ✓
�h

nx

�v
nx

◆
,

(3)

with �h
n 2 RN , �v

n 2 RN , respectively, the horizontal and
vertical discrete gradient operators at location n. These quan-
tities can be obtained by applying a forward finite difference
scheme with zero boundary condition.
Given that a set of needles makes a very sparse image, we add
an `1 penalty so that g(x) = g⌦(x) = ⇢DTV⌦(x) + ↵kxk1,
(↵, ⇢) 2]0,+1[2 in (2).

C. Image decomposition

With a non-sparse background, the lack of data cannot
be compensated and the problem does not have a sparse
solution. Decomposing x into a linear combination of several
components aims to restore sparsity in all components that
can then be recovered from the limited data. A component
is thus defined by its specific sparsity prior. To direct the

interfering background into a single component, a different
sparse approximation is used. Then instead of estimating the
sum directly, we solve the minimization problem for each of
these components simultaneously.
Here we decompose x into the anatomical background compo-
nent xB penalized with TV and I 2 N directional components
x⌦i penalized with DTV of direction ✓i 2 [0°, 180°[ and
stretching parameter si 2 ]0,+1[ such that

x = xB +
IX

i=1

x⌦i (4)

where ⌦i = {✓i, si}, i 2 {1, . . . , I}.
Altogether, we must solve the following convex problem:

minimize
xB,(x⌦i )

I
i=12RN

1

2
ky�H(xB +

IX

i=1

x⌦i)k2D

+
IX

i=1

g⌦i(x⌦i) + gTV(xB). (5)

Note that each directional component x⌦i can actually capture
a needle or a group of needles of about the same direction.

D. Optimization algorithm

To minimize Problem (5), we reformulate it. Let z =⇥
x
>
B x

>
⌦1

. . . x
>
⌦I

⇤> 2 R(I+1)N . Let H̃ = ⇧H and D̃ =

⇧D where ⇧ : M 7!
⇥
M

> . . . M
>⇤> 2 R((I+1)L)⇥L. We

then write:

minimize
z2R(I+1)N

1

2
ky � H̃zk2

D̃
+ h(z), (6)

with h : z 7!
PI

i g⌦i(x⌦i) + gTV(xB).
The cost function in (6) is convex but non-smooth. In this
context, FISTA algorithm [18] is attractive due to its simplicity
and low-memory requirements. It relies on the use of proximal
operators. Let us recall that the proximity operator of h at x
is defined as proxh(x) = argmin

z2RN

�
h(z) + 1

2kx� zk2
�
.

Let a be a positive real number such that a > 2. The k-th
iteration of FISTA applied to (6) reads:

8
<

:

�k = k/(k + 1 + a)
z̃
k = z

k + �k(zk � z
k�1)

z
k+1 = prox⌧h(z̃

k � ⌧H̃>
D̃(Hz̃

k � y))
(7)

which includes a momentum step to accelerate the conver-
gence. Thanks to the separability in each component of z, we
derive an update rule for each map:

8
>>>>>>>>>>><

>>>>>>>>>>>:

�k = k/(k + 1 + a)
x̃
k
B = x

k
B + �k(xk

B � x
k�1
B )

For i 2 {1, . . . , I}:
x̃
k
⌦i

= x
k
⌦i

+ �k(xk
⌦i

� x
k�1
⌦i

)

x
k = x̃

k
B +

PI
i x̃

k
i

x
k+1
B = prox⌧gTV

(x̃k
B � ⌧H>

D(Hx
k � y))

For i 2 {1, . . . , I}:
x
k+1
⌦i

= prox⌧g⌦i
(x̃k

⌦i
� ⌧H>

D(Hx
k � y))

(8)

The convergence of Algorithm (8) is guaranteed for 0 < ⌧ 6
1/|||H̃>

D̃H̃||| = 1/|||(I + 1)H>
DH||| where ||| · ||| denotes
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the spectral norm of the input matrix.
The proximity operators of x 7! ⌧gTV(x) and x 7! ⌧g⌦i(x)
do not have a closed form, hence they are both approximated
by using inner iterations of the dual forward-backward (DFB)
algorithm [19] with warm-restart. In particular, for DTV, x̂ =
prox⌧g⌦i

(x̃) is estimated using the following sub-iteration:
⇢

x
n = x̃�r>

⌦u
n

u
n+1 = projk·k1,16�(un + �r⌦x

n)
(9)

where � < 2/|||r⌦|||2.

III. EXPERIMENTS

Fig. 1: Reference images. From left to right: Phantom (A) with needles of
intensity 3500 HU, Image with needles of growing intensity from 3000 HU
up to 5000 HU, Anatomical background [1800-2200 HU].

A. Simulations

We carry out simulations in parallel geometry using two
numerical phantoms on a 256 ⇥ 256 grid. Hounsfield units
(HU) are shifted such that air has value 0 HU and water is
1000 HU. Phantom (A) is purely geometric and represents
a set of needles of intensity 3500 HU covering 8 directions
(5°, 27.5°, 50°, 72.5°, 95°, 107.5°, 130°, 152.5°) as shown in
Figure 1 (angles start at twelve o’clock and grow clockwise).
Phantom (B) is the sum of an axial CT slice of an abdomen
(see Figure 1) with a subset of needles of varying intensity
(3000-5000 HU).
A needle is within the scanning arc if the projection data
contain its so-called bull’s eye view i.e., the view orthogonal to
its axis. We computed simulated data of these phantoms over
a circular arc of amplitude ⌫ = 66° from angle ✓min = 29°
to angle ✓max = 95° (indicated by the arrows in Figure 1)
so that the projection data contains the bull’s eye view of
three needles. Noise term b was i.i.d. Gaussian of mean 0 and
standard deviation 50. The angular sampling was uniform with
a step of 2°. Reconstruction with TV regularization was taken
as a baseline. FBP reconstruction followed by a thresholding
of the intensity was added to the comparison. We performed
100 iterations of DFB and 5000 iterations of FISTA.
First, we analyze the performance of our decomposition
method (5) for the reconstruction of a subset of the nee-
dles of Phantom (A) thanks to four DTV of direction
{5°, 27.5°, 72.5°, 107.5°} (i.e., I = 4). Then we show the
applicability of the method to the more complex case of a
background and needles of different intensities by reconstruct-
ing Phantom (B). This time, a set of I = 3 directions is used:
{27.5°, 72.5°, 107.5°}. In all these simulations, the needles
have the same size, so we use the same stretching parameter

s = 0.001. Needles with the same intensity have the same
regularization parameters ⇢ and ↵. TV and DTV parameters
are thresholds that are homogeneous to HU intensity values
of the image.

B. Background-free needles

Figure 2 shows the reconstructions of Phantom (A) with
FBP, TV (� = 50) and DTV (⇢ = 50, ↵ = 1). First, we
see that with FBP, only partial reconstruction of the three
needles within the scanning arc is achieved. Figure 3 displays
the four reconstructed directional components. Both DTV
and TV regularization lead to similar reconstructions for the
three needles in the scanning arc. For the two needles of
direction close to ✓min, TV yielded a partial recovery only,
whereas DTV fully recovered 12 out of 16 needles, because
their directions were sufficiently close to the imposed a priori
directions. The four remaining missing needles show that there
is no recovery without a priori directional information.

C. Needles with background

Figure 4 shows the reconstruction of the needles of Phantom
(B) with FBP, TV and DTV (sum of all needle maps). First,
as expected, the anatomical background cannot be recovered
with a sparse prior in this limited angle settings. The needles
reconstructed with FBP are distorted and the intensity values
are not recovered. With TV, only the three needles within the
scanning arc remains after thresholding whereas five needles
are recovered with DTV. Figure 5 shows that the decomposi-
tion method coupled with directional information separate the
three sets of needles from the background map.

IV. DISCUSSION AND CONCLUSION

The potential of DTV for reconstructing geometrical objects
from limited data acquisition is confirmed in our results
where needles are recovered even when their bull’s eye view
is not sampled. A decomposition method was developed to
benefit from this capacity with multiple a priori directions
and in presence of an anatomical background that cannot be
recovered by total variation priors. The proposed approach
provides the equivalent of a background subtraction which
thus allows DTV to enhance each needle along its a pri-
ori known direction and recover them from small scanning
arcs. This approach is promising for increasing the precision
of interventional radiology procedures through limited-angle
acquisition. Our study is however limited to the interference
due to the background, as it is based on nearly perfect data.
Data corruption due to physical effects and stronger noise, in
particular metallic artifacts, is another source of interference
that may limit the capacity of sparse priors and must be dealt
with before clinical application.
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Fig. 2: Reconstructed images for ⌫ = 66°. From left to right: FBP, TV, DTV.

Fig. 3: Directional components obtained with DTV model on Phantom (A).
Top: from left to right, ✓1 = 107.5°, ✓2 = 72.5°. Bottom: from left to right,
✓3 = 27.5°, ✓4 = 5°.
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New Reconstruction Methodology for Chest
Tomosynthesis based on Deep Learning

F Del Cerro. C, Galán. A, Garcı́a-Blas. J, Desco. M, Abella M.

Abstract—Tomosynthesis offers an alternative to planar ra-
diography providing pseudo-tomographic information at a much
lower radiation dose than CT. The fact that it cannot convey
information about the density poses a major limitation towards
the use of tomosynthesis in chest imaging, due to the wide range
of pathologies that present an increase in the density of the pul-
monary parenchyma. Previous works have attempted to improve
image quality through enhanced analytical, iterative algorithms,
or including a deep learning-based step in the reconstruction, but
the results shown are still far from the quantitative information
of a CT. In this work, we propose a reconstruction methodology
consisting of a filtered back-projection step followed by post-
processing based on Deep Learning to obtain a tomographic
image closer to CT. Preliminary results show the potential of the
proposed methodology to obtain true tomographic information
from tomosynthesis data, which could replace CT scans in
applications where the radiation dose is critical.

Index Terms—Chest tomosynthesis, Computed Tomography
Deep Learning, FDK-based reconstruction, Transfer Learning.

I. INTRODUCTION

CHEST radiography is widely used for the diagnosis of
lung diseases. It has a high spatial resolution, but being a

projection image, tissues are shown overlapped without depth
information and with a masking of low-density structures
behind the bones. This limitation has been partially solved
by tomosynthesis, a technique mainly used in mammography,
but it still cannot convey density information. This is a major
limitation for the use of tomosynthesis in chest imaging, due to
the wide range of pathologies with increased lung parenchymal
density. The only available technique to retrieve a density map
is computed tomography (CT), but its use is limited by issues
of availability and/or radiation dose control.

Several reconstruction strategies have been proposed to ob-
tain an improved reconstruction of tomosynthesis data. In [1],
the authors proposed a Digital Breast Tomosynthesis (DBT)
reconstruction based on the filtered back-projection (FBP)
algorithm by a modification of the ramp filter, while [2, 3]
propose iterative reconstruction (IR) algorithms. Nevertheless,
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although these approaches increase image quality, the results
shown are still far from the quantitative information of a CT.

During the last few years, image reconstruction methods
have incorporated Deep Learning strategies as: (1) a post-
processing step, after reconstruction [4], (2) a pre-processing
of the projection data [5], or (3) within an IR algorithm, in
the so-called unrolled methods [6, 7]. Nevertheless, despite
further improving image quality over traditional IR, none of
the proposed methods show true tomographic results.

In this work, we propose a reconstruction methodology
to obtain tomographic images (close to a CT) from chest
tomosynthesis. The methodology consists of an FDK-based
reconstruction step followed by post-processing based on Deep
Learning.

II. DATABASE GENERATION

The database consists of tomosynthesis reconstructions as
inputs and CT scans as a reference. We used 55 chest CT
studies, 12 provided by the Hospital General Universitario
Gregorio Marañón and 43 extracted from the Medical Imaging
and Data Resource Center (MIDRC) portal from three different
datasets. All studies were interpolated to a common isotropic
voxel size, 1.25⇥1.25⇥1.25 mm, which is larger than that of
any of the original CT volumes.

To simulate the tomosynthesis projections and perform the
reconstructions, we used FuxSim [8], a software that allows
simulating different acquisition geometries based on a density
map and system parameters. The simulations were based on a
standard chest tomosynthesis protocol: 61 projections with a
total source-to-detector distance of 1800 mm and a scan angle
of 30 degrees. The resulting projections had a matrix size of
1072⇥1072 pixels with a pixel size of 0.4⇥0.4 mm. Since the
patient is positioned next to the detector in the acquisition of
chest tomosynthesis data, we cropped the volumes to remove
the excess of air from the CT field of view and eliminated the
bed and other patient supports, as shown in Fig. 1.

Fig. 1. Pre-processing of CT data to simulate patient position in tomosynthesis
system: removal of the bed, patient support and excess of air.

To avoid truncation artifacts in the tomosynthesis projec-
tions, caused by the spatial limitation of the chest CT scans in
the vertical direction, we extended the CT volumes as shown
in Fig. 2.
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Fig. 2. Tomosynthesis projections from CT for three different positions before
(top) and after (bottom) extension. White arrow shows truncation artifact.

The simulated tomosynthesis data were reconstructed with
an FDK-based algorithm, modifying the minimum value of
the ramp filter to avoid the loss of mean value. For each
study, we obtained a volume of 275⇥192⇥99 corresponding
to the central part of the thorax, which is the ROI evaluated for
diagnosis, with 1.25⇥1.25⇥1.25 mm voxel size. Fig. 3 shows
the central coronal slice of the tomosynthesis reconstruction
together with that of the reference CT for three of the volumes.

Fig. 3. Coronal slices of the result of FDK-based reconstruction from the
tomosynthesis data (top) and their corresponding CT (bottom).

The database was divided into the following sets:
• Training set: Composed of 38 volumes, giving a total of

3762 coronal slices and 7296 axial slices.
• Validation set: Composed of 10 volumes, giving a total

of 990 coronal slices and 1920 axial slices.
• Test set: Composed of 6 volumes, giving a total of 594

coronal slices and 1152 axial slices.

III. POST-PROCESSING STEP

The post-processing step has as input the FDK-based recon-
struction and as output a volume with enhanced tomographic
information. The proposed architecture is a modification of the
original version of the U-Net architecture [9] to include new
strategies recently proposed in the literature. The encoder was
replaced by ResNet-34 [10], due to the improved performance
offered by the residual blocks over the original version of the
U-Net encoder. The decoder consists mainly of oversampling
blocks composed of a convolutional layer, followed by an
average pooling layer (APL), a batch normalization (BN)
layer, a ReLU, and two convolution layers (Conv2D) followed

by a ReLU each. At the output of the first convolutional layer,
the pixel shuffle operation with ICNR initialization [11] is
applied. The complete network is shown in Fig. 4.

Fig. 4. Proposed U-net network architecture.

For the initialization of the encoder, we used the pre-trained
version of Resnet-34 for Imagenet [12]. The decoder was
initialized randomly adapting it to the output of our problem.
The training methodology was based on Transfer Learning
[13], first freezing the encoder to train only the decoder and
then training the end-to-end network for fine-tuning.

Perceptual Loss (PL) [14] was chosen as the cost function to
assure the recovery of fine details. We chose Adam [15] as the
optimizer, due to its higher convergence speed, and a weight
decay equal to 10�3 as regularization strategy. To determine
the learning rate, we used the test presented by Leslie N. Smith
[16], which resulted in an optimal learning rate of 10�3 for
decoder training and 10�5 for end-to-end network training.

Although the model processes 2D images, we incorporate
3D information by alternating coronal and axial slices in a
multi-stage training strategy. As shown in Fig. 5, in the first
stage we trained with the coronal view of the FDK-based
reconstruction as inputs and the coronal CT view as target.
In the next round, the coronal prediction of the first stage was
resliced to obtain the axial view, this being the input at this
stage and the target being the CT axial view. The axial view
of the new prediction was then resliced to obtain the coronal
view again and a new training was performed.

Fig. 5. Scheme of the training strategy.

IV. RESULTS

Fig. 6 shows a good recovery of general structure and
realistic texture with the proposed reconstruction methodol-
ogy, especially in areas with well-defined in the FDK-based
reconstruction, such as the spine.
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Fig. 6. Coronal slices of: FDK-based reconstruction (left), prediction (center)
and CT (right).

Fig. 7 shows the mean of the root mean square error
(RMSE) with respect to the target CT for the six test volumes.
We can see that our proposed methodology reduces the RMSE
compared to FDK-based reconstruction in whole volume, but
greater in the slices with tissues with higher contrast, such as
spine and ribs (see coronal slices shown).

Fig. 7. Mean value of RMSE for the six test volumes along the different
coronal slices with three FDK-based reconstruction examples.

Fig. 8 show a zoom of coronal slices in Figure 6, where we
can see a blurring, and more importantly, structures that do
not exactly match those in the original CT (see white arrows).

Fig. 8. Zoomed ROIs from coronal slices in Fig. 6: FDK-based reconstruction
(left), prediction (center) and CT (right). White arrow highlights structures
wrongly.

Fig. 9 shows the predicted image after each stage. After the
first stage, we can still see artifacts in the axial view from
the FDK-based reconstruction, because the prediction is done
on the coronal view and the FDK. The second stage, working
on the axial view, these artifacts are removed, the contours
are recovered, and texture is improved. The last stage further
improves texture improves without altering shapes already
found in previous stages.

Fig. 9. Coronal (top) and axial (bottom) slices of: FDK-based reconstruction
(A), the first (B), second (C) and third (D) stages.

V. DISCUSSION

We have presented a reconstruction methodology for chest
tomosynthesis based on FDK followed by post-processing
based on deep learning. We use the transfer learning work-
flow, with U-Net architecture having a ResNet34 as encoder.
Although our network processes 2D images, we incorporate
3D information by alternating coronal and axial slices in a
multi-stage training strategy. The first stage of training uses
the coronal view because it is the one with most information
in FDK-based reconstruction. The evaluation shows a good
reconstruction, especially in areas with high contrast and well-
defined structures in the FDK-based reconstruction, such as
the spine, and a very realistic tomographic texture. However,
in the predicted images, we can find structures that do not
match exactly with the original CT (biases). Looking at the
result of the different stages, we can see that the biases
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appear in the first stage and are maintained through subsequent
stages. Future work will evaluate the combination of both
prediction of previous stage together with the original FDK-
based reconstruction at the input of the second and third stages
to minimize the propagation of bias along the stages.

In this work we use a voxel size bigger than that of the
original CTs due to computational limitations. This might be
together with the subsampling layers of our U-Net might be
responsible of the loss of spatial resolution. Future work will
try to overcome the memory limitation by distributed training
in using multiple GPUs.
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Iterative Intraoperative Digital Tomosynthesis Image
Reconstruction using a Prior as Initial Image

Fatima Saad, Robert Frysch, Tim Pfeiffer, Sylvia Saalfeld, Jessica Schulz, Jens-
Christoph Georgi, Andreas Nürnberger, Guenter Lauritsch, and Georg Rose

Abstract—The efficacy of interventional treatments highly
relies on an accurate identification of the target lesions and
the interventional tools in the guidance images. Whereas X-
ray radiography poses low doses to the patient, its weakness
is in the superposition of the different image structures in a 2D
image. Cone-beam computed tomography (CBCT) might look
ideal providing exact 3D information, however this is at the cost
of a higher radiation dose, longer imaging time, and more space
requirements in the operating room. Introducing some depth
information with relatively low dose, and requiring less space,
digital tomosynthesis (DTS) is a potential candidate for guiding
interventions. However, due to the few number of projections
and to the limited angle acquisition, DTS has poor depth
resolution. Since high quality patient-specific prior CT scans
are usually performed prior to the intervention for diagnosis
or to plan the intervention, and given that such images share a
fair amount of information with the intraoperative DTS images,
we propose in this work a prior-based iterative reconstruction
framework to improve the intraoperative DTS image quality.
The framework is based on registering the prior CT image
to an intermediate low-quality intraoperative DTS image, then
iteratively re-reconstructing the intraoperative DTS image using
the coregistered prior CT as the starting image. We acquired
prior CT and intraoperative CBCT data of a liver phantom
and simulated some intraoperative DTS projection images using
a spherical ellipse scan geometry. Our results show a great
improvement in the DTS image quality with the proposed method
and prove the importance of choosing a good starting point for
the iterative DTS reconstruction.

Index Terms—Digital tomosynthesis, iterative reconstruction,
prior information

I. INTRODUCTION

IMPOSING less space restrictions and less radiation dose
than cone-beam computed tomography (CBCT) on the one

hand, and introducing depth information to X-ray radiogra-
phy on the other hand, digital tomosynthesis (DTS) could
potentially make a leap in guiding interventions. During this
procedure, the C-arm acquires a sequence of few projections
over a limited angular range and provides a quasi 3D image.
On top of the streaking and ringing artifacts due to the low
number of projections, DTS images suffer from geometric
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distortions due to the limited angle acquisition. The resolution
in the reconstructed volume is anisotropic, more precisely,
DTS images have poor resolution in the depth direction.
For this reason, DTS has not reached yet its application in
real clinical interventions where having high quality guidance
images is crucial in order to navigate the interventional tool
(e.g. needle) to the target location or to confirm the tool-in-
lesion. In this context, we recently proposed a new C-arm-
based multi-directional spherical ellipse DTS scan trajectory
to improve the depth resolution of the standard linear DTS
[1]. In this work we investigate the further improvement of
intraoperative DTS image quality by exploiting patient-specific
prior information. Usually, prior to the surgical intervention,
a high quality patient-specific CT scan is performed for
diagnosis or for treatment planning. A key observation is
that the prior CT image and the intraoperative one share a
fair amount of anatomical information. The only deformations
between the two images are caused by patient motion, and the
positioning of the surgical instrument. Many iterative prior-
based reconstruction approaches have been proposed for CT
problems with insufficient data [2], [3]. However, the priors
have been always included in the body of the iteration whereas
the initialization has been overlooked. As we are dealing with
a highly under-determined problem with DTS reconstruction
where the nullspace is huge and only a tiny part of the image
information is measured, the choice of the starting image
is potentially crucial. Therefore, we propose in this work a
framework based on the registration of the prior CT image
to an intermediate intraoperative DTS image followed by an
iterative reconstruction of the intraoperative DTS image using
the co-registered prior as a first guess.

II. MATERIALS AND METHODS

A. Data
The Quant CT-Training Phantom from Cascination1 was

used in this work. It includes a liver with some lesions,
a spine, the ribs, and a portal vein. The prior CT volume
was acquired at 70 KVp with a Siemens SOMATOM X.cite
scanner (Siemens Healthcare GmbH, Erlangen, Germany). The
acquired image dimensions were 768 ⇥ 768 ⇥ 266 voxels
with a voxel size of 0.479mm ⇥ 0.479mm ⇥ 1mm. The
intraoperative CBCT volume was acquired using a Siemens
ARTIS Icono C-arm scanner (Siemens Healthcare GmbH,
Erlangen, Germany) at 87.5 KVp. The CBCT image dimen-
sions were 512 ⇥ 512 ⇥ 368 voxels with a voxel size of

1https://www.cascination.com/en/quant-training-phantom
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0.49mm ⇥ 0.49mm ⇥ 0.49mm. To mimic an interventional
scenario, an ablation needle was inserted in the phantom before
acquiring the intraoperative CBCT volume.

To simulate the intraoperative DTS projection images, the
CBCT volume was forward-projected according to a newly
proposed spherical ellipse scan geometry [1]. This protocol
assumes that the source and the detector are mounted on
a robotic C-arm and each moves along a spherical ellipse
orbit. Fig. 1 illustrates the spherical ellipse acquisition setup.
Mounted in opposite to the X-ray source, the detector performs
an in-plane rotation in a way its rows are kept tangent to the
scan trajectory. The detector is composed of 616⇥ 480 pixels
with a 0.616 mm pixel pitch. The source to iso-center distance
is set to 785 mm and the source to detector distance is set
to 1200 mm. This trajectory is defined by two tomographic
angles. In this work, we fixed the angles to ±15� and ±23�

and simulated 72 projection views. The system acquisition has
been implemented in the open-source Computed Tomography
Library CTL2 [4].

Fig. 1. Illustration of the spherical ellipse DTS scan trajectory.

B. Registration and Reconstruction

The proposed framework is illustrated in Fig. 2. To register
the prior CT volume to the current intraoperative anatomy,
an intermediate intraoperative DTS image is reconstructed
from the intraoperative DTS projections. An iterative alge-
braic reconstruction technique (ART) with an ordered-subsets
scheme [5] is used. The relaxation parameter is estimated as
in [6]. At this stage the initial image voxels are set to zero.
It was shown in [7] that the complexity of DTS resolution
characteristics limits the accuracy of DTS-CT registration and
a DTS-DTS registration is more precise. Therefore, from the
prior CT volume we generated a set of reference digitally re-
constructed radiographs (DRRs) using the same intraoperative
DTS scan geometry described above and we reconstructed
a reference DTS image. At this step the prior CT image

2code available at: https://gitlab.com/tpfeiffe/ctl/-/tree/master/examples/
TomosynthesisEllipticalTrajectory

Prior CT image DRRs
Reference DTS

image

Registration
Intermediate

intraoperative
DTS image

Intraoperative
DTS

projections

Coregistered
prior CT image

Reconstruction

Improved
intraoperative

DTS image

Forwardproject Reconstruct

Reconstruct

Apply transform to Prior CT

Initialize

Fig. 2. Flowchart of the proposed reconstruction method.

was downsampled to 512 ⇥ 512 ⇥ 177 voxels with a voxel
size of 0.7187mm ⇥ 0.7187mm ⇥ 1.5mm. Here it worth
be noted that the reconstruction of the reference DTS image
can be performed before the intervention as soon as the prior
CT image is available. We performed the registration of the
reference DTS image to the intraoperative DTS image using a
rigid registration employing the Mattes mutual information as
a similarity measure. We used the registration toolbox ANTsPy
[8]. The registration transform was then applied to the prior CT
image. The intraoperative DTS projections are iteratively re-
reconstructed using the co-registered prior CT as a first guess
and including only a positivity constraint.

III. RESULTS

The registration results are shown in Fig. 3. One axial slice
and one coronal slice where the needle tip and a liver lesion
exist are shown in the upper row and the lower row respec-
tively. Fig. 3(a) and 3(b) illustrate the prior CT volume and the
intermediate intraoperative DTS volume (zero-initialized ART)
respectively. The co-registered prior CT volume is shown in
Fig. 3(c). For reference the same slice of the intraoperative
CBCT volume is shown in Fig. 3(d). Despite that we cannot
examine the difference image due to the difference in intensity
values between the CT and the CBCT images, it is evident
from the visual inspection that the prior CT volume is well
registered to the intraoperative volume. The liver, the spine,
and the lesions seem accurately aligned in (c) and (d).

Fig. 4 illustrates the reconstruction results. For comparison
the same axial slice is shown in the upper row and the same
coronal slice is shown in the lower row. Fig. 4(a) shows
the DTS reconstruction with zero-initialized ART, without
including the prior. Fig. 4(b) illustrates the reconstructed image
with our proposed method using the co-registered prior CT
as a starting image. For reference the intraoperative CBCT
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Fig. 3. Registration results. (a) Prior CT, (b) intermediate intraoperative tomosynthesis, (c) coregistered prior CT, and (d) intraoperative CBCT. Upper row:
one axial slice. Lower row: one coronal slice. Same slices are shown in (b), (c), and (d). The display window range is [-1000HU, 700HU].

image is shown in Fig. 4(c). As expected, without including
the prior, DTS exhibits poor resolution in the depth direction,
the lesion is blurred and barely visible and the spine as well.
A considerable improvement in image quality is observed with
the prior-initialized reconstruction. It looks much similar to the
intraoperative CBCT. These observations are further validated
in the line profiles plotted in Fig. 5 corresponding to the
vertical (upper graph) and the horizontal (lower graph) lines
highlighted in yellow in Fig. 4(c).

IV. DISCUSSION AND CONCLUSION

In this work we proposed a prior-based iterative reconstruc-
tion framework to improve intraoperative digital tomosynthesis
(DTS) reconstruction. We considered a high-quality prior CT
volume is available prior to the intervention. We simulated
intraoperative DTS projection images using a spherical ellipse
DTS geometry [1]. The proposed framework is composed
of two steps. First, the registration of the prior CT to the
current anatomy, at this stage a reference prior DTS image
simulated from the prior CT and an intermediate low-quality
reconstructed intraoperative DTS image are co-registered, the
registration transform is then applied to the prior CT. Second,
an iterative ART reconstruction using the co-registered prior
CT as a first guess is performed to further improve the
intraoperative DTS image quality. The reference prior DTS
can be reconstructed beforehand prior to the intervention as
soon as the prior CT is available. While prior information have
been incorporated in the iterative process itself in previous
works, the initialization was mostly overlooked. In this work,
we showed how important is the starting point of the iterative
reconstruction in such a highly under-determined problem. A
considerable improvement in the different structures visibility

has been achieved. A still open question is how sensible is
the reconstruction to insufficiently accurate registration. By
the design of the method, information measured from the
tomosynthesis trajectory are included in the prior-initialized
ART and all missing information are inherited from the co-
registered prior. In case of inaccuracies in the registration, this
may lead to wrong conclusions while interpreting the images.
Therefore, clinical experts will be included in the evaluation
process in the future. In the current work, we only considered a
rigid motion between the prior and intraoperative states, this is
probably valid for head interventions, however in many other
interventions, such as in the lungs, the abdomen, and the liver,
theses organs are prone to elastic motions. Considering such
complex motions is the subject of current works. Moreover,
how low can we go with the angular range and the number of
projections will be further investigated.
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Learning CT Scatter Estimation Without Labeled
Data – A Feasibility Study

Joscha Maier, Luca Jordan, Elias Eulig, Fabian Jäger, Stefan Sawall, Michael Knaup, and Marc Kachelrieß

Abstract—Since x-ray scattering is a major cause

of artifacts, its correction is a crucial step in almost

any CT application. Most existing approaches, how-

ever, are based on complex theoretical models that

need to be tailored to that particular application. To

perform scatter estimation in absence of such models,

we propose the unsupervised deep scatter estimation

(uDSE). Here, uDSE combines a scatter estimation

network that operates in projection domain with a

scatter correction layer and CT reconstruction layer.

In that way scatter estimation can be trained using

an unsupervised Wassersten GAN (WGAN) setup in

which the parameters of the scatter estimation network

are optimized such that the resulting scatter corrected

reconstructions cannot be distinguished from samples

of a true artifact-free reference set. To demonstrate

the feasibility of the proposed approach, uDSE is

evaluated for simulated CBCT scans. Applied to the

corresponding test data, uDSE is able to remove most

of the present scatter artifacts and yields similar CT

value accuracy (mean error of 27.9 HU vs. 24.7 HU)

as a state-of-the-art supervised scatter estimation ap-

proach. Thus, uDSE may be used in the future to learn

scatter estimation in cases where labels are not avail-

able or cannot be generated with su�cient accuracy.

Index Terms—CT, scatter estimation, deep learning,

unsupervised learning.

I. Introduction

THE contribution of scattered x-rays to the acquired

projection data leads to a violation of CT recon-

struction criteria, and thus, to the introduction of CT

artifacts. In particular this holds true for cone-beam CT

(CBCT), where scatter-to-primary ratios may easily be in

the order of 1 and above. Therefore, scatter correction is

a crucial preprocessing step to achieve diagnostic image

quality. Typically, existing approaches implement such a

correction by deriving an estimate of the present scatter

distribution and by subtracting it subsequently from the

acquired raw data. Here, the scatter distribution can

either be estimated using dedicated hardware such as

beam blockers or primary modulation grids [1]–[5],or using

software-based approaches. The latter rely on physical,

empirical, or consistency-based models to predict x-ray

scattering [6]–[13],or more recently, on neural networks

that make use of such models during training, e.g. by

being trained to reproduce the output of Monte Carlo
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simulations [14]–[18]. While these approaches have proven

great potential in terms of accuracy and computation

time, their performance highly depends on the quality and

the availability of labeled data. Since several applications

may lack such data, this study proposes the unsupervised

deep scatter estimation (uDSE) which is able to overcome

this limitation. Instead of using a supervised setup, uDSE

relies on a Wasserstein GAN (WGAN) setup that can be

trained without labeled data or prior knowledge about the

CT scanner’s x-ray and scatter properties [19]. Here we

demonstrate the feasibility of the proposed approach using

simulated CBCT data and compare the results against

DSE, our supervised scatter estimation approach [14], [15].

II. Material and Methods
A. Deep Scatter Estimation (DSE)

The basic idea of the DSE approach is illustrated in

figure 1. Here, DSE uses a U-net-like architecture to

predict scatter as a function of the acquired projection

data. To learn the corresponding mapping, DSE is trained

to reproduce Monte Carlo simulations, i.e. the U-net’s

weights are determined by minimizing the following loss

function:

LDSE(◊) =

Bÿ

n

----
DSE◊(In) ≠ Sn

Sn

---- , (1)

where ◊ denotes the parameter vector, n the sample

number within a batch of size B, In the flat field-corrected

intensities, and Sn the Monte Carlo scatter estimate. It

has to be noted that the first layer of the DSE network

performs a "pep"-transform

Tpep : I æ ≠I · ln(I), (2)

to be consistent with our DSE publication [14].

B. Unsupervised Deep Scatter Estimation (uDSE)
The proposed uDSE approach, shown in figure 1, ex-

tends the concept of DSE to cases where labeled data

are not available. To do so, it is composed of a generator

network and a critic network. Here, the generator combines

the DSE network with a scatter correction layer and a

Feldkamp reconstruction layer, such that it is able to map

acquired intensities I of a CT scan to scatter-corrected CT

reconstructions. The critic network, in turn, is designed

to distinguish between the generator’s output and true

scatter-free CT reconstructions. Thus, letting the critic

network act as loss function for the generator allows to
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Log transform
pcorr = -log(Icorr)
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fcorr = X-1 pcorr
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Clinical CT images ("real”)

“Fake” images

Discriminator / critic network
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Fig. 1. Schematic of the DSE and the proposed uDSE approach. DSE uses a U-net-like architecture to predict scatter as a function of the
acquired projection data. In a supervised setup DSE is trained to reproduce a ground truth Monte Carlos scatter distribution. uDSE, in
contrast, uses a Wasserstein GAN (WGAN) setup. Here, a scatter correction followed by a CT reconstruction is performed. Subsequently,
the correction is evaluated by a critic network that is trained simultaneously to recognize scatter artifact-free images. By optimizing the
weights of the scatter estimation network to fool the critic network, scatter estimation can be learned without labels.

learn CT scatter estimation without labeled or paired

data, respectively.

Here, the corresponding optimization is performed using

a WGAN setup in which the generator netork G◊g (I) and

the critic network C◊c(f) are optimized in an alternating

manner according to the following loss functions:

Lcritic(◊c) =

Bÿ

n

C◊c(G◊g (In)) ≠ C◊c(freal, n), (3)

Lgen(◊g) = ≠
Bÿ

n

C◊c(G◊g (In)), (4)

where ◊c and ◊g denote the parameter vectors of the gener-

ator and the critic network, n is the sample number within

a batch of size B, and freal corresponds to a sample from

a set of almost scatter-free clinical CT reconstructions.

C. Datasets
In the present study, DSE as well as uDSE were trained

and tested on simulated CBCT data. Therefore, clinical

CT reconstructions of 65 patients were used as prior.

Based on the corresponding voxel volumes fprior, CBCT

scans with 360 views and an angular coverage of 360
¶

were simulated at five di�erent z-positions within the ab-

domen region using a tube voltage of 120 kV, a source-to-

isocenter distance of 700 mm, a source-to-detector distance

of 1100 mm, and a 1024◊768 flat detector with an isotropic

pixel spacing of 0.39 mm. Furthermore, a shifted detector

was used to increase the field of measurement to about

380 mm. Using this setup, three datasets were generated

using di�erent patients: one scatter-corrupted dataset (30

patients) from which input data for the generator network

were sampled during training, one scatter-free dataset

(30 patients) that was used to provide ideal reference

CT reconstructions for the critic network, and a scatter-

corrupted dataset (5 remaining patients) for testing. In

any case, the scatter-corrupted data were simulated as

I = Ip + SMC, where Ip corresponds to a polychromatic

forward projection of the prior volume and SMC is a scatter

distribution that was generated using our in-house Monte

Carlo simulation. The ideal reference data, on the other

hand, correspond to a CBCT reconstruction of only the

primary intensities, i.e. freal = X≠1
(≠ ln(Ip)), with X≠1

being the CBCT reconstruction operator. It has to be

noted that freal is not sampled directly from the set of

clinical CT reconstructions, but is generated via forward

and backprojection, to have the same spatial resolution

and the same field of measurement as the reconstructions

provided by the generator network.

D. Training and Evaluation
The uDSE approach was trained using the datasets

described in section II-C. However, to avoid memory issues

as well as to increase the computational performance,

a 2-fold angular downsampling to 180 views and an 8-

fold spatial downsampling to a detector size of 128 ◊ 96

was performed in advance. This downsampling can be
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Fig. 2. DSE and uDSE scatter estimates for an exemplary shifted detector projection of the test dataset (top row), as well as the corresponding
error with respect to the ground truth Monte Carlo scatter distribution (bottom row).

justified by the fact that scatter distributions are known

to be of low frequency. Therefore, we only expect a minor

degradation of accuracy compared to a training that uses

the full size projection data. Given the small detector size,

the internal reconstruction operations were also performed

on a low resolution grid with 144 ◊ 144 ◊ 48 voxels and an

isotropic spacing of 2.7 mm.

The corresponding optimization was implemented ac-

cording to section II-B using the Tensorflow framework.

Here, all hyperparameters except for the batch size (this

study: B = 16) and the number of iterations (this study:

Nitr = 5000) were chosen following to the original WGAN

publication, i.e. five updates of the critic network are

followed by one update of the generator network using an

RMSProp optimizer with a learning rate of 0.00005 and a

weight clipping to [≠0.01, 0.01] in the critic network.

Finally, uDSE was applied to the test data and com-

pared against DSE which was trained in a supervised set-

ting using the Monte Carlo scatter distributions a labels.

In contrast to the training data, the scatter correction was

performed on the full size projection data. Therefore, all

scatter predictions were upsampled to the original detector

size of 1024 ◊ 768 pixels prior to scatter correction.

III. Results
To estimate scatter, DSE and uDSE were trained as

described in section II-D and evaluated for the five patients

of the test dataset. Exemplary scatter predictions are

shown in figure 2. Here, the DSE approach yields scatter

estimates that are almost equal to the Monte Carlo ground

truth while uDSE shows slightly higher deviations. This

can be attributed to the fact the uDSE loss function is

evaluated in image domain. Therefore, the scatter estimate

is less reliable in regions where it has a low impact on

image quality, i.e. in regions with low scatter-to-primary

ratio. In particular this explains the poor accuracy of

uDSE scatter estimates in air regions without patient

intersection.

A quantitative evaluation of the scatter estimates in

terms of the mean absolute percentage error with respect

to the ground truth yields similar trends. Here, the average

error of DSE for all 9000 projections of the test dataset is

3.5 % while the average error of uDSE is 9.8 %.

CT reconstructions with and without scatter correction

are shown in figure 3. Here, DSE as well as uDSE are

able to remove most of the artifacts that are present in

the uncorrected reconstruction and provide CT images

that are almost equal to the scatter-free ground truth.

Quantitatively, the application of the scatter correction

improves the mean absolute error of the CT values from

160.7 HU (no correction) to 24.7 HU (DSE) or 27.9 HU

(uDSE), respectively.

IV. Discussion and Conclusion
This study introduces a novel approach to learn scatter

estimation without labeled data. To do so, the proposed

uDSE makes use of a WGAN setup in which the generator

network is optimized such that its output, i.e. scatter

corrected reconstructions, cannot be distinguished from

samples of an artifact-free reference set. Here, we demon-

strate the feasibility of uDSE using CBCT simulations

as input and clinical CT reconstructions as reference.

However, it has to be noted that uDSE is not restricted

to this particular choice but can be trained with any

tomographic input and any scatter-free reference as long

as both distributions are su�ciently equal after scatter

correction. The fact that this condition is perfectly met

here, i.e. input and reference distributions only di�er by

scatter, can be considered as a limitation of this study.

Practically, both distribution may additionally di�er by

the amount of beam hardening, the dynamic range, or

the contrast media distribution for instance. Investigating

uDSE’s performance in such cases is subject to further

research and may require the incorporation of additional

constraints and correction layers. In the current setup,

however, uDSE is able to remove most of the present

scatter artifacts and yields similar CT value accuracy

(mean error of 27.9 HU vs. 24.7 HU) as a state-of-the-

art supervised scatter estimation approach. Thus, uDSE
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Fig. 3. CT reconstruction without and with DSE and uDSE scatter correction (top row), as well as di�erence images to the scatter free
ground truth (bottom row).

has the potential to extend the concept of neural network-

based scatter estimation and correction to scenarios where

labels are not available or cannot be generated with

su�cient accuracy.
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Implementations of Statistical Reconstruction
Algorithm for CT Scanners with Flying Focal Spot

Robert Cierniak and Jarosław Bilski and Piotr Pluta

Abstract—This paper presents some practical realizations of
image reconstruction methods for spiral cone-beam tomography
scanners in which an X-ray tube with a flying focal spot is
used. These methods are related to the original formulated
3D statistical model-based iterative reconstruction approach for
tomography with flying focal spot. The conception proposed
here is based on principles of a statistical model-based iterative
reconstruction (MBIR) methodology, where the reconstruction
problem is formulated as a shift-invariant system (a continuous-
to-continuous data model). We adopted nutating reconstruction-
based approaches, i.e. the advanced single slice rebinning method-
ology (usually applied in CT scanners with X-ray tubes with
a flying focal spot), and a procedure compliant with the FDK
scheme. We showed that our methods significantly improve the
quality of obtained images compared to the traditional FBP
algorithms. Consequently, it can allow for a reduction in the
x-ray dose absorbed by a patient. Additionally, we show that
our approach can be competitive in terms of the time of cal-
culations, especially if we consider commercially used statistical
reconstruction systems.

Index Terms—spiral computed tomography flying focal spot,
statistical iterative reconstruction algorithm.

I. INTRODUCTION

DESPITE the long history of medical computed tomog-
raphy, the search for new designs of CT scanners still

continues, and at the beginning of the XXIth century, one such
new design was the spiral scanner with an X-ray tube with
a flying focal spot [1]. The intention of this new technique
was to increase the sampling density of the integral lines in
the reconstruction planes, and the density of simultaneously
acquired slices in the longitudinal direction. Of course, this
technique is realized in multidetector row CT (MDCT) scan-
ners but there it allows for view-by-view deflections of the
focal spot in the rotational ↵-direction (↵FFS) and/or in the
longitudinal z-direction (zFFS). Thanks to this, it is possible
to improve the quality of the reconstructed images, mainly
throughout decreasing the influence of the aliasing effect in
the reconstruction plane and in the z-direction, and addition-
ally, causing a reduction of the so-called windmill artifacts.
Obviously, implementation of the FFS entailed the necessity
of formulating new reconstruction methods that allow for the
use of measurements obtained from scanners equipped with
this technique. In practice, manufacturers decided primarily
to modify the adaptive multiple plane reconstruction (AMPR)
method for this purpose. The AMPR conception belongs to

The project financed under the program of the Polish Minister of Science
and Higher Education under the name ”Regional Initiative of Excellence”
in the years 2019 - 2022 project number 020/RID/2018/19 the amount of
financing 12,000,000 PLN

Czestochowa University of Technology, Department of Intelligent Computer
Systems, Armii Krajowej 36, Czestochowa, Poland, 42-200.

the class of so-called nutating reconstruction methods, and is
a development of the advanced single slice rebinning (ASSR)
algorithm (for details see e.g. [?]). Generally, nutating methods
have several serious drawbacks, among others, there is a
problem with obtaining equi-spaced resolution of the slices
in z-direction, due to the constant change in the position
of successive reconstruction planes. Another big problem is
its limited ability to suppress noise, caused by the linear
form of the filters that are used during signal processing in
those methods. This means that it cannot be considered for
CT systems that aim to reduce the dose of X-ray radiation
absorbed by patients during examinations. Recent research
in the area of X-ray computed tomography, including our
own investigations, is mostly focused on this challenge, be-
cause of the extremely harmful effect that CT examinations
have on human health. On the other hand, nowadays, the
most interesting research directions in the area of CT are
statistical reconstruction approaches, especially those belong-
ing to the model-based iterative reconstruction (MBIR) class
of methods [3], and some commercial solutions have been
developed, which conduct the reconstruction process in an
iterative way, which aims to suppress noise in the obtained
images. Unfortunately, the MBIR methods used commercially
(the iterative coordinate descent (ICD) algorithm described
comprehensively in [4]) have some serious drawbacks, namely,
the calculation complexity of the problem is approximately
proportional to I4, where I is the image resolution, and the
iterative reconstruction procedure based on this conception
necessitates simultaneous calculations for all the voxels in the
range of the reconstructed 3D image. Moreover, the size of
the forward model matrix A is extremely large and it has to
be calculated online. The reconstruction problem used there
is also extremely ill-conditioned [5]. The methodology men-
tioned above is classified as a method based on the discrete-to
discrete (D-D) data model. All those drawbacks can be reduced
by using an approach that is formulated based on a continuous-
to-continuous (C-C) data model. It should be underlined, that
our conception has some significant advantages over that based
on the D-D model. First of all, in our method, the forward
model is formulated as a shift invariant system, which allows
for the use of FFT algorithms in the most computationally de-
manding elements of the reconstruction algorithm (realization
of the 2D convolutions in the frequency domain). Furthermore,
we can pre-calculate the model matrix (coefficients), i.e. we
establish it before the algorithm is started. Additionally, the
reconstruction process can be carried out in only one plane in
2D space, which greatly simplifies the reconstruction problem,
and it is possible to obtain every slice of the body separately.
Our approach also outperforms the D-D method already at the
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level of problem formulation, regarding the better condition
number [5]. Finally, the presented here concept using the
statistical reconstruction approach developed by us, can be in
easy way used for spiral CT scanners with a flying focal spot
technique.

II. RECONSTRUCTION ALGORITHMS

Our reconstruction approach is based on the well-known
maximum-likelihood (ML) estimation, where an optimization
formula is consistent with the C-C data model, as follows:

µmin = argmin
µ

0

B@
Z

x

Z

y

0

@
Z

x̄

Z

ȳ

µ (x̄, ȳ) · h�x,�ydx̄dȳ � µ̃ (x, y)

1

A
2

dxdy

1

CA ,

(1)
where µ̃ (x, y) is an image obtained by way of a back-
projection operation (without filtration), and the coefficients
h�i,�j can be precalculated according to the following rela-
tion:

h�x,�y =

2⇡Z

0

int (�x cos↵+�y sin↵) d↵, (2)

and int (�s) is a linear interpolation function.
The presence of a shift-invariant system in the optimization

problem (1) implies that this system is much better conditioned
than the least squares problems present in the referential
approach [5].

According to the formulated by us iterative approach to the
reconstruction problem, decribed by Eqs (1)-(2), it is possible
to show a practical model-based statistical method of image
reconstruction, as follows:

µmin = argmin
µ
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where I is a resolution of the reconstructed image, µ̃ (i, j) is
an image obtained by way of a back-projection operation, and
coefficients h�i,�j are determined according to the following
formula:

h�i,�j =
1

�s2
�↵

 �1X

 =0

int (�i cos �↵ +�j sin �↵) ,

(4)
wherein int (�s) is an interpolation function used in the back-
projection operation, and �s = Rf ⇤ tan�� .

Figure 1 depicts this general algorithm after discretization
and implementation of FFT which significantly accelerates the
calculations.

Between all approaches to image reconstruction problem
using projections obtained in the spiral scanner with flying
focal spot there is only one difference: determination of the

Fig. 1. General statistical reconstruction algorithm for spiral cone-beam
scanner with flying focal spot.

image obtained after back-projection operation. Up to now,
we have formulated the following approaches to determine
the image µ̃ (i, j): method which uses spiral cone-beam pro-
jections directly, similar to FDK-type algorithms [6], methods
belonging to the class of nutating reconstruction algorithms
(based on the advanced single slice rebinning) methodology,
using projections from different focal spots separately [7], and
together (unpublished).

III. EXPERIMENTAL RESULTS

All our experiments were carried out using projections
obtained from a Somatom Definition AS+ (helical mode)
scanner with the following parameters: reference tube potential
120kVp and quality reference effective 200mAs. The geo-
metrical parameters of this scanner are as follows: Rfd =
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Fig. 2. The movement of focal spot with flying spot technique used in our
experiments.

TABLE I
COMBINATION OF ↵-DIRECTION AND z-DIRECTION DEVIATIONS

Parameter/Focal spot Rfs ↵ ż
A 0 �↵A 0
B �RB �↵B �żB

1085.6mm, Rf = 595mm, number of views per rotation
 = 1152, number of pixels in detector panel 736, detector
dimensions 1.09mm⇥1.28mm. During experiments, we used
the spiral CT scanner with only two flying spot positions, as
shown in Fig. 2.

The focus position A is involved with movement in ↵-
direction, and the focus position B corresponds to the focal
movement both in ↵-direction and in z direction. The devia-
tions of the geometrical parameters are summarized in Table
I.

The size of the reconstructed image was fixed at 512⇥ 512
pixels. A discrete representation of the matrix h�x,�y was
established in a computational way before the reconstruction
process was started. These coefficients were fixed (transformed
into the frequency domain) and used for the whole iterative
reconstruction procedure. A prepared result of an FBP recon-
struction algorithm was chosen as the starting point of the
iterative reconstruction procedure (using projections obtained
from the focal spot position A).

A crucial parameter for the practical implementation of a
reconstruction method is the actual computation time of the
reconstruction procedure. We have implemented our iterative
reconstruction procedure using some hardware configurations,
namely: a computer with 10 cores, i.e. with an Intel i9-
7900X BOX/3800MHz processor (our iterative procedure was
implemented at assembler level), using different GPUs (see
III). In table II, we show time result for application which is
working only on CPU which is develop in Assembler (special
vector registers AVX 512 used). In turn, in table III, we
present time result for application which is working only on
GPU accelerators. There are compared those accelerators. It
is worth noting that it is very stable time, because deviation is
extremely small and that application is very susceptible to par-
allelisation, because time for one iteration it is getting smaller

A)

B)

Fig. 3. Obtained images (a case with relative small pathological change in
the liver) using quarter-dose projections with application of: the standard FDK
algorithm (focal spot position A) (A); the statistical method presented in this
paper (FDK scheme with both focal spot positions) (B).

with on more CUDA Cores assembled in GPU Accelerator.
According to an assessment of the quality of the obtained

images by a radiologist, 7000 iterations are enough to provide
an acceptable image for medical purposes. One can compare
the results obtained by assessing the views of the reconstructed
images in Figure 3, where where the quarter-dose projections
were used.

IV. CONCLUSION

In this paper, it has been shown that our statistical approach,
which was originally formulated for CT scanner with parallel
beam geometry, can be adapted for helical scanner with flying
focal spot technique. We have presented a fully feasible
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TABLE II
TIMES RESULTS OF RECONSTRUCTION IMAGE ON MULTI THREADING CPU: INTEL I9-7900X (10-CORES, 20-TREADS). AN APPLICATION CREATED IN

THE ASSEMBLER PROGRAMMING LANGUAGE WITH MULTITHREADING

Threads: 4 8 10 16 20

Avg. time 30000[ms] 63 724,36 33 571,42 29 836,34 30 532,14 27 905,62

Avg. time 20000[ms] 42 482,91 22 380,95 19 890,89 20 354,76 18 603,75

Avg. time 10000[ms]: 21 241,45 11 190,47 9 945,45 10 177,38 9 301,87

Time 1 iteration [ms]: 2,124145 1,119047 0,994545 1,017738 0,930187

HT effectiveness: - - - 0,909468 0,935290

Median for 30000: 63 694 33 542,5 29 800 30 566 27 854

Deviation std.: 135,69 117,32 217,58 193,88 391,76

TABLE III
TIMES RESULTS OF RECONSTRUCTION IMAGE ON DIFFERENT MODELS GPU ACCELERATOR. AN APPLICATION CREATED IN THE CUDA PROGRAMMING

LANGUAGE

GPU: MSI GTX 1050 ASUS GTX 1080 Ti nVidia Titan V

Avg. time 30000[ms] 2 562 175,10 49 699,71 28 858,40

Avg. time 20000[ms] 170 845,28 33 132,52 19 224,48

Avg. time 10000[ms]: 85 467,24 16 593,00 9 616,75

Time 1 iteration [ms]: 8,540583 1,656657 0,961947

Median for 30000: 256 229,55 49 703,68 28 861,24

Deviation std.: 0,160806 0,310476 0,010239

statistical reconstruction for cone-beam CT. Comprehensive
experiments have been performed, which prove that our re-
construction method is relatively fast (thanks to the use of
FFT algorithms) and gives satisfactory results with suppressed
noise. It should be noted that approximately the same results
were achieved for both hardware implementations: the iterative
reconstruction procedure takes less than 7s, mainly thanks
to the use of an FFT algorithm in the iterative reconstruc-
tion procedure and to the use of the efficient programming
techniques. These are rewarding results regarding possibilities
of the commercial Veo system (referential MBIR technique),
where reconstruction times range between 10 to 90 minutes
depending on the number of reconstructed slices [8]. It means
an unacceptable delay between data acquisition and availabil-
ity for interpretation for emergent indications. Additionally, all
formulated by us reconstruction algorithms are very easy to
implement and open to use multisource techniques regardless
the kind of the focal spot movement (both z and angle flying).
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Multiple Linear Detector Off-Line Calibration
Sasha Gasquet1,2, Laurent Desbat1, and Pierre-Yves Solane2

Abstract—Imaging systems require to be calibrated. The ge-

ometric calibration consists in estimating several parameters

describing the projection geometry. Just like in computer vision

for cameras, intrinsic parameters characterize the internal pa-

rameters of x-ray projection system. The extrinsic parameters

define the orientation and position of the acquisition system.

In x-ray computed tomography (CT), the acquisition systems

are generally composed of a detector and a x-ray source. The

object to be reconstructed lies in-between. A perfect knowledge

of the calibration parameters is needed for the reconstruction

algorithm to reduce artefacts. In this paper, we focus on off-

line calibration methods for 1D linear x-ray detector systems.

We first introduce a calibration method for systems composed

of a single linear detector. This method solves the problem of

calibration in two steps using calibration objects based on four

co-planar lines. Moreover, we generalize the single linear detector

geometric calibration method to a multi-linear detector system.

We compare four different numerical models and methods. Three

are based on non-linear equation systems. Finally, we propose

an adaptative calibration object.

Index Terms—Calibration, linear detector, multi-linear detec-

tors, computed tomography

I. INTRODUCTION

A
high accuracy geometric calibration of the acquisition

system is required to perform the 3D reconstruction of
an object from its projections. The algorithms rely on the
perfect knowledge of the intrinsic and extrinsic parameters of
the system. In x-ray cone-beam CT (CBCT), these parameters
describe the relation between a 3D point and its projection
point on the detector image plane. Therefore, inaccurate esti-
mations will lead to a poor reconstruction.
Off-line calibration methods of systems using 2D detector
are well-known in the computer vision literature [1]. Many
methods are based on the data acquired using a perfectly
known geometrical object called the calibration object. In
computer vision, a well-known calibration object is the Tsai
grid [2]. In x-ray CBCT, calibration methods are adapted
from computer vision. Calibration objects, well suited to the
circular CB geometry, composed of several balls of high
density material, have been designed. The projections of the
balls form an ellipse from which the calibration parameters
can be estimated [3] [4] [5].
Many computer vision methods are based on a pinhole camera
model. The model relates a 3D point (X,Y, Z) lying in the
scene to a 2D point (u, v) on the detector. The intrinsic
parameters ↵u = kuf , ↵v = kvf , u0 and v0 are contained
in the calibration matrix K2D 2 R3⇥4 where f is the focal

1Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP,
TIMC, 38000 Grenoble, France

2TIAMA, 215 chemin du Grand Revoyet, F-69230 Saint-Genis-Laval,
France

Contact : s.gasquet@tiama.com

distance, ku and kv are the densities of pixels along the image
axes u and v, respectively, and (u0, v0) is the principal point
on the detector in the image coordinates.

K2D =

2

4
↵u 0 u0 0
0 ↵v v0 0
0 0 1 0

3

5 (1)

We define the rotation matrix R 2 R3⇥3 and the translation
vector t 2 R3⇥1 representing the orientation and position of
the camera. Therefore, the pinhole camera model is defined in
the Eq. (2). The parameter s is a scale factor.

2

4
su
sv
s

3

5 = K2D


R t

0
T 1

�
2

664

X
Y
Z
1

3

775 (2)

Geometric calibration is the identification of K2D, R and t.
In computer vision, K2D, R and t are often estimated from
sufficient projections (u, v) of 3D world points (X,Y, Z)
using (2). However, these model and methods must be adapted
to calibrate a linear detector. A calibration object composed
of lines is more suitable to linear cameras or detectors [6].
Horaud et al. proposed a two-step calibration method based
on four co-planar lines calibration objects. The adaptation
of this method to a x-ray system with a linear detector is
straight forward as both systems can be described with the
same geometric pinhole model.
In this paper, we adapt and generalize the Horaud et al.
computer vision calibration method for linear camera to a
multiple linear detector x-ray system. We propose a calibration
object with a minimal number of opaque lines. A total of
four different methods are proposed. In addition, we present
a calibration object which can be adapted to different con-
figurations of detectors. Finally, we show the performances
of the proposed methods and calibration object in numerical
simulations.

II. THEORY

A. Geometry
The system is composed of nD linear detectors, denoted

Dl, l = 1, . . . , nD, and an unique x-ray source denoted S. We
denote (O, x, y, z) the world coordinate system centred at the
origin O. An illustration of such a system is given in the Fig.
1. Furthermore, we introduce the detector coordinate system
associated to the lth detector (Ol, ul, vl,wl) where vl is the
image axis, wl is the axis perpendicular to vl pointing towards
the source and ul = vl ⇥ wl. The origin of the system is the
point Ol which is the orthogonal projection of the source S
on the detector Dl. The real vl is the coordinate of Ol along
the linear detector, along vl, relative to the pixel 0 of Dl.
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Fig. 1. A two linear detector system.

B. Single detector calibration
We start by introducing the single linear detector system

calibration method derived from Horaud et al [6].
1) Pinhole linear camera model: Let’s consider a point

(X,Y, Z) expressed in the world coordinates system and its
projection v on the linear detector D. To be seen, the point
has to belong to the viewing plane ⇧ which is defined in the
Eq. (3) using three real parameters p, q and r.

X = pY + qZ + r (3)

Moreover, we adjust the pinhole camera model presented in
the Eq. (2) to the system using a 1D detector. The rotation
matrix R 2 R3⇥3 and the translation vector t 2 R3⇥1

are representing the rigid transformation from the world to
the source coordinates. The calibration matrix K2D 2 R3⇥4

defined in the Eq. (1) becomes K1D 2 R2⇥4.

K1D =


0 ↵v v0 0
0 0 1 0

�
(4)

The pinhole linear camera model is given by:


sv
s

�
= K1D


R t

0
T 1

�
2

664

X
Y
Z
1

3

775 (5)

Within the plane ⇧, i.e. using Eq. (3), we can rewrite the
Eq. (5) such that the calibration problem is reduced to the
estimation of five real parameters n1, n2, n3, n4, n5 from :

(n1 � n4v)Y + (n2 � n5v)Z + n3 � v = 0 (6)

and the three parameters p, q, r from Eq. (3).
2) Calibration object: The calibration object is made of

four co-planar lines. Three of them are parallel and the last
one is oblique. For example, we can define these lines within
the plane Z = 0 by the following equations.

(L1) Y = 0

(L2) Y = ⇠1

(L3) Y = ⇠2

(L4) Y = ↵X + �

(7)

The intersections of these lines with the plane ⇧ and their
projections on D are used to solve the calibration problem. A

key idea introduced by Horaud et al is to use the intersections
of (L1), (L2) and (L3) with the plane ⇧ and their projections
on D to estimate the intersection point of (L4) and ⇧ using
a projective invariant : the cross-ratio [1]. Therefore, by
translating this object several times along the y and/or z axes,
we can acquire enough data to solve the calibration problem.

3) Calibration problem: We denote {Y p
i , Z

p
i , v

p
i } and�

Xo
j , Y

o
j , Z

o
j

 
the sets of known data related to the parallel

and oblique lines, respectively, with i = 1, . . . , nP and
j = 1, . . . , nO, where nP � 5 and nO � 3 are the numbers
of parallel and oblique lines, respectively. In Fig. 2 we show
a calibration object containing the minimal number of eight
calibration lines. Using (6) and the parallels lines set of data,
we can estimate the parameters n1, n2, n3, n4, n5 by solving
a system of nP equations in the least square sense. Likewise,
we estimate the viewing plane parameters p, q, r by solving
a system of nO equations based on the Eq. (3).

4) Calibration parameters estimation: The intrinsic and
extrinsic parameters can easily be extracted from n1, n2, n3,
n4 and n5 using p, q and r (see [6]). Then, the source position
(XS , YS , ZS) can be estimated by solving the linear system (8)
where v⇤ and v⇧ are two different detector pixels. Indeed, the
source belongs to all the backprojection lines and the viewing
plane ⇧.
8
<

:

(n1 � n4v⇤)YS + (n2 � n5v⇤)ZS + n3 � v⇤ = 0
(n1 � n4v⇧)YS + (n2 � n5v⇧)ZS + n3 � v⇧ = 0

�XS + pYS + qZS + r = 0
(8)

C. Multi-detector calibration

The first obvious idea to calibrate a multiple linear detector
system would be to use the previous method on each detector.
However, all subsystems share the same source. In this section,
we present four different methods exploiting this property.
In the following, as in section II-A, the index l refers to the
detector Dl, l = 1, . . . , nD.

1) Method 1 (M1): We use the previous method on each
subsystem to calibrate the system. We then agregate the
equations (8) associated to each detector Dl, l = 1, . . . , nD for
estimating an unique source position. The agregated system of
equations (9) is composed of 3nD equations and can be easily
solved by least squares.
8
<

:

(nl,1 � nl,4v⇤l )YS + (nl,2 � nl,5v⇤l )ZS = v⇤l � nl,3

(nl,1 � nl,4v⇧l )YS + (nl,2 � nl,5v⇧l )ZS = v⇧l � nl,3

�XS + plYS + qlZS = �rl
(9)

2) Method 2 (M2): From the combination of the equations
(3) and (9), we get a system of (nO + 3)nD non-linear
equations (10) in the parameters pl, ql, rl, XS , YS and ZS ,
l = 1, . . . , nD.
8
>><

>>:

(nl,1 � nl,4v⇤l )YS + (nl,2 � nl,5v⇤l )ZS = v⇤l � nl,3

(nl,1 � nl,4v⇧l )YS + (nl,2 � nl,5v⇧l )ZS = v⇧l � nl,3

�XS + plYS + qlZS + rl = 0
plY o

l,j + qlZo
l,j + rl = Xo

l,j , j = 1, . . . , nO

(10)
This system can be solved using the Gauss-Newton algorithm.
We suggest to initialize the algorithm with the results of M1.
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Fig. 2. The minimal calibration object.

3) Method 3 (M3): Similarly to M2, by combining the
equations (6) and (9), we build a system of (nP + 3)nD non-
linear equations (11) in the parameters nl,1, nl,2, nl,3, nl,4,
nl,5, XS , YS and ZS , l = 1, . . . , nD.

8
>>>><

>>>>:

(nl,1 � nl,4v⇤l )YS + (nl,2 � nl,5v⇤l )ZS + nl,3 = v⇤l
(nl,1 � nl,4v⇧l )YS + (nl,2 � nl,5v⇧l )ZS + nl,3 = v⇧l

�XS + plYS + qlZS = �rl
(nl,1 � nl,4v

p
l,i)Y

p
l,i + (nl,2 � nl,5v

p
l,i)Z

p
l,i + nl,3 = vpl,i,

i = 1, . . . , nP

(11)
We use the same numerical method as for M2 for solving
Eq. (11).

4) Method 4 (M4): The last method combines the equations
of M2 and M3. Consequently, the system of (nP+nO+3)nD

equations (12) to solve is non-linear in the parameters pl, ql,
rl, nl,1, nl,2, nl,3, nl,4, nl,5, XS , YS and ZS , l = 1, . . . , nD.

8
>>>>>><

>>>>>>:

(nl,1 � nl,4v⇤l )YS + (nl,2 � nl,5v⇤l )ZS + nl,3 = v⇤l
(nl,1 � nl,4v⇧l )YS + (nl,2 � nl,5v⇧l )ZS + nl,3 = v⇧l

�XS + plYS + qlZS + rl = 0
plY o

l,j + qlZo
l,j + rl = Xo

l,j , j = 1, . . . , nO

(nl,1 � nl,4v
p
l,i)Y

p
l,i + (nl,2 � nl,5v

p
l,i)Z

p
l,i + nl,3 = vpl,i,

i = 1, . . . , nP

(12)
The resolution can be done using the Gauss-Newton algorithm
as for M2 and M3.

D. Calibration object

The use of sufficient four co-planar lines calibration objects
presented in the section II-B2 could be enough to generate the
data required to solve the calibration problem. Nevertheless,
we present in this section several improvements.

1) Minimal calibration object: The first improvement is to
construct a minimal calibration object composed of 5 parallel
lines and 3 oblique lines. The parallel lines are shared among
the oblique lines such that 3 groups of 3 parallel plus one

(L6)

(L7)

"

"

"

W W

(L1)

(L2)

(L3)

(L9)
⇧1 ⇧2 ⇧3 ⇧4⇧5 ⇧6 ⇧7 ⇧8

65�
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⌘
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z

(b)

Fig. 3. (a) Vertical plane and (b) horizontal plane of the object used for the
8-detectors system calibration.

oblique line, as in section II-B2, can be provided. The 5
parallel lines are defined by the equations (13).

(L1) Z = 0, Y = 0

(L2) Z = 0, Y = "

(L3) Z = 0, Y = 2"

(L4) Z = �⌘, Y = 2"

(L5) Z = �2⌘, Y = 2"

(13)

The three oblique lines are defined by the equations (14).

(L6) Z = 0, Y =
"

2W
X +

"

2

(L7) Z = 0, Y =
"

2W
X +

5"

2

(L8) Y = 2", Z = � ⌘

2W
X � ⌘

2

(14)

The minimal calibration object is illustrated in the Fig. 2. One
can notice that the group of lines in the plane Y = 2" doesn’t
result from a translation as suggested in the section II-B2. The
cross-ratio can be adapted in this plane. Besides, we remark
that the lines are positioned such that their projections can be
spanned all over the detectors using an adequate value of ".

2) Adapted object: First, we observed that adding to the
minimal calibration object the parallel line (L9) defined in the
Eq. (15) improved significantly the accuracy of the calibration.

(L9) Z = 0, Y = 3" (15)

Then, another improvement is the positioning of the oblique
lines relatively to each detector Dl, l = 1, . . . , nD. The lines
are placed such that the intersections of the oblique lines and
the viewing planes are at equal distance of the two closest
co-planar parallel lines. We denote these lines (L6,l), (L7,l)
and (L8,l), l = 1, . . . , nD. The lines (L6,l) and (L7,l) are
positioned in the plane Z = 0 between the lines (L1) and
(L2), and the lines (L3) and (L9), respectively. They are
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(a) (b)

Fig. 4. Methods comparison. The graphics show the average projection errors
of 2 oblique lines on the 8 detectors using the estimated values of (a) the
parameters nl,1, nl,2, nl,3, nl,4, nl,5 (b) the parameters pl, ql, rl, with
� = 0.24px, l = 1, . . . , nD.

inclined at a fixed angle �. The lines (L8,l) are positioned
in the plane Y = 2", between the lines (L3) and (L4).
The inclinations of these lines are specific to each detector.
Nevertheless, the position of the lines (L8,l) doesn’t impact
the results as much as the two others obliques lines. Thus,
every way of positioning the lines can be used providing that
the intersection of the lines and the viewing planes are at
Z = �⌘

2
. An example of such a calibration object is given

in the Fig. 3.

III. SIMULATION

We consider a 8-linear-detector system. The distance from
the source to the plane containing the detectors is 480mm. The
detectors are spaced at a constant angle from the source. The
calibration object is positioned halfway between the source
and the detectors line. The detectors have 1920 pixels of
height 0.4mm. The parameters of the calibration object are
set to W = 600mm, " = 125mm and ⌘ = 50mm. The two
planes containing line segments of the calibration object are
illustrated in the Fig. 3a and 3b, respectively.
We begin with the comparison of the methods presented in
the section II-C. The methods are compared on the average
projection errors observed on 100 simulations where we add
Gaussian noise N (0,�2) to the data. The value of � is set as
a fraction of the pixels size. The average projection errors are
calculated by computing the absolute value of the difference
between the theoretical projections of 2 oblique lines and the
projections obtained using successively the Eq. (3) to compute
the intersections of the oblique lines and ⇧l, and the Eq. (6)
to compute the projections of the intersections points. Two
projections are calculated using the estimated values of either
the parameters nl,1, nl,2, nl,3, nl,4, nl,5 or the parameters pl,
ql, rl. The results are presented in the Fig. 4. It can be observed
in the Fig. 4a that M3 and M4 improve slightly the estimation
of the parameters nl,1, nl,2, nl,3, nl,4, nl,5. We can see in
the Fig. 4b that M2 and M4 fail to improve the estimation of
the viewing planes parameters whereas M1 and M3 have the
lowest errors.
Finally, we compare the results of the proposed calibration
object with those obtained with the object presented in the
section II-B2. We consider here only one wide object for all the
detectors. We set ⇠1 = ⇠2 = 100mm, ↵ = 0.25 and � = 75.
The object is initially positioned in-between the source and the

(a) (b)

Fig. 5. Calibration objects comparison. The graphics show the average
projection errors of 2 oblique lines on the 8 detectors using the estimated
values of (a) the parameters nl,1, nl,2, nl,3, nl,4, nl,5 (b) the parameters
pl, ql, rl, with � = 0.24px, l = 1, . . . , nD.

detectors line. Then, it is shifted twice on the y and z axes.
Exactly, we shift the object successively by Yshift = 200mm
along the y axis and by Zshift = �150mm along the z axis.
We use M3 to solve the problem. The results are presented in
the Fig. 5. We can see in the Fig. 5a that the objects achieves
comparable results on the estimation of the parameters nl,1,
nl,2, nl,3, nl,4 and nl,5. However, we can observe in the Fig. 5b
that the estimation of the viewing planes parameters are much
better with the calibration object proposed in II-D.

IV. CONCLUSION

We have extended the linear camera geometric calibration
method introduced by Horaud et al [6] (see section II-B) to a
multiple linear detector system. We have proposed a minimal
calibration phantom of 8 opaque lines. But we have observed
that adding one opaque line improves highly the accuracy
and the stability of the calibration parameter estimation. This
calibration object has been adapted to a multiple linear detector
system in order to preserve a sufficient oblicity for the oblique
lines. We have proposed and evaluated 4 numerical methods
exploiting the fact that all subsystems share the same x-ray
source.
Our numerical simulations have shown that estimating the
geometric parameters of multi linear detector systems taking
into account that they share the same x-ray source, improves
the geometric calibration.
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Iodine-enhanced Liver Vessel Segmentation in
Photon Counting Detector-based Computed

Tomography using Deep Learning
Sumin Baek, Okkyun Lee*, and Dong Hye Ye*

Abstract—Liver vessel segmentation is important in diagnosing

and treating liver diseases. Iodine-based contrast agents are

typically used to improve liver vessel segmentation by enhancing

vascular structure contrast. However, conventional computed

tomography (CT) is still limited with low contrast due to energy-

integrating detectors. Photon counting detector-based computed

tomography (PCD-CT) shows the high vascular structure con-

trast in CT images using multi-energy information, thereby allow-

ing accurate liver vessel segmentation. In this paper, we propose

a deep learning-based liver vessel segmentation method which

takes advantages of the multi-energy information from PCD-CT.

We develop a 3D UNet to segment vascular structures within

the liver from 4 multi-energy bin images which separates iodine

contrast agents. The experimental results on simulated abdominal

phantom dataset demonstrated that our proposed method for the

PCD-CT outperformed the standard deep learning segmentation

method with conventional CT in terms of dice overlap score and

3D vascular structure visualization.

Index Terms—Photon Counting Detector, Computed Tomog-

raphy, Liver Vessel Segmentation, Deep Learning

I. INTRODUCTION

V
ASCULAR structures segmentation within the liver
plays an important role in diagnosing and treating the

patient’s liver condition. For example, if there is a tumor in the
patient’s liver, determining the location of the tumor and the
distribution of vascular structures in the liver before making
liver resection will help planning for liver surgery [1], [2]. In
particular, visualizing blood vessels in three dimensions before
radio frequency ablation treatments or minimally invasive
surgery can provide a road map for analyzing the location
of blood vessels related to lesions [2]. In addition, in the
case of liver transplantation, the vascular structure of the liver
donor can be identified in advance, helping to accurately verify
whether it is suitable for liver donors [3], [4].

As such, the segmentation of the vascular structure in the
liver is critical for the diagnosis and treatment of liver diseases.
Liver vessel segmentation is challenging due to the anatomical
variability of the structure of the liver and blood vessels. To
facilitate the liver vessel segmentation, iodine-based contrast
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agents are usually injected into the patient to highlight the
vascular structures in the liver. However, the contrast of the
iodine-enhanced vessels to the surrounding tissue is limited
in the conventional computed tomography (CT) with energy-
integrating detectors [5]. Even though there are promising
CT organ segmentation results using deep learning methods
such as UNET [6]–[8], it still remains challenging for deep
learning methods to segment the liver vascular structures in
the conventional CT images due to low contrast.

Meanwhile, photon counting detector-based computed to-
mography (PCD-CT) is an emerging medical imaging tech-
nology, which has potential advantages over conventional CT.
Especially, PCD-CT has the ability to enhance the contrast
to noise ratio with iodine contrast agents, generate multi-
energy images simultaneously, reduce the noise and increase
the spatial resolution [9]. The degree of attenuation for each
material by X-ray depends on the energy and properties
of the material [10]. In particular, when the iodine is in-
jected, the attenuation in the vessels increase, resulting in an
energy-dependent difference in attenuation between the iodine-
enhanced vessels and surrounding tissue in the liver. Thus,
we hypothesize that the energy discrimination capability of
the PCD-CT has benefit for the blood vessel segmentation
compared to the conventional CT.

In this paper, we propose a 3D UNET for liver vessel
segmentation in PCD-CT, which trains bin-wise images at
once in a deep convolutional neural network with a single
labeled image. We compare our proposed method with the
same UNET structure trained by a conventional CT image
(except the multi-channel input for the proposed one). Datasets
are generated with abdominal simulation phantom with iodine-
enhanced for the liver blood vessels. We apply a low concen-
tration level of iodine, reducing the risk of contrast-induced
nephropathy into a liver and vessel, with a relatively low level
of iodine diffused in the liver [11]. The experimental results
using the PCD-CT dataset are compared and analyzed with
those using the conventional CT dataset through dice score
and 3D vascular structure visualizations.

The paper is organized by the following. In Section II,
we describe the PCD-CT measurement models, and UNET
architecture for liver vessel segmentation. Section III presents
the experimental setup and the quantitative/qualitative assess-
ment for liver vessel segmentation results with conventional
CT and PCD-CT. The conclusion and discussion are provided
in Section IV.
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Fig. 1: The overview of liver vessel segmentation pipeline using the simulated PCD-CT and conventional CT dataset. (a) 3D
volume of the ground truth before the addition of iodine, (b) after the addition of iodine, (c) 3D volume conventional CT data,
(d) 3D volume of PCD-CT dataset, and (e) 3D patches randomly extracted from each data.

II. METHODS

Fig. 1 describes the overview of our liver vessel segmen-
tation method using the PCD-CT. We first add the iodine
on ground-truth 3D CT and generate 4-bin images based on
the PCD-CT measurement model. We train the UNET from
3D random patches from 4-bin images and compare the liver
vessel segmentation performance with the UNET trained on
the corresponding conventional CT dataset.

A. PCD-CT measurement model

We assume that the bin-wise photon counts are independent
Poisson random variables, and the expected counts ȳb for the

b-th energy bin of PCD-CT is given by

ȳb =

Z 1

0
I(E)Sb(E)e�

R
µ(r,E)drdE, (1)

for b = 1, 2, · · · , B,

where I(E) represents the X-ray incident spectrum, and
Sb(E), which includes the spectral distortion in PCD, is a
bin sensitivity function.

R
µ(r, E)dr is the line integral of the

linear attenuation coefficient.
An experiment was conducted using a conventional CT

dataset as a comparison technique to the experiment using
the PCD-CT dataset. We also assume that the measurement
from the conventional CT, a single outcome from a detector,
follows Poisson distribution, but with an expected counts �̄ as
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follows:

�̄ =

Z 1

0
I(E)

(
BX

b=1

Sb(E)

)
e�

R
µ(r,E)drdE, (2)

For a given object, we use the measurements models of (1)
and (2) to generate data sets for the PCD-CT and the con-
ventional one, respectively. We applied filtered backprojection
(FBP) with Shepp-Logan filter to the sinograms to obtain the
data sets. Sample images of datasets for conventional CT and
PCD-CT measurement models are shown in Fig. 1(c) and (d),
respectively.

For the PCD-CT model, threshold values of energy bins set
to the PCD are 20, 67, 101, 113 keV. An aluminium pre-
filtered incident spectrum with 140kVp was used, and the
total number of photons is 2.5x105. The spectral distortion is
modeled in Sb(E) [10], and water beam hardening correction
is applied before we perform the FBP. The number of PCD
channels and views are 601 and 1000, respectively, and the
ASTRA toolbox is used for the projection and FBP with fan-
beam geometry [12]. The distance from the source to the iso-
center and the distance from the iso-center to the detector are
500 mm, respectively.

B. UNET architecture
We use UNET for both PCD-CT and conventional CT. It is

worth noting that UNET for PCD-CT takes 4-channel input
unlike the conventional CT one to take advantage of multi-
energy information in PCD-CT. The UNET consists of an
encoding process and a decoding process. The context of the
image is obtained in the encoding process, which is combined
with the feature map of the decoding process to enable more
accurate localization [13]. As shown in Fig. 1(e), 3D patches
are extracted from the 3D volume images of each subject and
used for training.

The UNET structure is mainly composed of 3x3x3 con-
volution filter, and two convolutions are performed for each
block. The first layer of the encoding block is convolution
with stride 2, reducing the size of the image. The first layer of
the decoding block is the transposed convolution with stride
2, and the feature map of the same image size obtained during
the encoding process is concatenated by the skip connection
process. Starting from the second layer, batch normalization,
ReLU, convolution with stride 1, batch normalization, and
ReLU are performed in the order. The residual unit is applied
to both blocks, 3D convolution with stride 2 is performed
in encoding block to reduce the feature size, and then added
to the output feature of the encoding block, and the identity
mapping is used in the decoding block [14]. The parameters
are updated using the softmax function combined with dice
loss. We obtain two channel outputs for both PCD-CT and
conventional CT, the foreground and background. They are
compared pixel-wise to make a binary image.

III. EXPERIMENTS
The experiment is conducted using a total of 56 abdominal

simulation phantoms consisting of 33 adult men and 23 adult
women [15]. A three-dimensional CT dataset consisting of

about 100 slices including the liver region is used, and each
slice is generated at 1.5 mm intervals.

As shown in Fig. 1(b), the concentration of iodine in the
liver is set to 9.9 mg/ml and the concentration of iodine in the
liver vessel is set to 19.7 mg/ml. The iodine concentration is
chosen for low dose agents that can clinically reduce the risk
of contrast-induced nephropathy, which is a challenging case
to segment liver vascular structures [11].

For UNET training, we generate 150 patches having a size
of 64x64x64 pixels for each subject. Thus, the PCD-CT dataset
has four input channels in Fig. 1(d), and the conventional CT
has one input channel in Fig. 1(c). Our experiment runs on
GeForce RTX 3090. We implemented UNET using a MONAI
library, a Pytorch-based open-source framework [16], which
consists of 16, 32, 64, and 128 channels, and uses 2 strides and
3x3x3 kernel sizes, and the learning rate was 10�3. The batch
size was 1 and the epoch size was 1500. Training dataset,
test dataset, and validation dataset were divided into 6:2:2
ratios, and performance was evaluated through 5 fold cross-
validation.

A. Quantitative assessment
To evaluate the quantitative performance of liver vessel

segmentation in PCD-CT and conventional CT, we measure
the dice similarity coefficient (DSC). DSC is defined by the
following equation:

DSC =
2|A \B|
|A|+ |B| , 0  DSC  1, (3)

where A is the segmented (binary) image for each method
and B is also a binary image of the ground truth of the target.
| · | indicates the number of elements in the set. The more
similar the segmented results to ground truth, the higher the
DSC value, and the more accurate segmentation is obtained.

The average and standard deviation of DSC scores from 5-
fold cross validation on conventional CT and PCD-CT datasets
(56 subjects) are reported in Table I. Overall, DSC scores
are under 0.9 because the low number of photons and low
concentration iodine are used toward the realistic simulation.
On average, UNET with PCD-CT significantly improves the
DSC by 0.011 (2.6 times of 0.043 standard deviation) com-
pared with UNET of conventional CT. For all folds, PCD-CT
shows the consistent improvement of liver vessel segmentation
performance over conventional CT. This indicates that PCD-
CT enhances the contrast of iodine-injected vascular structures

Conventional CT PCD-CT

Fold 1 0.861 ± 0.024 0.869 ± 0.025
Fold 2 0.848 ± 0.053 0.860 ± 0.063
Fold 3 0.866 ± 0.024 0.874 ± 0.022
Fold 4 0.839 ± 0.044 0.853 ± 0.041
Fold 5 0.844 ± 0.058 0.858 ± 0.052

Average 0.852 ± 0.042 0.863 ± 0.043

TABLE I: The table of dice similarity coefficients for each
fold and average of 56 subjects (mean ± standard deviation).
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Fig. 2: Liver vessel segmentation of the female subject. (red
arrow: mis-segmented area, blue arrow: disconnected area)

in the liver, benefiting liver vessel segmentation using deep
learning.

B. Qualitative assessment
For qualitative assessment, we visualize the three-

dimensional vascular structure from the UNET-based liver
vessel segmentation from both conventional CT and PCD-CT
in Fig. 2 and 3. We also show the ground truth vessel structure
from the corresponding phantom as reference. We note that
each person has a very different appearance and size of vessels,
posing the challenge in deep learning segmentation. Compared
to the conventional CT, UNET on PCD-CT produces the
more accurate segmentation similar to ground truth. In the
segmentation results from conventional CT, it is observed that
there are disconnected vessels (marked with blue arrow) and
false vessel structures (marked with red arrow). This highlights
the benefit of using PCD-CT for diagnosing and treating liver
disease over conventional CT.

IV. CONCLUSION
In this paper, we generated PCD-CT datasets by utilizing the

characteristics of energy-discrimination capabilities of PCD-
CT, and segmented liver vascular structures by learning them
using the deep neural network. The experimental performance
was compared and analyzed with those of the conventional
CT dataset through dice score and 3D vascular structure
visualization. The dice score of the PCD-CT dataset were
significantly higher (2.6 times of standard deviation) than that
of the conventional CT dataset. For most testing subjects, the
incorrect segmentation of the peripheral part of the vessel
was reduced using UNET on PCD-CT. This showed that
UNET segmentation using PCD-CT outperformed the one
using conventional CT, improving diagnosis and management
of liver diseases.
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Deep Learning-based Prior toward Normalized
Metal Artifact Reduction in Computed Tomography

Jeonghyeon Nam, Dong Hye Ye*, and Okkyun Lee*

Abstract—X-ray computed tomography (CT) often suffers
from scatter and beam-hardening artifacts in the presence of
metal. These metal artifacts are problematic as severe distortions
in the CT images deteriorate the diagnostic quality in clinical
applications such as orthopedic arthroplasty. The normalized
metal artifact reduction (NMAR) method effectively reduces the
artifacts by normalizing the sinogram with the metal traces
through the forward projection of the prior image. Because the
prior image is the thresholded CT image with the values of the
air and soft tissues replaced, the image is noticeably different
from the ideal CT thereby making normalized sinogram not
completely flat. In this paper, we propose the novel NMAR
method with the deep learning-enhanced prior image which
is denoised by learning the relationship between NMAR and
clean image without metal artifact. The denoised prior image is
then forward projected to correct the sinogram with the metal
trace. The experimental results on simulated rat phantom dataset
demonstrate that our proposed deep prior NMAR achieves higher
structural similarity index (SSIM) and peak signal-to-noise ratio
(PSNR) than the original NMAR.

Index Terms—Metal Artifact Reduction, Computed Tomogra-
phy, Deep Learning Prior

I. INTRODUCTION

COMPUTED tomography (CT) suffers from the artifact
when imaging objects with metal objects are present.

Due to the metal’s high x-ray absorption rate, the detectors
receive low signals when the x-ray goes through the metal
objects. This results in scattering and beam-hardening effects
in the CT image. Metal artifacts make it difficult to observe
small details around the metal objects and affect throughout
the image by severe streaks and shading. Therefore, it is
necessary to reduce the metal artifacts in CT images for
reliable diagnosis in clinical applications such as orthopedic
arthroplasty.

Various metal artifact reduction (MAR) methods have been
developed to deal with the metal artifacts. For example,
filtering [1], [2] or interpolation [3], [4] methods directly
corrects the sinogram in the metal trace. These sinogram-
based methods show the limited performance as the image
information is not taken account and back projection of the
corrected sinogram often causes the secondary artifacts in
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non-metal areas. Iterative methods [5], [6] reconstruct the
MAR image through the Bayesian optimization with both
forward (sinogram) and prior (image) model, but they are
computationally expensive due to the iterative optimization.
Recently, deep learning-based approaches [7], [8] have been
also applied to reduce metal artifacts and demonstrated its
effectiveness. However, they are processing only in the image
domain without taking account into the sinogram information,
thereby showing blurring in the MAR image.

The normalized metal artifact reduction (NMAR) is one
of the efficient and effective MAR methods which utilizes
both sinogram and image information. The NMAR normalizes
the sinogram with the metal traces before the interpolation
to remove metal artifacts effectively while minimizing other
artifacts caused by the interpolation. The sinogram is normal-
ized using the prior image, which is the thresholded image
of the CT image with metal artifacts. Since the normalization
is the most important process, the NMAR method is highly
dependent on the quality of the prior image. The NMAR
method may have residual artifacts in the results due to
the inaccurate prior image, depending on the metal size and
locations.

In this paper, we combine the NMAR with a deep learning
to further reduce the metal artifacts while preserving the details
in the tissue. We use the NMAR results as the input to the
deep denoising network and use the output as the prior image
for the second trial of the NMAR. The deep learning-based
denoising effectively reduces the residual streak and shading
artifacts after the NMAR. However, as other deep learning-
based MAR methods, it may cause a blurring in the outcome
and lose the details in the tissue and not be sufficient for the
clinical purposes. Instead, we propose to use it as the improved
prior image and perform the NMAR again to further reduce the
residual artifacts. We validate the proposed method with the
simulation dataset of rat phantom. We demonstrate that the
proposed method shows less artifacts in terms of improved
peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) compared to the original NMAR.

II. METHODS

Fig. 1 illustrates the overall procedures of our proposed
deep prior NMAR. We first apply the conventional NMAR by
generating the thresholded prior image. We then denoise the
NMAR image with the trained deep neural network and feed
the denoised image as the prior image for further metal artifact
reduction. In following, we describe the existing NMAR and
proposed deep prior NMAR.
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Fig. 1. The overview of the proposed method. The sinogram with metal trace is processed with the original NMAR method to obtain the artifacts reduced
image. Then, the NMAR result is processed with the deep learning network to obtain the prior image for the proposed method. With the denoised prior image,
the NMAR method is performed again.

A. Normalized Metal Artifact Reduction (NMAR) [4]

As described in Fig. 1 (blue arrow), the NMAR creates
the metal trace mask for sinogram by thresholding the CT
image to find the location of the metal objects, then forward-
projecting the metal location. For the forward projection, we
use the counting model. The expected number of x-ray photons
is given by,

�̄ =

Z 1

0
S (E) exp

✓
�
Z

µa(~r, E)d~r

◆
dE, (1)

where S(E) is the system model, including the x-ray incident
spectrum and the detector response [9]. We omit the specific
x-ray path in the model for the sake of simplicity. X-ray with
a 90 kVp incident spectrum is used with 2mm Aluminum
pre-filtration. Total of 130,000 incident photons are used, and
photons with less than 20 keV were ignored. We use 511
detectors (0.25mm /channels) with 768 views per rotation.
We apply the fanbeam geometry (equi-distance) and used the
ASTRA toolbox [10], [11].

The obtained metal trace is then linearly interpolated to get
the prior sinogram. Filtered back projection (FBP) of the prior
sinogram gives the CT image with less metal artifacts. The
CT image is thresholded to segment it into three materials,
air, soft tissue, and bone, and then replace the pixel values of
air to -1000 [HU] and soft tissue to 0 [HU] to make the prior
image. The original sinogram with the metal traces are divided
pixel-by-pixel by the forward projection of the prior image.
The normalized sinogram has similar values except the metal
traces which gives an advantage to the linear interpolation.
The normalized sinogram is masked and interpolated in the

same way as the prior sinogram and then, de-normalized to
get the final outcome followed by FBP.

B. Proposed Deep Prior NMAR

The proposed method is an extension to the original NMAR
method. The NMAR method effectively removes the metal
artifacts, but there are severe streak and shade artifacts re-
mained depending on the size and location of the metals.
The remaining artifacts are caused by the fluctuation in the
normalized sinogram due to the difference between the original
sinogram and the sinogram of the prior image. To utilize
the benefit of the normalization fully, better prior image is
required. Thus, we propose the deep prior NMAR method
which we replace the prior images with the denoised NMAR
results by the deep neural network. As shown in Fig. 1, we
train the deep learning network to obtain the denoised image,
focusing on removing shading and streak artifacts after the
NMAR. By using the denoised image as the prior image, we
can acquire the image with the metal artifacts reduced better
than the original NMAR method with details remained. Note
that we have not applied any thresholding to the prior image
(denoised one) before the projection.

III. EXPERIMENTS
The methods are validated on the simulated rat phantom.

For each slice of the phantom, 25 images were generated with
two stainless steel objects with the diameter of 3mm inserted
in the random places; there were 100 slices, the width of
each slice is 1 mm, in the chest and abdomen area, making
2,500 images for the dataset. The images were 512⇥512 pixels
(0.125 mm/pixel).
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(denoised one) before the projection.

III. EXPERIMENTS
The methods are validated on the simulated rat phantom.

For each slice of the phantom, 25 images were generated with
two stainless steel objects with the diameter of 3mm inserted
in the random places; there were 100 slices, the width of
each slice is 1 mm, in the chest and abdomen area, making
2,500 images for the dataset. The images were 512⇥512 pixels
(0.125 mm/pixel).
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We use U-Net structure to denoise the NMAR images
[12]. The output activation function is removed for denoising
purpose. The inputs are the NMAR images and the labels are
the CT images without the metal artifacts. The network is
trained for 300 epochs with L1 loss. From the 2,500 images
dataset, 2,000 images were used for the training and the other
500 images were used as the test set. In order to make the test
set include all parts of the body, images from every 5th slices
from the 100 slices were set as the test set. The part of the
training set, 400 images, are randomly chosen for validation
dataset to find the best performing epoch. The network is
trained with the GeForce RTX 3090 GPU.

A. Qualitative Evaluation

The normalized sinograms are displayed in Figure 2. The
normalized sinogram of the proposed deep prior NMAR
method is flatter than that of the original NMAR method. Since
the quality of the metal artifact reduction is improved with the
flatness of the normalized sinogram, the proposed method can
reduce the metal artifacts better than the original method.

Figure 3 illustrates the experimental results of the original
NMAR and the proposed deep prior NMAR method, respec-
tively. The original CT images without and with metal objects
are displayed as reference in Fig.3 (a, b). The difference
images are obtained by subtracting the generated MAR image
with the ground-truth CT image without metal objects. In
Fig. 3(e, f), the original NMAR result still shows significant
amount of artifacts, reflecting less flattened normalized sino-
gram. The prior image of the NMAR method (Fig. 3(c)) is
computed by the thresholding method, therefore, it affects the
normalization process in the NMAR method.

The deep learning denoised image (Fig. 3(g)) presents
reduced metal artifacts, but the quality of the image is blurred
from the deep learning process. The proposed deep prior
NMAR method has noticeably reduced metal artifacts with
image quality similar to the ground truth CT image without
metal insertion.

Fig. 2. (a) The original sinogram with metal traces, (b) the profiles with
and without metal traces, (c) the profile of the normalized and interpolated
sinogram of the original NMAR method, (d) the profile of the normalized and
interpolated sinogram of the proposed method. (All the profiles correspond to
the specific angle view indicated by the red line in (a).)

Fig. 3. The results and the difference images using the original NMAR and
the propose method with the associated prior images. The difference images
are compared with the CT image without the metal objects. (a) The CT image
without the metal objects, (b) the CT images with the metal objects, (c, d)
the prior image for the NMAR method and the difference image, (e, f) the
CT image from the NMAR method and the difference image, (g, h) the prior
image for the proposed method and the difference image, (i, j) the CT image
from the proposed method and the difference image.
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TABLE I
MEAN AND STANDARD DEVIATION OF SSIM AND PSNR OF THE NMAR

AND THE PROPOSED METHODS.

NMAR Proposed method

SSIM 0.8832 ± 0.0266 0.9038 ± 0.0137

PSNR 36.28 ± 2.901 39.12 ± 1.351

B. Quantitative Evaluation

The tables I report the SSIM and PSNR values of the
conventional NMAR and the proposed deep prior NMAR. The
proposed deep prior NMAR increases SSIM by 0.0206 and
PSNR by 2.84dB compared with the conventional NMAR,
while decreasing the standard deviation. This indicates that
our proposed methods effectively reduces the metal artifact
while preserving the fine details in the CT image by taking
advantage of the denoised prior image through deep learning,
showing potential for clinical applications such as orthopedic
arthroplasty.

IV. CONCLUSION

In this paper, we proposed the deep prior NMAR method to
further reduce the metal artifacts from the conventional NMAR
result. The proposed method denoises the NMAR image with
the deep learning network and uses it as a prior image for
flattened normalized sinogram. The experimental results on
simulated rat phantom data showed that our deep prior NMAR
method improved the MAR performance compared with the
conventional NMAR method while maintaining the fine details
of the original CT image. In addition, we validate the stability
and robustness of our proposed method which will be useful
for clinical applications like orthopedic arthroplasty.
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Abstract—Metal artifacts are one of the most common reasons 

for reduced image quality and usability in polychromatic cone-
beam CT. In this work, we revisit empirical beam hardening 
correction algorithm and propose a few practical optimizations to 
simplify its application. First, fuzzy C-means segmentation 
method is used to perform an automatic segmentation of the metal 
component. Second, a minimum variance optimization technique 
provides a suitable combination of correction basis images. 
Finally, a sub-volume (spatially varying) optimization method is 
used to account for a varying contribution of metal artifacts 
through the image. We apply the modified algorithm to datasets 
from cone-beam CT and evaluate its performance.  
 

Index Terms— Computed Tomography, Image Reconstruction, 
Beam Hardening, Metal Artifacts, Fuzzy C-Means.  
 

I. INTRODUCTION 
ETAL artifacts are one of the primary causes for image 
quality degradation in Computed Tomography. The 

streaks and shadows caused by the artifacts obscure the useful 
information content, prevent robust segmentation and feature 
detection in medical as well as industrial CT imaging. 
Numerous algorithmic methods have been proposed over the 
years to resolve the problem of metal artifact reduction (MAR). 
These include but not limited to segmentation-based [1, 3, 5], 
inpainting or projection completion based [6], iterative model-
based [3],[7], machine-learning based [8], and so on. More 
comprehensive overview of various metal artifact correction 
can be found in [9]. 

In this work we revisit an empirical beam hardening 
correction method (EBHC) [1] and propose a few practical 
modifications and enhancements, in order to reduce its reliance 
on manual user intervention. We apply the modified method to 
a number of cases from CBCT and discuss the results.  

II. METHODS 
The polychromatic nature of most X-ray sources used in CT 
leads to artifacts in the reconstructed images. These are most 
evident whenever studied objects and samples demonstrate high 
variability in atomic number (Z). The artifacts take the form of 
dark streaks and halos as shown in                  a)                                   b) 

Figure 1. While it is possible to minimize the severity of 
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metal artifacts by modifying the acquisition conditions, the 
most common artifact correction solutions are algorithmic. 
Here, we try to build upon and add a few modifications to an 
empirical beam hardening correction method which has proven 
its effectiveness despite its relative simplicity [1]. The primary 
goal of the proposed modifications is to make the EBHC 
application more autonomous, without requiring user 
intervention.  

 
                 a)                                   b) 

Figure 1. Examples of samples in CBCT that lead to creation of 
metal artifacts: a) cylindrical phantom with plastic filling and 
two 4mm diameter brass rod inserts. b) HDMI connector. 

EBHC consists of the following steps: 
1. The acquired dataset 𝑔 is being reconstructed to create 3D 

tomographic image as 𝑓 = 𝐹−1𝑔, where 𝐹−1 is the tomographic 
reconstruction algorithm of choice; no metal artifact related 
correction is necessary at this stage, however, in many cases 
simple polynomial based beam hardening correction may 
reduce cupping artifacts and enhance the image structures 
which will help with the next step.  

2. The reconstructed CT image 𝑓  is segmented to extract only 
the metal component 𝑚.  

3. Results of the segmentation is then forward projected in the 
matching geometry to the original acquisition. Forward 
projection can be done in monochromatic fashion, however it is 
important that it follows the geometry as close as possible.  

ℎ𝑗 = 𝐹𝑚 
4. The forward projected data ℎ is then combined with the 

original data 𝑔 to create a set of basis data 𝑝𝑖𝑗: 
𝑝𝑖𝑗 = 𝑔𝑖ℎ𝑗,   

where 𝑖 and 𝑗 can be lower integer values ranging from 0 to 5 
as an example. Not all possible combinations of 𝑖 and 𝑗  need to 
be considered due to increased computational burden and 
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somewhat overlapping nature of these correction terms.  
5. Each data combination 𝑝𝑖𝑗  is then reconstructed using 

reconstruction operation 𝐹−1 to create corresponding set of 
images 𝑓𝑖𝑗. We further denote uncorrected reconstructed image 
as 𝑓10. 

6. The higher order basis images that include forward 
projected metal component are effectively able to replicate the 
metal artifact streaks.  As such, the generated set of basis 
images can be combined using a certain optimal set of 
weighting coefficients to create a final corrected image that can 
effectively mitigate the effect of metal artifacts. In this work, 
original uncorrected image always uses the weight of 1.0, and 
the rest of the images can have variable weighting coefficients 
(negative values are also possible). This workflow is shown in 
figure 2. 

 
Figure 2. Diagram of the EBHC method, describing the first 
part of the method, leading to the forward projected data 
generation.  

In original EBHC method soft thresholding was used to 
segment out the high-density components. In this work we 
found that fuzzy C-means segmentation can be very effective 
method as implemented in [10]. We used two material 
segmentation with starting values for the low-Z material 
segmentation set at zero, and high-Z material set at 80% of the 
maximum value of 𝑓. To improve robustness of the 
segmentation it is also advisable to prefilter the image before 
the segmentation with edge preserving filter, such as median 
filter.  

The basis functions are combined according to the following 
equation: 

𝑓 = {
𝑓10 𝑚 > 1

𝑓10 +∑𝑤ij𝑓ij
𝑗,𝑗

𝑚 = 0 

In this way no correction has been applied inside the metal 
parts, as we seek to mitigate the streak artifacts in between 
metal/higher-Z components. 

 

 
Figure 3. Second part of the EBHC method: optimal weighted 
sum of basis images leads to a reduction in metal artifact 
expression. 

 
Optimal weight determination is then the significant 

outstanding challenge. One obvious way is to do this manually, 
ad hoc going through all possible combinations of 𝑤ij that can 
provide artifact streak reduction while maintaining the image 
quality. The success of such method may vary and depends on 
the operator training. Additionally, any manual, operator-
controlled optimization method is tedious to perform with more 
than two or three basis images, and any optimization is global, 
with a single set of weights determined for the entire image (in 
contrast to an automated technique which may be allowed to 
vary spatially).  

In some cases, to simplify the optimization process, it may 
also be feasible to define the region in the reconstructed image 
that is known to be flat but has been imbued with spurious 
signal from the artifact streaks. Some examples of such flat 
region include uniform plastic enclosure surrounding the metal 
wires, or soft tissue surrounding metal implants or bone matter 
for biological samples. The assumption is that proper 
combination of basis images will minimize the streaks and will 
make such region more uniform. In this work, we propose to 
use minimum variance-based optimizer, estimated over the 
entire volume excluding metal/high-Z components. This also 
means that entire EBHC workflow can now be performed fully 
automatically (referred to in the text as automatic EBHC 
(AEBHC)). The further advantage of such automatic 
optimization method is that it can take arbitrary number of basis 
functions as an input without any complication for the user 
(other than prolonged reconstruction time).  
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As the objects can be highly non-uniform, with different 
amount of beamhardening, scatter, and metal artifact presence 
in each slice, a globally optimized single set of combination 
weights may result in under- or overcorrection of certain sub-
volumes (slices). Likewise, it is not practically feasible to have 
those hand-tuned for each sub-volume, as it would be a very 
tedious task. We propose that optimization weights are 
recalculated for every sub-volume in AEBHC. Here we 
recalculate the weight every 64 slices, while averaging the 
individually optimized sub-volumes into the final volume using 
50% overlap.   

Overall, all the discussed modifications allow for a high 
degree of EBHC autonomy, allowing single-click metal artifact 
reductions. 

 

III. RESULTS AND DISCUSSIONS 
To provide some examples of the reconstruction, use 

tomographic 3D X-ray microscopy data from Zeiss Xradia 
Versa (Carl Zeiss X-Ray Microscopy, Dublin, CA).  

The first example is the cylindrical phantom from Figure 1. 
Correction with AEBHC was able to drastically reduce the 
severity of the metal artifacts and the visual conspicuity of a 
small void indicated was much improved as shown in Figure 4. 

 

a)                                               b) 

 
c) 
 

Figure 4. Cylindrical phantom with plastic filling and two 4mm 
diameter brass rod inserts: a) uncorrected FDK reconstruction; 
b) corrected with AEBHC; c) reconstructed intensity profiles, 
drawn across the phantom from approximately 10 to 4 o’clock. 

Three scans of a standard HDMI connector have been 
performed to test the performance of auto-EBHC method at 
different acquisition conditions. Acquisition conditions 
included 160 and 100 kVp, as well as stronger (equivalent to 
approximated 2 mm of Cu) and medium filter. In Figure 5, we 
show both uncorrected and AEBHC corrected images. From the 

images it is clear that higher kVp and stronger filtered X-ray 
spectrum (removing lower energy part of the spectrum) helps 
to reduce the severity of metal artifacts even in the uncorrected 
data. The artifacts are more severe at lower kVp, showing that 
acquisition parameters play a strong role in AEBHC 
effectiveness. AEBHC performs better at higher X-ray energy 
setting, and stronger filter (Figure 5), however, corrected 
reconstructions outperform uncorrected reconstructions at all 
conditions.  

 

 
Figure 5. Reconstructions of HDMI cable connector, performed 
at different 160 and 100 kVp, as well as with stronger (~2mm 
Cu thickness) and medium (1mm Cu thickness) filtering 
material. Uncorrected and corrected reconstructions are in top 
and bottom row respectively. 

 
The advantage of sub-volume optimized AEBHC method is 

demonstrated in Figure 6. Here, we use simple phantom 
consisting of steel rods, plastic tubes inserted into the piece of 
plastic foam. In Figure 6 we show two reconstructed slices 
through the phantom, with both AEBHC and manually 
optimized EBHC method. Manual optimization of weights for 
EBHC was done over the slice shown in the top, and then 
applied globally to the entire volume. That leads to 
overcorrection for metal artifacts in the slice 200 shown in the 
bottom row. AEBHC was able to perform more consistently 
avoiding overcorrection across the entire volume.  
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Figure 6. Reconstructions of simple steel rods phantom. Manual 
optimization of global weighting correction parameters was 
performed for the slice 120.  

IV.   CONCLUSION 
We have demonstrated an improvement an empirical beam 
hardening correction method, combining three techniques to 
make the EBHC method fully automatic, with a good 
approximation for metal artifacts. First, fuzzy C-means was 
used to perform an automatic segmentation of the metal 
component. Second, a minimum variance optimization method 
was used to provide a suitable combination of correction basis 
functions. Finally, a sub-volume (spatially varying) 
optimization method was used to account for a varying 
contribution of metal artefacts through the image. The proposed 
method has been tested across the variety of samples and 
acquisition conditions and was able to noticeably diminish the 
severity of metal artifacts. It was also able to perform similarly 
to manually optimized method, as well as outperform manual 
method globally. We also foresee that some of the proposed 
modifications can be applied to other variations of 
beamhardening correction algorithms. 
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On use of augmentation for the DNN-based CT
image denoising

Prabhat Kc, Kyle J. Myers, M. Mehdi Farhangi, Rongping Zeng

Abstract—Augmentation strategies have been suggested to
overcome issues related to limited training data for the Deep
Learning (DL)-based CT image denoising problem. Although
augmentation is, indeed, a good machine learning practice, the
extent of improvements achieved by DL-based CT denoising
solvers through augmentation pipelines remains to be quantified.
Accordingly, in this work, we make use of two different deep
neural networks (the REDCNN, the DnCNN) to quantify gains
in CT image quality through augmentation. The augmentation
strategies considered include computer vision inspired strategies
(like scaling, rotating, flipping, image-blending) and the CT
forward model-based noise (radiation dose) insertion. Likewise,
image qualities considered in this work include visual perception-
and data fidelity-based global metrics (like the PSNR, the SSIM,
the RSE) which are common in the computer vision literature,
and CT bench tests (like the NPS, the MTF) and a task-based
detectability assessment (the LCD) from the CT imaging litera-
ture. Our preliminary results indicate that the DL solvers trained
on augmented data show gains in the global metrics, in low-
frequency noise texture components and in image resolution as
compared to the ones trained on non-augmented data. However,
when the augmented DL-solvers were compared against their
low-dose counterparts their performance - with respect to the
noise frequency components, resolution, and detection task - was
not all improved, and in some cases even worse.

Index Terms—Data Augmentation, Noise Insertion, CT Image
Denoising, Deep Learning, Image Quality, Transfer Learning.

I. INTRODUCTION

ONE of the good machine learning (ML) practices to
achieve a generalizable performance by a ML model

is to train the model with a large dataset. However, ac-
cessibility to sufficiently large data repositories in medical
applications – that span across different regions, population
demographics, practice of medicine and acquisition protocols
– continues to be a challenging prospect. As such, a surrogate
data generation methodology called the data augmentation
technique is frequently employed to increase the available
training data. The prime objective of the data augmentation
technique is to ensure that a Deep Learning (DL) method does
not overtly train to properties specific only to its training data
and rather trains to general properties exhibited by a larger
patient population. In the machine learning language, a data
augmentation strategy seeks to alleviate issues related to over-
fitting (when a model performs well on the training dataset but
fails to perform on an unseen dataset) and underfitting (when
a model fails to perform well on the training dataset). Some of
the commonly employed augmentation strategies – borrowed
from computer vision-based applications to medical imaging
problems – include scaling, rotation, flipping, cropping, and
contrast blending. Likewise, there are a broad spectrum of aug-
mentation strategies relevant for medical applications. These
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strategies can be roughly divided into two categories. These
include strategies that replicate variations in (i) image acquisi-
tion/practice of medicine and (ii) object/subject/patient being
imaged. The category (i) type data augmentations are deduced
by making use of physics-based forward models that reflect
different medical image acquisition methods. This procedure
aids in increasing a given training dataset with respect to
covariates such as radiation dose, sparse sampling, scanning
parameters etc. For the category (ii) type data augmentation,
distribution learning ML models like the Generative Adver-
sarial Networks (GANs) are being explored to synthesize
training/testing data that properly replicate variations in image
textures found in the patient population (without explicitly
performing patient-based acquisitions).

Having said this, the extent of improvements in CT image
quality through augmentation strategies for medical appli-
cations still remain elusive. In this contribution, we seek
to quantify gains of DL-based denoising solvers trained on
augmented data. We make use of computer vision-inspired
image augmentations and CT physics-based noise insertion
as the two data augmentation techniques. The latter aug-
mentation methodology is performed under the framework
of transfer learning. Likewise, we make use of two differ-
ing DL-based convolutional neural networks (CNNs) for the
denoising purpose. These include the feed-forward denoising
CNN (DnCNN: that incorporates very deep CNNs to formulate
a total of 17 layers) [1] and the Residual Encoder-Decoder
CNN (REDCNN: that incorporates encoder-decoder layers
to constitutes a total of 10 layers) [1]. Finally, we make
use of global metrics (such as the Relative Squared Error
(RSE), the Peak-Signal to Noise Ratio (PNSR), the Structural
Similarity Index (SSIM)), as well as CT bench tests (the
contrast-dependent Modulation Transfer Function (MTF), the
Noise Power Spectrum (NPS)) and a task-based assessment
(the Low-Contrast Detectability (LCD)) to estimate changes in
the image qualities of the DL-based denoised solutions trained
on the augmented vs non-augmented data.

II. METHOD

A. DL framework and architecture

Network weights, ✓, of the two DNNs, i.e. the DnCNN
and the REDCNN considered in this paper, are estimated by
solving the following objective function:

✓̂  arg min
✓

`(f(X; ✓),Y) , (1)

where `(·) denotes a loss function and X,Y 2Rm⇥n repre-
sent, complimentary, Low-Dose CT (LDCT) and Normal-Dose
CT (NDCT) images used to train the two networks. These
images are sequestered from the Low-Dose Grand Challenge
(LDGC) dataset. The training set comprises 1560 CT images
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Fig. 1. Simulated phantoms that mimic (a) contrast levels in the
CATPHAN600 for measuring the MTF, (b) the CCT189 low contrast body
phantom for measuring the LCD, and (c) the cylindrical water phantom for
the NPS estimation.

of size 512⇥512 obtained from 6 different patients. This train-
ing data is artificially increased through various procedures
(detailed in section II-B). Likewise, our validation/tuning set
consists of 36 CT images randomly pre-selected from the same
6 patients before formulating the training set. Finally, our test
sets include 223 CT images obtained from a seventh patient,
the CATPHAN600 phantom (fig. 1(a)), the CCT189 phantom
(fig. 1(b)) and the cylindrical water phantom (fig. 1(c)). These
test sets are not used in any of the network training procedures.

B. Dose augmentation framework
The LDCT images in the LDGC dataset correspond to

quarter-dose CT (QDCT & X = XQD) acquisitions. Accord-
ingly, we make use of a CT-physics based forward model
[2] to synthesize radiation dose acquisitions corresponding to
95% dose (X95) and 75% dose (X75). Here we note that the
normal-dose and quarter-dose projection measurements pro-
vided in the LDGC were acquired in helical mode. However,
in absence of the vendor specific forward model for the helical
acquisition (AHelical), we make use of the NDCT images and a
CT fan-beam based forward model (Afan) to synthesize projec-
tions in which we insert dose-based noise (⌘). Mathematically,
X95 = A�1

fan (AfanY+⌘95%) and X75 = A�1
fan (AfanY+⌘75%).

The inversion is performed using the Filtered BackProjection
(FBP) method. We validated the noise components of the
outputs from our realistic dose-based augmentation procedure
using the NPS. A representative scan determined from this
realistic dose augmentation procedure is provided in fig. 2(b).

Next, we make use of a transfer learning framework to
sequentially train the two DNNs on the augmented and non-
augmented datasets. This work draws its motivation from the
traditional multi-scale based tomographic reconstruction to
improve the quality of the restored image. More concretely,
rather than performing a straightforward network learning
between the quarter- and normal-dose pairs (XQD,Y), we
sequentially train networks on a series of increasing radiation
dose gaps between the input and target pairs. In other words,
✓̂95-ND is estimated from training pairs (X95,Y); then ✓̂95-ND
is used as the initializer to estimate ✓̂75-ND from training
pairs (X75,Y); and finally, ✓̂75-ND is used as the initializer
to estimate ✓̂QD-ND from the training pairs (XQD,Y).
C. Computational optimization

In ref. [3], we showed that the performance of a DNN
depends on several choices. These choices include patch size
(e.g. P-55 for patch 55⇥55), learning rate (lr), mini-batch size
(mi-b), loss function (e.g. MSE, MAE, MSE with L1 image
prior/ total variation (TV) image prior/ weight decay term,

Fig. 2. (a) A QDCT lung image from the LDGC dataset. (b) Corresponding
QDCT image from our realistic noise insertion model. (c) Line plot com-
parison of the two images along the dotted red-line. The display window of
images in (a) & (b) is (W: 1300 L: -370).

MS-SSIM), pre-processing choices (in terms of normalization
vs no normalization (normF)), and pseudo data augmenta-
tion (rotation, scaling, flipping, image-blending). This overall
optimization procedure can be compartmentalized into the
following three stages:

(i) Stage 1 (without/ aF): At this stage, we do not perform
any augmentation (aF) on the training data. Next, the
training data for both the DNNs is normalized to the
range [0, 1] (i.e., unity normalization). The two DNNs
are trained to yield the best values w.r.t the global
metrics - PSNR and SSIM - on the tuning set. At
the end of this stage, the optimized choices for the
two networks include REDCNN: (P-96 | lr:10�4 | mi-
b:32 | MSE | unity-aF), DnCNN: (P-55 | lr:10�4 | mi-
b:32 | MSE+�·L1 | �:10�7| unity-aF).

(ii) Stage 2 (Pseudo/ PaT): At this stage, we perform the
scaling, rotation, flipping & image-blending augmenta-
tions (PaT) on the training data. Also, normalization
type is tuned to yield the best performance for the
two DNNs w.r.t the HU accuracy. Accordingly, the
optimized choices for these two networks include: RED-
CNN: (P-96 | lr:10�5 | mi-b:64 | MSE+�·TV| �:10�3|
normF-PaT), DnCNN: (P-55 | lr:10�4 | mi-b:32 |
MSE+�·L1 | �:10�7| unity-PaT).

(iii) Stage 3 (Realistic/ RaT): At this stage, we train the
two DNNs on realistically dose augmented datasets
((X95,Y), (X75,Y)) - estimated from the CT noise
based forward model - under the framework of transfer
learning as detailed in our previous section II-B. The
corresponding choices for the two DNNs include: RED-
CNN: (P-96 | lr:10�5 | mi-b:64 | MSE+�·TV| �:10�4|
normF-RaT), DnCNN: (P-55 | lr:10�4 | mi-b:32 |
MSE+�·L1 | �:10�7| unity-RaT).

In summary, stage 1 depicts the scenario where the DL is per-
formed in the absence of any forms of augmentation. Stage 2
and stage 3 depict scenarios where the DL is supplemented
by the computer vision-inspired and by the realistic CT noise-
based augmentation strategies respectively.
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III. RESULTS & DISCUSSIONS

A. Global Metrics
Table I lists the RSE, PSNR and SSIM values from the

two DNNs applied on the QDCT test images, relative to their
NDCT counterparts. Columns 3 & 4 in the table indicate that
even when the two DNNs are trained without-augmentation
(aF), they show significant improvement in their global metric
values as compared to that from the QDCT. There is no
further gain in the global metric values for the DnCNN at the
stage 2 (pseudo or PaT) augmentation and the stage 3 (realistic
or RaT) augmentation (besides the SSIM value that is best at
the PaT stage). On the other hand, REDCNN outputs its best
global metric-based performance at the RaT stage (besides
the SSIM value that is best at the PaT stage). Overall, this
evaluation suggests that the DnCNN (with its 17 convolutional
layers that encapsulate batch normalization layers for a faster
convergence) does not gain any new CT imaging related infor-
mation through the augmentation pipeline. On the contrary, the
REDCNN (with its encoder-decoder based 10 weight layers
that incorporate a rich set of skip connections) shows a gain
in its performance through the augmentation pipeline.
Table I: RSE, PSNR and SSIM values corresponding to the QDCT images

and the DnCNN & REDCNN outputs at different augmentation stages.

B. MTF
To evaluate the CT bench tests from the phantoms, first,

we generated a noiseless sinogram from the CATPHAN600
(fig. 1 (a)). The sinogram was inverted using the FBP method
- paired with a sharp kernel that was used to reconstruct
the training data - and the two DNNs were applied on
reconstructed CATPHAN600. Subsequently, MTF50% val-
ues at the four contrast disks (990, 340, 120,�35 HU) were
estimated to represent image resolution (figs. 3 (a,b)). Both
the DNNs show significant improvement in their MTF50%
values at the pseudo-augmentation stage. For the DnCNN,

Fig. 3. MTF50% plots of the (a) DnCNN and (b) REDCNN applied on the
reconstructed CATPHAN600. Each plot illustrates MTF50% values obtained
from the FBP method and the different stages of augmentation.

there is a further minor increment in the MTF50% values
at the realistic-augmentation stage. On the contrary, for the
REDCNN, there is a minor decay in the MTF50% values at the
realistic-augmentation stage as compared to that at the pseudo-
augmentation stage. Broadly speaking, after the pseudo- or
realistic-augmentation stages, the maximum MTF50% values
for the two DNNs – for all four contrast disks – plateaus at
or right below their corresponding MTF50% values from the
FBP-sharp method.
C. NPS

Fig. 4. Radial 1D NPS plots evaluated from (a) the DnCNN and (b) the
REDCNN applied on the noisy realizations of the reconstructed cylindrical
phantom. Each plot includes 1D NPS curves corresponding to the different
augmentation strategies.

The NPS was estimated making use of 30 noisy
scans/realizations from the cylindrical water phantom that
were reconstructed using the FBP method with a sharp kernel.
The resulting radial 1D NPS plots for the two DNNs are
depicted in fig. 4. In the case of the DnCNN, we notice that for
frequency bands above 0.3 lp/mm, there is a significant gain
in noise power at the pseudo- or realistic-augmentation stages
as compared to its performance at the without-augmentation
stage. Also, the DnCNN’s performance at the pseudo- or
realistic- stages is similar to that from the FBP method. For
the REDCNN, the overall nature of its radial 1D NPS curves
- at different augmentation stages - remain mostly similar
to one another; thereby suggesting that the REDCNN does
not learn to improve noise content information through the
augmentation pipeline.
D. LCD

For the LCD test, we simulated 200 noisy scans from the
CCT189 phantom, and 100 noisy scans from the uniform
cylindrical water phantom at each of the five dose levels,
i.e. (30%, 50%, 70%, 85%, 100%) of incident flux (3 ⇥ 105).
For each of the four inserts, one signal-present (SP) ROI was
extracted from the CCT189 phantom image and five signal-
absent (SA) ROIs were extracted at the vicinity of the insert
location from each of the uniform phantom images. As a result,
a total of 200 SP and 500 SA ROIs for each low contrast
insert were created to evaluate its corresponding detectability.
The LCD plots of the two DNNs for the 3mm & 10mm
inserts are depicted in fig. 5. For the DnCNN (aF, PaT, RaT)
applied on the 3mm insert, we do not observe any gain in the
detectability of the insert at any of the five dose levels. On
the contrary, there is a decay in the detectability performance
between 0% to 5% for the DnCNN (aF, PaT). We observe
similar results for the DnCNN (aF, PaT, RaT) applied on
5mm & 7mm inserts. However, for the DnCNN (RaT) applied
on the 10mm insert, we observe a gain in the LCD values
between 0% to 5%, at each dose level, albeit with a large
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Fig. 5. LCD of the DnCNN for (a) insert 3mm, (b) insert 10mm and of the
REDCNN for (c) insert 3mm, (d) insert 10mm. Each plot depicts LCD values
obtained from the FBP method and the different stages of augmentation.

spread in their corresponding error bars. For the REDCNN
(aF, PaT, RaT) applied on the 3mm insert, their corresponding
detectability values relative to the five dose levels, are around
or right below to those obtained from the FBP method. Similar
results are seen for the REDCNN (aF, PaT, RaT) applied on
the 5mm insert. For the 10mm insert, we observe a gain in the
detectability values ranging from 2% to 5% for the REDCNN
(aF) and between 11% to 15% for the REDCNN (PaT, RaT).

IV. CONCLUSIONS
In this contribution, we set out to quantify the improvements

in the DL-based CT denoising solvers through augmenta-
tion strategies. Correspondingly, for the DnCNN, its very
deep network architecture was such that its global metrics-
based performance peaks at the without-augmentation stage.
There is a small drop in its global metrics-based performance
at the pseudo and realistic-augmentation stages. From the
LCD viewpoint (that is relevant to diagnostic accuracy),
DnCNN yields sub-par performance at without-augmentation
and pseudo-augmentation stages. The gain in its LCD perfor-
mance was only seen at the realistic-augmentation stage, albeit
for only large inserts (7 mm & 10 mm) and with a caveat that
the detectability of the DnCNN (RaT) for low-dose was never
as good as that of the FBP at high-dose.

For the REDCNN, its global metric values sequentially
increase until the realistic-augmentation stage. However, from
the LCD viewpoint, the REDCNN’s performance saturates at
the pseudo-augmentation stage.

Next, from the resolution viewpoint, for both the
DNNs, the pseudo-augmentation stage yields significantly
higher MTF50% values than that obtained at the without-
augmentation stage (these values are at or near to the FBP-
sharp limit). However, the presence of edge-like structures
throughout absolute difference plots (in figs. 6(d-i)) from both
the DNNs (for all augmentation stages) points at the limitation
of using the digital CATPHAN600 (in particular, using its
locally constant regions i.e., disks) to estimate resolution. A
proper account of the true nature of the resolution capacity of
the two DNNs, relative to different augmentation strategies,

will require a further resolution analysis with the aid of a
line/wire pattern phantom. Note that the CT scan considered
to determine the difference plots is a challenging image for
the DL solvers (as it exhibits bone, muscles fibers and fatty
regions). Also, the contrast window width of the difference
plots is set to properly depict edges in these plots.

Finally, from the NPS viewpoint, it appears that the DnCNN
learns not to denoise scans that are devoid of anatomical
structures with the sequential augmentation steps (fig. 4(a)).
Yet, the visible distinction between the low-contrast outer
regions (outside the dotted window (w) in fig. 6) and the high-
contrast inner regions (inside the dotted window (w) in fig. 6),
and the presence of similar edge-like features (inside (w)) in
figs. 6(d-f)) suggest that augmentations (pseudo or realistic) do
not lead to any improvement in low, as well as high, frequency
noise components. For the REDCNN, its 1D NPS curves
(fig. 4(b)) paired with difference plots (fig. 6(g-i)) indicate that
augmentations (pseudo or realistic) do not lead to any change
in high frequency noise components.

In conclusion, when the DL-based denoising solvers were
compared against their low-dose counterparts, we did not find
any improvement in the solvers’ LCD performance, for the
3mm, 5mm,& 7mm, that merits to a statistically significant
level. Similarly, the solvers’ improvements w.r.t the NPS (eval-
uated using the uniform phantom) and the MTF (estimated
from the contrast disks) do not translate in the noise content
information and the resolution of the denoised CT outputs.

In future, we seek to extend this preliminary work with a
larger patient data training, and perform more generalizability
tests (w.r.t dose levels between QD & ND) and subgroup
analyses (by body regions for CT scans vs CT bench testing).

Fig. 6. CT images in plots (a) & (b) with the display window of (W:400
L:50) HU. Absolute difference images in plots (c-i) with the display window
of [0, 88] HU. Dotted red window (w) is used indicate the central muscular
mass with bone & edge contrasts in plots (d-i).
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Inpainting and Denoising Challenges. Springer, 2019.

[2] D. Zeng, J. Huang, Z. Bian, S. Niu, H. Zhang, Q. Feng, Z. Liang, and
J. Ma, “A simple low-dose x-ray ct simulation from high-dose scan,”
IEEE transactions on nuclear science, vol. 62.

[3] P. KC, R. Zeng, M. M. Farhangi, and K. J. Myers, “Deep neural networks-
based denoising models for CT imaging and their efficacy,” in Medical
Imaging 2021: Physics of Medical Imaging, vol. 11595.

The 7th International Conference on Image Formation in X-Ray Computed Tomography

409



Abstract—Photon-counting detector based spectral
computed tomography (CT) has great potential in material
decomposition, tissue characterization, lesion detection,
and other applications. For a fixed total photon number or
radiation dose, the increase of the number of channels will
lead to the decrease of the number of photons in a single
channel, resulting in degraded image quality of the
reconstructed image. This is difficult to meet the practical
applications for material decomposition. etc. To improve
the quality of image reconstruction, we propose a spectral
CT reconstruction algorithm based on joint multi-channel
total generalized variation (TGV) minimization and tensor
decomposition. On one hand, the algorithm takes joint
multi-channel TGV function as regularization. The
regularization extends total generalized variation to the
vector, and the sparsity of singular values is used to
promote the linear dependence of the image gradient. On
the other hand, the multi-channel images share the same
physical structure, and the algorithm employs the non-local
feature similarity in the image domain. Similar image
blocks are clustered into a four-order tensor group, and the
noise was reduced by sparse representation of
high-dimensional tensors. Experiment results show the
proposed algorithm can further improve the quality of
reconstructed image and preserve the edge and details of
the image for spectral CT.

Index Terms—spectral CT, image reconstruction, tensor
decomposition, total generalized variation.

I. INTRODUCTION
Photon-counting detector (PCD) based spectral CT has

attracted an increasing attention [1]. However, a single energy
bin contains only a fraction of the total photon, and most PCDs
can only accommodate a limited count rate, the multiple
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projection datasets obtained by PCD usually contain very
strong Poisson noise [2]. This makes it difficult to meet the
challenges of practical applications.

Inspired by the image domain non-local feature similarity,
Zhang et al. extended the traditional vectorized dictionary
learning to tensor dictionary learning (TDL) for spectral CT
reconstruction. The TDL based reconstruction algorithms for
spectral CT have some limitations [3]. When the noise is too
large, it is impossible to distinguish the noise from the
organizational structures. And block artifacts appear in the
reconstructed images. Recently, tensor decomposition methods
are widely used in image denoising. A high dimensional tensor
can be represented approximately by the weighted sum of a
series of low-rank tensor data, leading to effective noise
suppression and artifact reduction.

The correlation of reconstructed image in each spectral
channel has attracted more and more attention. Rigie and Rivier
developed a spectral CT reconstruction method based on vector
total variation (VTV) [4], which combines the nuclear norm to
promote the sparsity of the multi-channel gradient vector field.
Knoll et al. used the second-order total generalized variation as
a special multi-channel regularization function (MTGV), and
the structural information was shared in the process of
reconstruction while the unique differences were retained [5].

In order to make better use of sparsity in the image domain
and the correlation of the reconstructed image for multi spectral
channels, we propose a spectral CT reconstruction algorithm
based on joint multi-channel total generalized variation and
tensor decomposition, and we call it MTGV-TD.

II. MODELS AND METHOD

A. Joint multi-channel TGV regularization based on nuclear
norm

In 2014, Rigie and Patrick extended the single-channel
gradient vector to the vector field and defined the discrete
Jacobian matrix in the following form:
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where T
1 2( , , , ) L

L U �u u u u" .

When two images have the same curve, the two images
have the same direction gradient and the converse is also true
[6]. If all the gradient vectors of each channel image are parallel
or antiparallel, then the rank of the Jacobian matrix will be 1.
Hence, there will be only one non-zero singular value. Based on
those facts, if the image gradients of each channel are parallel,
the nuclear norm will be minimized. Our algorithm will extend
the total generalized variation to the vector:
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Frob� is the sum of squares of all elements in the matrix (the
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where x
�w ， y

�w Represents the first order backward difference
between horizontal and vertical directions， ij U�w .

B. Tensor Decomposition
Tensor decomposition has been widely used in image

reconstruction and image processing, etc. Usually, there are
two main tensor decomposition methods: the Tucker
decomposition and the Candecomp/Parafac(CP) decomposition.
Here, we only address the CP decomposition.

CP decomposition can decompose a Nth tensor χ into the
weighted sum of rank-one tensors, which can be expressed as
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where hO is the weight function， 1 , (n 1,2, , N)n
nha R�  " is a

normalized vector and the symbol “ q ” represents the outer
product. The sparsity level of representation can be controlled
by adjusting the parameter H. We can apply tensor
decomposition for image restoration. The mathematical model
can then be expressed as

2

1 2arg min . . [[ ; , , , , , ]]n NF
s t A A A AO�  " "χ χ χ (6)

where χ and χ are the corrupted and restored

images,respectively. χ can be obtained using the ALS method
by solving each nA alternatively [7].

C. Mathematical Model for MTGV-TD
In this algorithm, tensor decomposition is used to improve

the image blocks quality, and joint multi-channel TGV function
is sharing information between channels. Combining
multi-channel TGV function and tensor decomposition a
spectral CT reconstruction algorithm is proposed. Its objective
function can be expressed as the following convex
minimization problem:
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where 1 2( , , , )S x x x x" , 1 2( , , , )S y y y y" , S indicates the
number of channels, ix ( 1,2, )i S " represents the
reconstructed image in ith energy channel, iy ( 1,2, )i S "
represents the projection data in ith energy channel，C and

cZ denote the group number and group extraction operator.

D. Solution
Refer to (7), there are two variables that need to

optimization. We divides it into the following two
sub-problems and then adopts the method of alternating
optimization to solve them :
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By introducing variables, equation (7a) is transformed into
a constrained problem, which can be summarized as:
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. Equation (8) can be converted into another unconstrained
optimization function

:
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Equation (9) contains two variables, which are optimized
by using the method of alternating iteration. Equation (9) is
divided into two sub-problems:
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Gradient descent method is adopted to solve equation (10),
then:
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A first-order Primal-Dual algorithm is used to
approximate the global optimal solution of equation (11) [8].

Because each group is independent regarding the
optimization process, equation (7b) can be rewritten into
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Equation (13) is solved by using ALS method [7].

III. EXPERIMENTAL RESULTS
The major goal of this paper is to evaluate the

performance of the MTGV-TD for spectral CT. The
algorithms of SART, TV, TDL and NTGV are implemented
for comparison [9,10] . All the algorithms are implemented in
a hybrid mode of Matlab and C++. While the interface is
implemented in Matlab, all the extensive computational parts
are implemented in C++ and complied via MEX function.

Fig.1 Spectrum used for numerical simulation
A numerical mouse thorax phantom generated by the

MOBY software is used for simulation experiments and 1.2%
(by volume) iodine contrast agent is introduced into the blood
circulation. The model size is 20 × 20 mm2 , and the resolution
is 512 × 512. The scanning radius is 100 mm, and the length of
virtual detector located at the center of the object is 20 mm.
There are 320 detector units in total, each of which is
0.0625mm. The voltage is 50kVp and energy spectrum is
divided into five energy channels: WE1 = {11keV-26keV},

WE2 = {27keV-30keV},WE3 = {31keV-34keV}, WE4=
{35keV-39keV} and WE5 = {40keV-50keV}, as shown in
figure 1. In the simulation experiments, an isometric fan-beam
scanning is adopted. For each X-ray path, 50000 photons are
assumed emitted from the X-ray source. The projection data
with Poisson noises are generated with expectations being the
number of photons received in the corresponding noise-free
case. The parameters used in this algorithm are =50O , =0.8E ,
=0.2P , C=120 .

In this experiment, Table 1 shows the comparison results
of PSNR, NRMSE and SSIM values between reconstructed
images and comparison images in representative channels with
full scan 360 projections. It can be seen from table 1 that the
reconstruction accuracy of MTGV-TD is superior to the
comparison algorithms for all the channels. Fig. 2 gives the
corresponding reconstructed images of channels 1, 3 and 5.

From figure 2, one can see that SART algorithm has
strong noise in image reconstruction. Image blurring and detail
missing appear in TV algorithm, and it is difficult to
distinguish noise from details. The overall denoising ability of
TDL is weaker than that of MTGV. The reconstructed image
of the MTGV algorithm shows that it can guarantee clearer
edges while denoising. The proposed MTGV-TD algorithm in
this paper reconstructs the image with clear edges and obvious
details, and it achieves better noise reduction effect and detail
preservation ability. Fig.3 shows the comparison results of
PSNR, NRMSE and SSIM values between reconstructed
images and comparison images with 360, 180, 120, and 90
uniformly sampled full scan projections. It can be seen that the
reconstruction effect will become better with the increase of
projection number.

IV. CONCLUSION
In this paper we propose a spectral CT reconstruction

algorithm based on tensor decomposition and joint
multi-channel total generalized variation. The algorithm
improves the reconstructed image quality by using the image
domain sparse condition and the information correlation
among channels. The experiment results show this method can
not only effectively suppress the noise, but also protect the
edge and detail features of the images.
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Table.1 Quantitative evaluation results of different algorithms
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Trade-offs between redundancy and increased rank
for tomographic system matrices

Feriel Khellaf and Rolf Clackdoyle

Abstract—In this paper we examine whether increasing the

rank of a tomographic system matrix by slightly changing

the measurement lines might improve the reconstructed image

quality in region-of-interest (ROI) tomography. The image quality

is assessed by the size of the reconstructible region and by the

reconstructed noise of the pixels in that region. A theorem is

presented to specify cases when changing elements in the system

matrix leads to solving new pixels. Numerical simulations were

performed on several modest sized examples to measure the bias

and variance of the reconstructed images using system matrices

with the same size but different rank. The results show that while

increasing the rank might help to solve new pixels, it can also

lead to increases in the pixel variances of the initial ROI.

I. INTRODUCTION

Region-of-interest (ROI) tomography consists of recon-
structing only a part of the whole image from truncated
data [1]. Truncated data arises when the patient is not com-
pletely inside the field of view (FOV). ROI tomography can be
useful to reduce the radiation dose given to the patient or for
partial reconstruction when the patient is larger than the FOV.
The reconstructible ROI depends on the acquired projection
lines, described in the system matrix mapping the image to
the measurements.

We investigate how small modifications of the acquired
projection lines might improve ROI reconstruction. One im-
provement could be the size of the ROI, i.e. the number of
reconstructible pixels. Another improvement might be in the
reconstruction noise, as described by the pixel variances in the
ROI. Our previous work [2] has shown that a tiny change in
the system matrix elements might lead to a large improvement
of the variance in the ROI when this change causes the rank
of the system matrix to drop. Those results were in line with
a previous theorem about the the impact of new data on the
reconstruction quality [3]. In this paper, we derive a theorem
specifying how changes in the system matrix can increase
the size of the ROI, and show that a trade-off must be made
between the size of the ROI and the reconstruction noise.

II. MATERIALS AND METHODS

A. Theory
Let us consider the m ⇥ n system matrix S defined such

that rank(S) < n. The linear system

y = Sx (1)

This work was partially supported by grants ANR-17-CE19-0006 (ROIdoré
project) and ANR-21-CE45-0026 (SPECT-Motion-eDCC) from the Agence
Nationale de la Recherche (France).

F. Khellaf, and R. Clackdoyle are with Univ. Grenoble Alpes, CNRS,
Grenoble INP, TIMC-IMAG, 38000 Grenoble, France.

with x 2 Rn the image vector and y 2 Rm the measure-
ments vector, does not have a unique solution, although some
components of x (some pixels) might be uniquely determined.
Those elements correspond to the ROI pixels. In this model,
Sij represents the length of the intersection of line i with
pixel j, assuming unit pixels. Note that there might be linear
dependencies between the rows of S, i.e. the rank of S could
be smaller than m. Now we consider the m ⇥ n matrix C
defining the linear system

z = Cx (2)

(for the same x as in equation (1)), such that S and C are
equal except for one element. Consequently,

rank(S)� 1  rank(C)  rank(S) + 1 (3)

i.e. changing one element in S might increase the rank by one,
decrease it by one, or not change the rank. We establish the
following theorem

Theorem. Let S be a m⇥ n matrix. If there exists a m⇥ n
matrix C such that Cij = Sij for all (i, j) 6= (a, b) and
rank(C) = rank(S) + 1, then (i) C can uniquely determine
at least the bth component of x, and (ii) S cannot uniquely
determine the bth component of x.

Note that C might also have a non-trivial nullspace, (i.e.
rank(C) < n), but xb would nevertheless be solvable. Note
also, that only one element of S is allowed to change. The
example in the appendix shows that the theorem fails if the
rank increases by one, but that S and C differ by more than
one element.

Proof. (i) We first note that the change in rank means that S
and C cannot be the same matrix, and therefore Sab 6= Cab.
We will show that there exist scalars {�i}i=1,2...m such that

xb =
nX

i=1

�izi (4)

and thus xb, can be uniquely determined from (2).
The only difference between y and z is the ath measure-

ment, given by

ya =
nX

j=1

Sajxj (5)
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for y and

za =
nX

j=1

Cajxj

=
nX

j=1
j 6=b

Sajxj + Cabxb

(6)

for z. Subtracting (6) from (5) gives

ya � za = (Sab � Cab)xb (7)

On the other hand, since S and C are the same size, if
rank(C) = rank(S) + 1, then there is a linear dependency
between the rows of S. More specifically, if a change only in
row a increases the rank, then that row is a linear combination
of the other rows. (Recall that the rank of a matrix equals the
dimension of the row-space.) Writing S(i) for the ith row of
S, we have, for some m� 1 scalars {↵i}i=1,2...m;i 6=a,

S(a) =
mX

i=1
i 6=a

↵iS
(i) (8)

and since yi = x · S(i) we see that

ya = x · S(a) =
mX

i=1
i 6=a

↵ix · S(i) =
mX

i=1
i 6=a

↵ix · C(i)

=
mX

i=1
i 6=a

↵izi

(9)

So, the difference between the two measurements is

ya � za =
mX

i=1
i 6=a

↵izi � za (10)

Combining (7) and (10) gives

xb =
1

Sab � Cab

⇣ mX

i=1
i 6=a

↵izi � za
⌘
=

mX

i=1

�izi (11)

where the �i are defined by the right hand equality of (11)
since Sab � Cab 6= 0. Therefore, the component xb can be
determined from the zi measurements.

(ii) We will prove the contrapositive: if xb can be found
using (1) then changing S to C will not increase the rank.

We define eb 2 Rn to be all zeros, except the bth compo-
nent, where it is one. Thus x · eb = xb. Now since xb can be
solved from (1), there must exist scalars {�i} such that

xb =
mX

i=1

�iyi =
mX

i=1

�i(x · S(i))

= x · (
mX

i=1

�iS
(i))

(12)

and since (12) holds for all x 2 Rn, we must have

eb =
mX

i=1

�iS
(i) (13)

which equivalently says that row-reducing the matrix S will
result in one of the rows becoming eb.

We now observe that C(a) is a linear combination of S(a)

and eb, and note that eb is a linear combination of the rows of
S (see (13)). Every row of C can therefore be obtained from a
linear combination of the rows of S, so the rank of C cannot
exceed the rank of S (the dimension of the row-space of C
cannot exceed the dimension of the row-space of S).

We have shown that, if xb is solvable from S (and S
and C are the same matrix except for element Cab) then C
cannot have higher rank than S. Equivalently, if rank(C) =
rank(S) + 1, then xb cannot be uniquely determined from
S.

Corollary. If C is such that Cij = Sij for (i, j) 6= (ak, bk)
for k 2 {1...K} and rank(C) = rank(S) + K, then C
can uniquely determine at least the K bk components of x,
and these K components were not uniquely solvable using S.
Furthermore the K matrix elements that changed all lie on
different rows and different columns (ak 6= al and bk 6= bl for
k, l 2 {1 . . .K}).

Proof. For the rank to increase by K, at least K rows of
the matrix must have changed. But with only K changes
of the matrix, each changed element must have been on a
different row. Similarly, since the rank is also equal to the
dimension of the column space, the same argument applies to
the columns, and each changed element is in a different col-
umn. The corollary is now obtained by successively applying
the theorem. We recall that changing one element of a matrix
can cause the rank to change by one at most, i.e. if K = 1,
rank(C)  rank(S) + 1. Therefore, as K changes in the
matrix cause rank(C) = rank(S)+K, each changed element
(ak, bk) must have increased the rank by 1, and, according to
the theorem, lets us determine the bk component of x, and bk
was not solvable before the change.

Remark. It is easily seen that if S can uniquely determine
some components of x, then C can also determine those same
components, as well as the additional component(s). In short,
under the hypotheses of the theorem, matrix C can always
determine more components than S can.

In the following sections, we illustrate the theorem and the
corollary with several examples.

B. Small-scale examples
We define the following 8⇥ 9 system matrix

S =

0

BBBBBBBBBB@

1 1 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1
0 A 0 A 0 0 A 0 0
A 0 0 0 A 0 0 A 0
0 0 A 0 A 0 0 A 0
0 0 0 A 0 0 A 0 0
0 0 0 0 0 A 0 0 A

1

CCCCCCCCCCA

(14)

with A =
p
5/2, which allows exact reconstruction of the first

three elements of x (almost the same matrix was used in [2]).
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Fig. 1: Projection lines corresponding to the system matrix S. The red
lines correspond to the 7th and 8th rows, and the dotted lines to the new
measurements after changing one element in each row.

The 8 corresponding projection lines are shown in Fig. 1. The
matrix S is rank deficient with rank(S) = 6. Now we define
a matrix C such that(

Cij = A/2 if (i, j) = (8, 6)

Cij = Sij otherwise.
(15)

and rank(C) = 7. This change corresponds to a downwards
half pixel translation of the eighth projection line (see Fig. 1).

We took a n ⇥ 1 image vector x with values between 0
and 10, and simulated noiseless measurements according to
equations (1) and (2). The values in the 3⇥ 3 image were

x =

0

@
5.75 7.43 0.50
9.88 3.57 8.79
0.37 1.24 6.32

1

A . (16)

The estimated image x̂ was reconstructed by applying the
pseudo-inverse of the system matrices. The absolute bias

|x̂j � xj | (17)

for each reconstruction was computed in order to establish
which pixels xj were correctly determined, a bias of zero
corresponding to a correct reconstruction. The results, shown
in Table I confirmed that, as expected, pixels {x1, x2, x3}
can be reconstructed from both S and C. Also, the matrix
C uniquely determines pixel x6 as predicted by the theorem,
given that the only different element between S and C was
(8, 6). In addition, pixel x9 was fortuitously reconstructed
exactly, since the eighth projection line only crossed pixels
x6 and x9.

In order to evaluate the variance of the estimated pixels,
the measurements were repeated 105 times with additional
Gaussian noise of variance �2 = 1. In Table I, it is observed
that the variance of pixels x1 to x3, which are the only ones
correctly reconstructed by both S and C, increased when C
was used for reconstruction. The increase was by as much as
50% for pixel x3. The variances of the new reconstructible
pixels, x6 and x9, were larger with C, but their previous
variances were not relevant since they were not accurately
reconstructible anyway (the pseudo-inversion produced a large
bias).

In order to illustrate the corollary, we performed the same
experiment with C defined as

(
Cij = A/2 if (i, j) = {(7, 4), (8, 6)}
Cij = Sij otherwise.

(18)

TABLE I: Bias and variance of the estimated solution using either S or C.

S C (Eq. 15) C (Eq. 18)
Bias Var. Bias Var. Bias Var.

Pixel 1 < 10�14 0.47 < 10�15 0.47 < 10�14 0.49
Pixel 2 < 10�14 0.80 < 10�14 0.89 < 10�14 1.08
Pixel 3 < 10�15 0.62 < 10�14 0.93 < 10�14 1.02
Pixel 4 4.75 N/R 4.75 N/R < 10�14 6.45
Pixel 5 1.16 N/R 1.16 N/R 1.16 N/R
Pixel 6 1.23 N/R < 10�16 10.9 < 10�13 11.35
Pixel 7 4.75 N/R 4.75 N/R < 10�13 3.99
Pixel 8 1.16 N/R 1.16 N/R 1.16 N/R
Pixel 9 1.23 N/R < 10�16 5.14 < 10�16 5.25

Fig. 2: Shepp-Logan phantom. The three blue lines correspond to the
projection lines in S that were changed.

resulting in rank(C) = 8 (see Fig. 1).
According to the corollary, the matrix C should be able to

determine pixels x4 and x6, which was confirmed by the zero
bias for these two pixels in Table I. Two additional pixels, x7

and x9, were also accurately reconstructed. On the other hand,
the variances for pixels {x1, x2, x3} have increased even more
(by as much as 65% for pixel x3).

C. Medium scale example

We performed the same experiment but for a larger 32 ⇥
32 image of the Shepp Logan phantom (Fig. 2). We built a
396 ⇥ 1024 system matrix S of rank 369 which was able to
accurately reconstruct a 16⇥ 16 ROI in the upper left corner
of the image. Similar to the small-scale example, we built the
matrix C by changing K elements (one per row). We chose
K = 3, such that rank(C) = 369+ 3 = 372. Specifically, the
changes occurred in columns 257, 272, and 513. The three
projection line that were changed in S are shown in Fig. 2.

The bias maps between the reconstructions (without simu-
lated noise) using either S or C and the reference phantom are
shown in Figure 3. The pixels in the upper left corner of the
reconstructed image using S appear in blue, corresponding to
a very small bias, hence they are accurately reconstructed. As
expected, the 3 pixels corresponding to the changed columns
257, 272, and 513, were also accurately reconstructed with
matrix C. Additionally, figure 3 shows that pixel 514 (to the
right of pixel 513) was also accurately reconstruced using the
matrix C.

The differences between the variances of the pixels in the
upper left 16⇥ 16 ROI reconstructed using either S or C are
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Fig. 3: Absolute bias between the reconstructed image using S (left) or C
(right) and the reference Shepp Logan phantom. Note the logarithmic scale.

Fig. 4: Top left: variance in the 16⇥16 ROI reconstructed with S. Top right,
bottom left, bottom right: profiles through the 8th, 12th, and 16th row of the
variance map using either S or C.

shown in Fig. 4. For all pixels in the ROI, the variance was
larger when C was used to reconstruct the image.

III. DISCUSSION

Our results have shown that, while increasing the rank of a
matrix by changing its elements might increase the number of
reconstructible pixels, it can also lead to a larger variance in
the initial ROI. Therefore, a trade-off must be made between
the size of the ROI and the reconstruction noise. For an m⇥n
matrix, increasing the rank means increasing the number of
independent equations and potentially solving a new variable.
On the other hand, a rank deficient matrix contains redundant
information, i.e. a possible smaller variance for the variables
that can be solved.

The proposed theorem specifies when changes in the matrix
will solve new variables, but is limited to one change per
row. In practice, only projection lines close to the edge of the
image can be modified since only one value in the system
matrix is allowed to change. In our examples, the K new
reconstructible pixels predicted by the theorem were all at
the edges of the image, although other pixels can also be
reconstructed. Nevertheless, increasing the rank of a matrix
(while keeping its size constant) will increase the chance of
solving new variables, while reducing the number of redundant
measurements that might have been used to reconstruct ROI
pixels.

Fig. 5: Projection lines corresponding to the 4⇥ 4 system matrices. The full
red line represents the last row of S and the dotted line the last row of C.

IV. CONCLUSION

A theorem specifying when a change in a tomographic
system matrix can help solve new pixels has been proven.
The study of the bias and the variance of the reconstructed
images has shown that the additional reconstructible pixels
might come at the cost of a reduced variance in the original
ROI.

V. APPENDIX

Here we show that the hypothesis of the theorem, that only
one element must differ between S and C, cannot be relaxed
for the conclusions of the theorem to hold. We give an example
of matrices S and C of size 4 ⇥ 4 such that rank(S) = 2
and rank(C) = 3 but no component of x can be uniquely
reconstructed using either S or C. Two of the matrix elements
of C differ from those of S. This example illustrates that, to
apply the theorem, only one element of the matrix is allowed
to change, when the rank increases by 1.

The example corresponds to a very simple tomographic
system with x representing a 2 ⇥ 2 image. Using the same
value of A =

p
5/2, we define S as

S =

0

BB@

1 1 0 0
0 0 1 1
A A 0 0
0 0 A A

1

CCA (19)

and for the matrix C the last row is replaced by (A 0 0 A).
The system is shown in Figure 5.

It is easy to see that rank(S) = 2 and rank(C) = 3 and
that no component of x can be determined using matrix S.
For the matrix C, the one-dimensional nullspace is spanned
by the vector (1,�1, 1,�1) and therefore no component of x
can be uniquely resolved when using the matrix C.
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 Abstract— Hemorrhagic stroke accounts for up to 20% of all 
stroke cases, and requires a treatment pathway drastically 
different to ischemic stroke. Prompt triage is therefore crucial and 
often only attainable with neuroimaging for intracranial 
hemorrhage (ICH) evaluation, for which MDCT is the frontline 
modality. Availability of ICH dedicated imaging in the pre-
hospital setting, with portable CT systems, would facilitate early 
ICH diagnosis. However, current CT or cone-beam CT (CBCT) 
approaches often use conventional x-ray sources mounted on a 
rotating gantry limiting their minimum weight and footprint. 
Recent advances on cold-cathode, compact x-ray sources, based on 
carbon nanotube (CNT) technology, enable the development of 
ultra-compact designs based on source-array arrangements on 
stationary configurations. However, such geometrical 
arrangements show limited angular sampling, and sparse, non-
stationary, volume sampling. 
In this work we present first investigation of geometric 
configuration and effects of 3D sampling pertinent to the task of 
ICH detection on an ultra-portable stationary CBCT for ICH 
imaging. The baseline configuration included 31 CNT sources on 
a curved array illuminating a curved panel detector (871 mm 
length), on a compact geometrical configuration (SDD = 690 mm). 
Metrics of sampling completeness, sampling density, and MTF 
shape and band-width integral were explored for configurations 
varying in source angular span (30°-170°), source array and 
detector curvature radius (250 mm to flat), use of 2D matrix source 
arrangements, and multi-acquisition protocols. The results show 
that sufficient sampling and resolution can be achieved with a 
combination of moderate curvature (~450 mm radius) of the 
source array and detectors, with better sampling properties for 
approximately matched curvature radii (up to 30% BWI 
improvement). Improved image quality was demonstrated with 
configurations featuring matrix source arrangements in 
combination with multi-acquisition protocols (around a 6% of 
improvement in sampling completeness). 
 

Index Terms—Brain imaging, CBCT, Tomosynthesis. 

I. INTRODUCTION 
ntracranial hemorrhage (ICH) presents a medical emergency 
often caused by head trauma or hemorrhagic stroke [1]. ICH 

accounts for up to 20% of all strokes [2], affecting 2 million 
people/year [3]. Promising therapeutic options have opened for 
treatment of acute ICH, involving aggressive supportive care 
and reversal of coagulopathy [4], with greater benefit for 
immediate treatment start, following the concept of “time is 
brain” [4]. Effective triage between hemorrhagic and ischemic 
stroke, based on neuroimaging, should be done as early as 
possible, preferably in the ambulatory or emergent, pre-hospital 
setup. To meet this need for pre-hospital imaging, several 
approaches to portable systems have been proposed in previous 
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work, often based on cone beam CT (CBCT) designs some 
suitable to installation on mobile units [5], or the emergency 
room [6]. Such designs were often based on conventional CT or 
CBCT designs with enhanced portability, but required a 
rotating gantry system and used conventional x-ray sources that 
limited their portability and footprint. Recent advances in cold-
cathode x-ray sources, such as those based on carbon-nanotube 
technologies (CNT), yielded improved stability and durability, 
and allowed the design of compact, light-weight sources that 
can be combined into linear or matrix arrangements [7]. Such 
arrangements can be integrated into stationary systems with 
extremely compact acquisition geometry and simple 
mechanical design, with recent examples in baggage inspection 
[7] and dental imaging [8]. Further reduction in system footprint 
could be attained in combination with novel curved detector 
designs. However, the capability of such systems to provide 
sufficient image quality for ICH visualization remains an open 
question, largely attributable to limited angular sampling; 
sparse, non-stationary, volume sampling; and effects of scatter 
in such compact configurations. 

 
Fig. 1.  a) Schematic representation of the stationary scanner configuration, 
featuring a curved 1D array (with extension to 2D matrix configurations) of 
CNT sources placed in opposition to a static flat-panel detector with variable 
curvature. The scanner configuration was optimized as a function of the 
variable parameters listed in the schematics (Δ𝛼, RD, Rs, Δ𝑧, Δ𝑦). b) Artistic 
depiction of an example configuration of the stationary head scanner, featured 
as installed on an ambulance or mobile stroke unit. The CNT sources (see 
detail) are arranged in a curved array opposed to a curved flat-panel detector, 
following the general configuration in a). 
In this work we present first investigation of geometric 
configuration and effects of 3D sampling pertinent to the task 
of ICH detection on an ultra-portable stationary CBCT for ICH 
imaging, designed for installation in mobile setups (Fig. 1B). 
Sampling, artifacts, and spatially-varying, directional, image 
resolution were characterized for a range of system 
configurations. Alternative linear and matrix source arrays and 
multi-exposure acquisition protocols were evaluated in 
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simulation studies.  

II. METHODS 

A. Simulation setup for system optimization. 
The configuration of the stationary head CBCT is illustrated in 
Fig.1A. The design included 31 CNT x-ray sources arranged 
along a curved array, at equiangular increments. The source 
arrangement was placed in direct opposition to a curved flat-
panel detector of 837 mm size in the lateral direction (x) and 
421 mm in the superior-inferior (SI) direction (z), with 1395 x 
702 pixels (0.6 mm x 0.6 mm pixel size). The center of the 
world coordinate system was placed at the center of the patient 
head. To allow sufficient space for positioning of the head on a 
head rest, the center was placed 221 mm away from the detector 
surface (analogous to the axis-to-detector distance – ADD – 
often invoked in conventional CBCT). The distance between 
the center of the coordinate system and the source array (viz., 
source-to-axis distance – SAD – in CBCT) was set to 469 mm, 
yielding a source-to-detector distance (SDD) of 690 mm, 
compatible with the stringent footprint requirements for on-
board systems on mobile medical units. 
Variable parameters in the optimization studies included: i) the 
curvature of the source array, denoted Rs, defined as the radius 
of the circumference arc followed by the array (Fig. 1A), and 
ranging from a linear array with Rs = ∞ to a compact curved 
array with Rs = 250 mm; ii) the detector curvature, denoted Rd 
(Fig. 1A), defined in an analogously to Rs, and ranging from a 
conventional flat-detector configuration (Rd = ∞) to a curved 
detector with Rd = 250 mm, while maintaining a constant length 
of 837 mm for the curved segment; and, iii) the angular span of 
the source array (Δ𝛼, see Fig. 1A) varied between 30° and 165° 
for a nominal source curvature of Rs = 469 mm (resulting in an 
arrangement centered at the origin of coordinates). 
Configurations featuring matrix source arrangements in the 
form of two parallel curved arrays were simulated by translating 
each source in consecutive pairs in opposite directions along the 
SI axis (z) by a distance Δ𝑧 ranging from 0 mm to 40 mm. Even 
(odd) sources were shifted towards positive (negative) z values. 
Final configurations studied potential improvement from multi-
acquisition protocols in which two datasets were obtained with 
a linear translation of the patient head in the antero-posterior 
(AP) direction (y) between 0 mm and Δ𝑦 = 20 mm.  
Optimization studies used a realistic simulator for primary 
signal [9], including polychromatic source spectra and energy-
dependent material properties and detector response. Current 
studies were focused on pure sampling effects and did not 
include effects of x-ray scatter and system noise. The 
simulations used a head phantom imaged with high-resolution 
MDCT and featuring natural bone skull and sinuses structure 
and a homogeneous brain parenchyma with 0 HU attenuation. 
ICH was simulated with synthetic spherical bleed inserts with 
60 HU contrast and 8 mm diameter, placed on a regular grid 
lattice with 16 mm spacing. The head was positioned with a 45° 
tilt along the 𝑧 axis, aligning the central scan plane with a plane 
joining the posterior skull base with a frontal brain region. The 
x-ray source spectrum was simulated with the Spektr [10] 
TASMICS model for 100 kV (+2 mm Al, + 0.2 mm Cu added 
filtration). The detector model featured a flat-panel detector 
with a 250 mg/cm2 CsI:Tl scintillator. 

B. Model Based Iterative Reconstruction. 
Image reconstruction used a Penalized Weight Least Squares 
(PWLS) algorithm that can accommodate non-conventional 
sampling patterns [11], such as those arising in the proposed 
stationary configurations. Reconstructions were obtained 
minimizing the following PWLS cost-function. [12] 

𝜇 = arg𝜇≥0 min ||𝐀𝜇 − 𝑙||
𝑤
2 + 𝛽𝑅(𝜇) (1) 

where A denotes the projection operator, l are the raw line 
integrals, and w are stochastic weighting terms that minimize 
the contribution of noisy measurements. In this work we model 
w with the raw measurements, commonly used as a surrogate of 
measurement variance. To avoid sharp transitions in presence 
of truncation, w values adjacent to the detector lateral edge were 
tapered following a ERF function with V = 2 mm[13]. 𝑅(𝜇) is an 
image roughness quadratic regularization term weighted by the 
scalar 𝛽, set to a nominal value of 𝛽 = 10-3. To induce consistent 
regularization across configurations, the value of E was scaled 
by a factor of 2 for multi-acquisition protocols to compensate 
for the double number of views included in such protocols. 
Reconstructions were obtained on a 390 x 696 x 696 voxels grid 
(0.5 mm isotropic size) for 1000 iterations. 

C. Metrics of sampling completeness and image quality. 
Imaging performance was assessed in terms of voxel sampling 
density, sampling completeness, and local spatial resolution 
properties. Local sampling density was estimated as the number 
of rays (i.e. source views) contributing to an individual voxel j, 
normalized by a nominal value of 360 for a full conventional 
CBCT scan, yielding 𝜌𝑠𝑎𝑚𝑝(𝑗) = 𝑁𝑣𝑖𝑒𝑤(𝑗) 360⁄ . 
Effects of limited angular sampling were evaluated by the local 
sampling completeness (Δ𝐴), estimated as the angular span 
covered by the rays contributing to a voxel, normalized by the 
180° span required for artifact-free tomographic reconstruction. 
Defining 𝜃0 and 𝜃𝑓 as the angle between the x axis and the first 
and last views contributing to voxel j, completeness was 
computed as  Δ𝐴(𝑗) = |𝜃0(𝑗) − 𝜃𝑓(𝑗)| 180⁄ .  
While spatial resolution properties of the volume obtained with 
model-based iterative reconstruction methods are non-
stationary and generally difficult to predict, approximations 
invoking local stationarity have been shown to provide accurate 
estimations of the local MTF in PWLS with locally smooth 
(quadratic) penalty designs. Local MTF was estimated using the 
model in [14], which for a voxel 𝑗 inside a homogeneous region 
is given by: 

𝑀𝑇𝐹𝑗 =
ℱ{𝑅𝑂𝐼𝑗{𝐀𝐓𝐁𝐖𝐀𝑒𝑗}}

ℱ{𝑅𝑂𝐼𝑗{𝐀𝐓𝐖𝐀𝑒𝑗 + 𝐑𝑒𝑗}}
 (2) 

where 𝐀𝐓 is the backward projection operator, 𝐖 is the diagonal 
matrix containing the PWLS weighs, and 𝐑 is the Hessian of 
the PWLS quadratic penalty. 𝐁 is a system blurring factor, 
obtained as in [14], and 𝑒𝑗 represents a Kronecker delta at voxel 
𝑗. To evaluate the resolution properties across configurations 
we qualitatively assessed the shape of the resulting MTF, while 
quantitative assessment was obtained with a version of a 
modified version of the Band Width Integral (BWI) in [15]: 

BWI = 100 ×
∫ 𝑀𝑇𝐹2𝑑𝜔𝜔𝑓

𝜔0

∫ 𝑑𝜔2𝜔𝑓 
𝜔0

 (3) 
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The integration limits were set to 𝜔0 = 0.2 mm-1 and 𝜔𝑓 = 0.6 
mm-1 pertinent to visualization of mid-size hemorrhage 
modelled with Gaussian kernel with 𝜎 = 4 mm. Sampling and 
resolution metrics, were evaluated for three regions of interest 
(ROIs), at the anterior, central, and posterior regions of the 
brain (see Fig. 1A). 

III. RESULTS 

A. Stationary Tomography Geometrical Configuration. 
Fig. 2A illustrates voxel sampling completeness (Δ𝐴) for the 
three ROIs as a function of the angular span (Δ𝛼) of the source 
array, for a fixed  Rs = 469, and three detector curvatures: i) a 
flat-panel configuration (Rd = ∞); ii) a moderate curvature (Rd 
= 650 mm); and iii) a curved, compact, detector (Rd = 450 mm). 
Large values of Δ𝛼 resulted in significant the truncation of the 
anterior regions of the head for certain views, evidenced as a 
reduction of Δ𝐴 for Δ𝛼 > 80° and Δ𝛼 > 100° for Rd = ∞ in the 
anterior and central ROIs, respectively. Curved detectors 
offered improved sampling completeness for those regions, 
showing a plateau at Δ𝐴 ≅ 0.7 for Δ𝛼 > 120°, for the anterior 
ROI, compared to Δ𝐴 ≅ 0.6 with Rd = ∞, with slight better 
performance for Rd = 450 mm. A similar trend was observed for 
the central and posterior ROIs. 

 
Fig. 2.  a) Voxel sampling completeness as a function of sources angular span, 
for three detector curvatures, Rd = ∞, Rd = 450 mm,  and Rd = 650 mm. Curves 
represent the mean value while error bars mark the 80% confidence interval 
within the ROI. b) Axial and coronal MTF for varying source angular span at a 
fixed detector curvature of Rd = 450 mm. Numerical values in the MTFs show 
the mid-band BWI.  

MTF distributions in the axial and coronal planes are shown in 
Fig. 2B, for Rd = 450 mm, for the three ROIs, and for angular 
spans around the region where sampling completeness becomes 
flat in Fig. 2A: Δ𝛼 of 90°, 120°, and 150°. As hinted by trends 
in Δ𝐴, we observe a reduction of the MTF shade region between 
Δ𝛼 = 90° and Δ𝛼 = 120°, yielding an increase of 10%, 30%, and 
25% in mid-band integrated MTF for the anterior, central, and 
posterior ROIs, respectively. The gains in directional resolution 

are less apparent for angular span Δ𝛼 > 120°, except for the 
posterior region, that sees increased completeness and a 
reduction of the MTF shade region. However, such gains come 
accompanied by the appearance of high-frequency structures in 
the frontal region, associated to streak artifacts from increased 
truncation of intricate frontal maxillofacial bone anatomy.  

 
Fig. 3.  a) Mean sampling density and angular span for the anterior ROI b) MTF 
as a function of sources and detector curvature for the anterior ROI. Numerical 
values in the MTFs correspond to the BWI along a mid-frequency band (0.2 
mm-1 - 0.6 mm-1). c) Reconstructed images for different combinations of 
sources and detector curvatures, for a very compact, curved geometry (left), a 
moderately curved geometry (middle), and a configuration with a linear array 
of sources and a flat-detector yielding a linear tomosynthesis configuration. 

Fig. 3 illustrates the impact of varying the curvature of the 
detector and arc of sources for a configuration with an arc 
length of the compromise setup with Δ𝛼 = 120° arising from 
results in Fig. 2. The range of curvature explored ranged for 
very compact arrangements (Rs = Rd = 250 mm), to extended 
arrangements pertinent to linear tomosynthesis (Rs = Rd = ∞)  
The results in Fig. 3A suggest increased sampling density and 
completeness for very compact configurations, increased 
truncation of anterior bone regions result in high frequency 
streak patterns in the MTF that can be observed as increased 
high frequency artifacts and non-uniformity in Fig. 3C (top 
row). Consistent with monotonic reduction of sampling 
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completeness (Fig 3A) with increased Rs and Rd, Fig. 3B show 
a similar loss of frequency information for such combinations 
of large Rs and Rd. For example, using a linear tomosynthesis 
configuration leads to a reduction of ~10% mid-band MTF 
compared to a moderate configuration with Rs = Rd = 450 mm. 
This loss of information for very large radii resulted in limited 
angle artifacts usually observed in tomosynthesis imaging (see 
Fig. 3C). The results in Fig. 3 suggest that approximate match 
of the detector and source curvature is associated to better 
sampling properties, with mid-band MTF increases up to 25%, 
compared to configurations with large mismatch between 
detector and source curvatures. 

B. Array vs matrix source configurations. 

 
Fig. 4. Results of array (Δ𝑧 = 0 mm) vs matrix source configurations with Δ𝑧 = 
20 mm and Δ𝑧 = 40 mm. a) MTF for the central region of the brain. Numerical 
values in the MTFs correspond to the BWI along a band pass filter between 0.2 
mm-1 and 0.6 mm-1. b) Reconstructed images for different distance between 
parallel arcs. Slight improvement in shading artifacts attributable to cone beam 
effects can be observed at frontal regions close and above the orbital bone for 
matrix arrangements and large separation. However, reduced shading was 
associated to reduced contrast for bleed inserts at central regions of the brain. 

Figure 4 compares MTF and image results for 1-dimensional 
array and matrix configurations of the source arrangement. 
Matrix arrangements with an interleaved distribution of sources 
resulted in increased resolution in the SI direction, as evidenced 
by the reduction of the shade region in the coronal MTF and 
reduction of cone-beam artifacts above and around the orbital 
structures at the anterior region of the brain. However, such 
improvements were accompanied by a reduction in the overall 
contrast of the blood inserts, attributable to a reduction of local 
sampling density across the brain region. 

C. Multi-acquisition protocol. 
As illustrated in previous results, one limiting factor for image 
quality is the increased truncation of bone anatomy and reduced 

sampling density at anterior regions of the head for compact 
configurations, causing high-frequency streak-like artifacts in 
the reconstructed images. As shown in Fig. 5, the sampling 
completeness is increased by ~6% for the multi-acquisition 
protocol with Δ𝑦 > 12 mm. This improvement leads to better 
visualization of blood inserts, particularly in the anterior region 
of the brain, as seen in Fig. 5B. 

 
Fig. 5.  Performance of the multi-acquisition protocol as a function of the head 
shift distance. a) Sampling completeness as a function of head translation. b) 
Anterior region of the reconstructed images for the single acquisition protocol 
(top) and for a multi-acquisition protocol with Δ𝑦 = 14 𝑚𝑚.  

IV. DISCUSSION AND CONCLUSION 
This work studied the tradeoffs in sampling and resolution for 
a comprehensive range of geometrical configurations in 
stationary tomographic systems for imaging of hemorrhagic 
stroke. The results show that sampling and resolution sufficient 
for the task of ICH detection can be achieved with a 
combination of curved array sources arrangements and curved 
panel detectors. Better sampling properties was observed for 
approximately matched curvature radii, as evidenced by 
increase in sampling completeness and density aggregated 
metrics as well as increases in radial homogeneity of the MTF 
distributions. Improved image quality can be achieved by 
combination of matrix source configurations and multi-
acquisition protocols. The studies presented in this work did not 
consider the effects of x-ray scatter and quantum and 
instrumentation noise on image quality and focused solely on 
effects of sampling and frequency response. Scatter and noise 
are expected to pose a complex multi-variate scenario, in 
combination with sampling considerations, and are the subject 
of ongoing work.  
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Abstract—The goal of this study is to understand how the 

normalized glandular dose coefficient (𝑫𝒈𝑵𝑪𝑻) varies with 
projection angle in dedicated cone-beam breast computed 
tomography (CBBCT). Seventy five CBBCT clinical datasets from 
a research database were used for this study. All samples were 
segmented into skin, adipose and fibroglandular tissues. The 
segmented volumes were used in a Monte Carlo simulation 
package (GATE 8.0) to estimate the radiation dose at 10 angles in 
a full scan. An analytical model is proposed and this model 
predicted that the angular 𝑫𝒈𝑵𝑪𝑻 follows a sine wave and the 
maximum is related to the center of geometry of the fibroglandular 
tissue (COG୤). The angular 𝑫𝒈𝑵𝑪𝑻 from Monte Carlo simulations 
was consistent with our model and follows a sine wave with 
amplitude of 0.0376. The maximum of the wave occurs when the 
x-ray source is approximately at head position, which is consistent 
with our model. Our results indicate that the higher angular 
𝑫𝒈𝑵𝑪𝑻 occurs when the x-ray source is superior to the breast. This 
suggests using a x-ray source trajectory inferior to the breast for 
short-scan CBBCT design. 
 

Index Terms—breast CT, mean glandular dose, Monte Carlo, 
radiation dose 

I. INTRODUCTION 
he mean glandular dose in cone-beam breast CT (CBBCT) 
can be estimated by the product of normalized glandular 

dose (𝐷𝑔𝑁𝐶𝑇) coefficient and the air kerma (AK) measured at 
the axis of rotation (AOR) without any object. Monte Carlo 
(MC) simulations are the most common method to compute the 
energy deposited in the fibroglandular tissues [1]–[8]. The 
𝐷𝑔𝑁𝐶𝑇 depends on the x-ray spectrum and the breast model. 
The semi-ellipsodal breast model with a homogeneous 
distribution of fibroglandular tissue [7], [9], [10] and patient-
specific breast model [6], [7] are the two common models used 
in CBBCT studies. The former model uses the effective chest-
wall diameter (𝐷௘௙௙), the chest wall-to-nipple length (CNL), 
and fibroglandular fraction (𝑓௚) of the breast to create a semi-
ellipsoidal model, and every voxel, except the skin, has the 
same 𝑓௚. The second model segments each 3D reconstructed 
breast volume into skin, adipose, and fibroglandular tissues, in 
addition to air. The homogeneous semi-ellipsoidal model was 
found to overestimate 𝐷𝑔𝑁𝐶𝑇 because this model overestimates 
the amount of the fibroglandular tissue along the periphery of 
the breast. Since the 𝐷𝑔𝑁𝐶𝑇 homogeneous semi-ellipsoidal 

 
 

model can be described by a fitting function [11], here we focus 
on the patient-specific model in this study. 
     To our best knowledge, studies in literature only considered 
𝐷𝑔𝑁𝐶𝑇, but none have considered the variation of the 𝐷𝑔𝑁𝐶𝑇 
with the projection angles, i.e., angular 𝐷𝑔𝑁𝐶𝑇. We are 
particularly interested in 𝐷𝑔𝑁𝐶𝑇 because we have developed 
feasible image reconstruction algorithms for short-scan and 
sparse-view acquisitions [12], [13], and we would like to 
understand which angular range should be used for short-scan 
acquisition to reduce the radiation to the breast either for prone 
or upright patient-position CBBCT systems.  
     A cohort of 75 CBBCT datasets from a research database of 
subjects who had participated in a prior IRB-approved clinical 
trial was used in this study. A validated MC simulation code in 
our recent publication [10] and following the guideline of the 
Task Group No. 268 of the American Association of Physics in 
Medicine (AAPM)[14] was used here to compute the angular 
𝐷𝑔𝑁𝐶𝑇. 

II. MATERIALS AND METHODS 

A. CBBCT system 
The projections were acquired by a CBBCT system that is a 

Pre-FDA approval prototype (KBCT1000, Koning Corp., West 
Henrietta, NY). The operated x-ray tube was RAD71-SP 
(Varex Imaging, Salt Lake City, UT), and the x-ray was 
operated at 49 kV with a pulse-width of 8 milliseconds. 300 
projections with uniform 1.2 deg/view angular sampling in a 
full scan (360 deg) were performed. A CsI:Tl scintillator 
coupled, amorphous silicon-based flat-panel detector (PaxScan 
4030CB, Varex Imaging, Salt Lake City, UT) used used in the 
CBBCT system. The operating pixel size of this detector is 
0.388 mm, and the dimension of the detector is 1024×768. The 
distance between the source and the AOR is 650 mm, and the 
source-to-detector distance is 898 mm. 

B. Angular 𝐷𝑔𝑁𝐶𝑇 computation   
The breast images were all first reconstructed by our 

developed deep learning-based algorithm, multi-slice residual 
dense network (MS-RDN) [13], that reduces image noise. Then 
all MS-RDN reconstructed images were segmented into air, 
skin, adipose, and fibroglandular tissues (Fig. 1) using a 
previously reported method [15]. The CNL, 𝐷௘௙௙, and 𝑓௚ can be 
estimated from segmented images for a semi-ellipsoidal 
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homogeneous breast model.     
The 𝐷𝑔𝑁𝐶𝑇 (mGy/mGy) of the patient-specific breast model 

can be calculated as [5], [6] 
 
                           𝐷𝑔𝑁௛௘௧௘

஼் = ா೒,೏೐೛

௡೒௠೒×஺௄(ா)
                           (1) 

 
where the subscript, hete represents heterogeneous tissue 
distribution, 𝐸௚,ௗ௘௣ is the total energy deposited in all 
fibroglandular tissue voxels,  𝑛௚ indicates the total number of 
fibroglandular tissue voxels,  𝑚௚ is the mass of a fibroglandular 
tissue voxel, and 𝐴𝐾(𝐸) is the air kerma at the breast center 
with the energy, E, of the incident photons. The same 
computational method was used for calculating the angular 
𝐷𝑔𝑁𝐶𝑇. In MC simulations, all photons were radiated to the 
breast from the assigned x-ray source position (angle). The MC 
simulations were performed using the MC code (GATE 8.0) 
validated in our previous study [10]. The number of photons 
was 10଺ as suggested by literature [7], [16], and resulted in a 
variation of less than 0.7%.   

The angular 𝐷𝑔𝑁𝐶𝑇 of the homogeneous breast of a semi-
elliptical shape is the same as its 𝐷𝑔𝑁𝐶𝑇 at any angle because 
of the rotational symmetry. The angular 𝐷𝑔𝑁𝐶𝑇 of this model 
can be expressed as a fitting function (standard deviation is 
1.13%) [11] 

 
𝐷𝑔𝑁ி௜௧

஼் = 
ൣ1.0758247 − 0.2353669 × ln൫𝐷௘௙௙൯ − 0.1253462𝑓௚൧ 

  × ൤0.1153 × ln ൬ ஼ே௅
஽೐೑೑

൰ + 1.0818൨ 

                                                                                                (2) 
 

C. Simplified Math Model 
The angular 𝐷𝑔𝑁𝐶𝑇 in Eq. (1) is related to the energy 

deposited on the fibroglandular tissues, which is proportional to 
the pathlengths (PL) of photons through the fibroglandular 
tissues. To easily demonstrate this concept, a 2D circle of a 
finite size presents the fibroglandular tissues here. The center 
of the circle is the center of the geometry of the fibroglandular 
tissues (COG୤). The PL can be analytically solved as  

 

𝑃𝐿 = 2 ቐ
(𝐿 + 𝑅 cos 𝛽)ଶ(1 + tan 𝛼 tan(𝛼 + 𝜃))ଶ

1 + 𝑡𝑎𝑛ଶ(𝛼 + 𝜃)
+𝑟ଶ − (𝐿 + 𝑅 cos 𝛽)ଶ(1 + 𝑡𝑎𝑛ଶ𝛼)

ቑ

ଵ/ଶ

 

                                                                                                (3) 
 
where L, R, r, and β,  α, and θ are the distance between the x-
ray source and AOR, the radius of the orbit of the 2D circle, the 
radius of the circle, the polar angle of the circle in the orbit, the 
angle between the central line of the circle and the central line 
of the fan-beam, the angle deviated from the central line of the 
circular object, respectively. The figure is depicted in Fig. 2. 
Similar to the concept of the Radon transform, the curve of the 
PL is a sine wave varying with projection angle. 

III. RESULTS 

A. Total Simulation Time 
All MC simulations were performed on a Dell workstation 

7810 with Intel Xeon CPU (3.20 GHz) and 32 GB RAM. For 
each angle, the MC simulation took approximtely 40 minutes, 
resulting in 40×10×75=30000 minutes for all 75 samples.  

B. Numerical results of the simplified math model 
Numerical results of two particular examples of our 

simplified math model are when the COG୤ is located at the 
center and above the AOR (i.e.  β=0 in Eq. (3) and Fig. 2). Let 
the radius of the COG୤ be 15 mm with (1) 0 mm (reference) and 
(2) 50 mm distance away from the AOR. Without losing any 
generality, 𝜃 = 1° (or −1°) was considered here. The results 
(Fig. 3) show that the PL is a sine wave as predicted and in this 
particular example, the minimum of the curve occurs when the 
x-ray source is at ϕ=180 deg (feet position). The average PL of 
the sine wave is 0.1296 mm less than the reference. The sine 
wave has the same PL as that of the reference at ϕ=92.2042 deg 
and 267.7958 deg, which can be analytically solved by Eq. (3).     

C. Center of the geometry of fibroglandular tissues 
In MC simulations, the center of the geometry of the entire 

breast COGୠ is at the AOR. The deviation of COG୤ from COGୠ 
for each sample was shown in Fig. 4. The breast laterality is 
factored with 90 deg representing medial and 270 deg 
representing lateral aspects of the breast. It was found that 
62.67% of samples have COG୤ between 36 deg and 324 deg. 
From the previous section, the numerical results show that the 
minimum of the PL curve would happen at 180 deg if the COG୤ 
is exactly at 0 deg. Thus, the angular 𝐷𝑔𝑁𝐶𝑇 in this particular 
dataset should be a sine wave with a minimum at approximately 
within the range of 144 to 216 deg.  

D. Angular𝐷𝑔𝑁𝐶𝑇 
For each breast volume, the angular 𝐷𝑔𝑁𝐶𝑇 was normalized 

by the 𝐷𝑔𝑁𝐶𝑇 from the homogeneous semi-ellipsoidal model 
(reference) to characterize its deviation. The average of this 
normalized angular 𝐷𝑔𝑁𝐶𝑇 from the 75 breast CT volumes is 
shown in Fig. 5. Consistent with the prediction from section III. 
B and III. C above, the curve of the angular 𝐷𝑔𝑁𝐶𝑇 is 
approximately a sine wave with a minimum between 144 deg 
and 216 deg. The curve can be fitted to sine wave of the form 
0.0376 sin(∅ + 83°), with a root mean square error of 0.0106. 

IV. DISCUSSION AND CONCLUSIONS 

In this study, we have investigated the variation in 𝐷𝑔𝑁𝐶𝑇 
with x-ray projection angle for real breasts using both numerical 
study of PL calculation and using MC simulations. Although 
the PL calculation is based on the 2D geometry, it provides us 
an easy way to understand how the 𝐷𝑔𝑁𝐶𝑇changes when a real 
3D breast is scanned in the CBBCT system. The MC results 
were consistent with our simplified math model and COG୤ 
analysis. As predicted by our theory, there is higher energy 
deposition in most of the patients’ breasts when the x-ray source 
is approximately superior to the breast, i.e., between the 
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shoulders and above the breast. Thus, to reduce the radiation 
dose to the patients in short-scan CBBCT acquisition, it is 
preferable to avoid acquiring projections superior to the breast. 
This implies an x-ray source trajectory that is inferior to the 
breast. Further, this design would allow the detector to traverse 
below the chin, which could avoid the neck strain reported in a 
prior study [17] due to the need to turn the patient’s head to 
accommodate the x-ray source trajectory. Development of such 
an upright CBBCT system is in progress. The determination of 
the angular sampling interval for the short-scan acquisition 
should depend on the design and the implementation of the 
image reconstruction algorithms.  

 
 

 

 
Fig. 2.  Simplified mathematical model. A 2D circular object in a fan-beam 
geometry. 

 
Fig. 3.  The pathlength of the object off positioned above from the AOR. ϕ is 
the angle of the x-ray source.  
 
 
 
 

 
Fig. 4.  Center of the geometry of the fibroglandular tissues (COG୤) deviated 
from the center of the geometry of the entire breast (COGୠ). ϕ is the angle of the 
x-ray source.  
 
 
 

 
Fig. 5.  The angular DgNCTof the patient-specific model is normalized by the 
reference (homogeneous breast of semi-elliptical shape).  
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Fig. 1.  Segmentation of the image. The images were reconstructed by MS-
RDN deep learning algorithm. Each image was then segmented into air, skin, 
adipose, and fibroglandular tissues.  
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Estimating the accuracy and precision of quantitative imaging 
biomarkers as endpoints for clinical trials using standard-of-care CT 
 
Paul Kinahan1, Darrin Byrd1, Hao Yang2, Hugo Aerts3, Binzhang Zhao2, Andrey Fedorov3, Lawrence 
Schwartz2, Tavis Allison2, Chaya Moskowitz4  
 
Abstract - Quantitative imaging biomarkers (QIBs) hold 
enormous potential to improve the efficiency of clinical 
trials that use standard-of-care CT imaging. Examples of 
QIBs include size, shape, intensity histogram 
characteristics, texture, radiomics, and more. There is, 
however, a well-recognized gap between discovery and 
the translation to practice of QIBs, which is driven in part 
by concerns about their repeatability and reproducibility 
in the diverse clinical environment. Our goal is to 
characterize QIB repeatability and reproducibility by 
using virtual imaging clinical trials (VICTs) to simulate 
the full data pathway. We start by estimating the 
probability distribution functions (PDFs) for patient-, 
disease-, treatment-, and imaging-related sources of 
variability. These are used to forward-model sinograms 
that are reconstructed and then analyzed by the QIB 
under evaluation in a virtual imaging pipeline. By 
repeatedly sampling from the variability PDFs, estimates 
of the bias, variance, repeatability and reproducibility of 
the QIB can be generated by comparison with the known 
ground truth. These estimates of QIB performance can be 
used as evidence of the utility of QIBs in clinical trials of 
new therapies. 

Keywords: Imaging biomarkers, quantitative imaging, 
repeatability and reproducibility, clinical trials 

I. INTRODUCTION 
Clinical trials are a cornerstone of developing more 
effective cancer therapies. However, traditional clinical 
trials are often slow, expensive, and inefficient. Imaging 
of disease with standard-of-care CT plays a pivotal role 
in the management of patients with cancer and is used to 
measure endpoints in cancer drug trials to quantify 
efficacy in candidate compounds. There is a tremendous 
potential for quantitative imaging biomarkers (QIBs) to 
make clinical trials more efficient and informative. 
Examples of QIBs include size, shape, intensity 
histogram characteristics, and texture. Taking advantage 
of this potential is imperative since in the era of targeted 
therapies, studies will be smaller, more fractionated, with 
more expensive therapies. There is, however, a well-
recognized gap between discovery and translation to 

 
1 Department of Radiology, University of Washington, Seattle WA 
2 Department of Radiology, Columbia University; New York Presbyterian Hospital, New York NY 
3 Department of Radiology, Harvard University, Boston MA 
4 Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York NY 

practice for biomarkers in general and specifically for 
quantitative imaging biomarkers used in clinical trials. 
This gap arises for reasons that have been described 
including, among other items, a lack of data for testing 
and validation, a lack of rigor in the experimental design, 
inconsistent algorithm implementation, incomplete 
reporting, and a lack of appreciation for the requirements 
for adoption of quantitative imaging biomarkers. 
Addressing the lack of knowledge about the a priori 
distributions of random effects in imaging scenarios that 
should be evaluated, providing a rigorous methodology 
for evaluation, and ensuring pathways for adoption for all 
stakeholders can overcome these barriers. 

To do so we propose to build a measurement error model 
by using virtual imaging clinical trials (VICTs) [1] to 
simulate the entire data pathway from patient models 
through image generation to QIBs.  As a first step in this 
process, virtual imaging clinical trials (VICTs) are an 
emerging methodological adjunct to clinical trials using 
imaging. A VICT is essentially an extension to a clinical 
trial simulation in that the population of human subjects 
is replaced with a population of virtual digital subjects; 
imaging systems are replaced with physics-based virtual 
imaging simulators; and clinical interpretations are 
replaced with AI-derived image analyses. A VICT offers 
a feasible and efficient means to conduct experimentation 
in medical imaging by providing the practical ability to 
systematically assess and optimize a host of trial design 
factors and imaging parameters in the development and 
evaluation of imaging technologies, a task not possible 
through diagnostic clinical trials. While time, cost 
efficiency, and ethical feasibility are the main advantages 
of VICTs, VICTs offer one additional attribute; ground 
truth can be perfectly known and precisely controlled. As 
the condition of the patient is defined a priori, a VICT 
makes it possible to ascertain how an image analysis 
metric represents the ground truth. This is a unique 
capability that can never be assured in clinical trials. Of 
course, a VICT cannot predict the impact of a novel 
therapy on a type of disease in a specific patient. 
However, VICTs can predict the range of outcomes to be 
expected for a pre-determined (i.e. plausible) domain of 
known variables, e.g. baseline tumor size and the 
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subsequent shrinkage due to a postulated therapy. Over 

the last several years there has been a steady 

improvement of the realism of human and imaging 

system models. The growing maturation of VICTs as 

useful tools is demonstrated by multiple publications in 

mammography, CT, and PET, and even FDA approvals 

based on VICT studies of some aspects of image 

technology. 

Our goal is to use VICTs to characterize the accuracy of 

QIBs using standard-of-care CT in oncology trials. From 

this we can develop a guide for implementation in 

clinical trials and also a roadmap for adoption by 

regulatory bodies, industry, oncologists, cooperative 

oncology groups and professional societies. 

II. METHODS 
The virtual imaging pipeline component is the 

computational core, which uses the XCAT patient model 

[2] as an input to the CT-simulator CatSim [3]. The 

sources of variability can be grouped into categories 

along the pathway of the virtual imaging pipeline: (1) 

patient variability, (2) tumor characteristics, (3) CT 

acquisition, (4) image reconstruction, and (5) the QIB 

algorithm. 

 

 

Fig. 1. Data flow in the virtual imaging pipeline. 

Data available from the VELOUR clinical trial 

(NCT00561470) [6], one of the Vol-PACT cohorts [4], 

are used to define probability density functions. Some of 

the distributions of scanner- patient-, disease-, and 

imaging-related sources of variability are shown in Figs. 

2 and 3. 

 

 

Fig. 2. List of the CT scanner models used in the VELOUR trial as recorded in the DICOM image headers 
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Fig. 3: Some of the sources of variability for the multicenter VELOUR trial data [6]. Shown are the average baseline tumor 
diameter, the number of tumors per patient at baseline, the number of standard-of-care CT scans per patient, the reconstruction 
pixel size and mAs per scan.

We used a VICT based on a two-arm trial (control and 
treatment) as shown in Fig. 4. that uses a baseline and 

follow-up scan to determine reduction in average tumor 
volume. 

 
Fig. 4 Virtual imaging clinical trial (VICT) with multi-center baseline and follow-up CT scans. The impact of variability of AI-
derived quantitative imaging biomarkers (AI-QIBs) on study power as a function of patient numbers, effect size, and measurement 
type is assessed. 

For a range of effect sizes and trial sizes, we computed 
study power as a function of QIB variability. The error 
model used a generalized linear approach for bias and 
variance of a QIB. In this case we used prior tumor 
volume estimates (12.5% CoV, but over 25% has been 
reported). There were 1,000 simulations for each 
parameter combination to evaluate the QIB in terms of 
standard error, Type I error, and Type II error (i.e. 1 - 
study power). 

III. RESULTS 
Simulated data to be used as plausible ground truth was 
generated using correlated log-normal distributions 
modeled on the measured data (Fig. 5). Goodness of fit 
was checked with Q-Q plots and other statistical tests. 

Initial results of study power (Fig. 6) demonstrate the 
impact of QIB variance in clinical trials using multicenter 
standard-of-care CT imaging, which features 
heterogeneity in imaging systems across sites. 
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Fig. 5. Tumor size difference (i.e. follow-up - baseline) as a function of baseline tumor size. Left: Measured data from the VELOUR 
trial with 1,043 patients. Right: Simulated results from multivariate log-normal distributions displayed using the same scales. 

 
Fig. 6. Study power for the clinical trial illustrated in Fig. 4 
showing the importance of understanding the variability of the 
QIB as a function of sample size and the true difference 
between arms. Top: impact of QIB coefficient of variation 
(CoV) and study size. Bottom: Importance of QIB CoV for 
small studies, i.e. targeted and/or expensive therapies. Data for 
100 patients and effect size = 10% is common to both plots, 
showing the importance of controlling the CoV for a typical 
study power of 80%. 

IV. DISCUSSION 
Reliable smaller-n studies are imperative for clinical 
trials that are smaller, more fractionated, and use more 
expensive therapies. Understanding the application of 
QIBs to reduce the number of patients while retaining 
study power (and knowledge of the expected study 
power) is important for these trials to be successful in the 

advancement of more effective therapies.  These methods 
are based on data from prior clinical trials, and in turn 
will provide feedback on the robustness of more effective 
QIBs and guidance for their use in clinical trials. 
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Reconstructing Invariances of CT Image Denoising
Networks using Invertible Neural Networks

Elias Eulig, Björn Ommer, and Marc Kachelrieß

Abstract—Long lasting efforts have been made to reduce

radiation dose and thus the potential radiation risk to the

patient for CT acquisitions without severe deterioration of image

quality. To this end, different reconstruction and noise reduction

algorithms have been developed, many of which are based on

iterative reconstruction techniques, incorporating prior knowl-

edge in the image domain. Recently, deep learning-based methods

have shown impressive performance, outperforming many of the

previously proposed CT denoising approaches both visually and

quantitatively. However, with most neural networks being black

boxes they remain notoriously difficult to interpret and concerns

about the robustness and safety of such denoising methods have

been raised. In this work we want to lay the fundamentals for

a post-hoc interpretation of existing CT denoising networks by

reconstructing their invariances.

Index Terms—low dose, denoising, explainable, invariances.

I. INTRODUCTION

I
N recent years, deep learning methods have been employed
for many problems in medical image formation, including

image-based and projection-based noise reduction, image re-
construction, scatter estimation, and artifact reduction. While
the results of deep neural-network (DNN) based methods often
excel those of conventional algorithms both qualitatively and
quantitatively, they lack interpretability due to most DNNs
being black boxes. Particularly for low dose CT imaging,
recent advancements in generative methods such as generative
adversarial networks (GANs) [1] and variational autoencoders
(VAEs) [2] demonstrated impressive performance, providing
competitive image quality compared to commercial iterative
reconstruction techniques [3].

In this work, instead of focusing on the actual denoising
performance of DNN-based methods for CT imaging, we want
to lay the fundamentals for a post-hoc analysis of such net-
works in terms of their interpretability and robustness. To this
end, we investigate what they have learned to represent and
to ignore (i.e. their invariances) at different layers and argue
that robust and non-robust denoising networks are invariant to
different input features. Note, that this type of analysis is not
restricted to CT and similar methods can be applied to de-
noising networks for other imaging modalities (e.g. magnetic
resonance imaging or positron emission tomography).
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II. BACKGROUND

A. CT Image Denoising with DNNs
In this work we assume to have high-dose images y 2

Rm⇥n as well as low dose images x 2 Rm⇥n during training
time. The aim of any deep-learning based denoising method
is then to find a function f(· ; ✓) with parameters ✓, such that

argmin
✓

kf(x; ✓)� yk , (1)

where f is realised by a DNN. In recent years most improve-
ments on finding an optimal f focused on alterations of the
architecture and training scheme. While earlier work utilized
pixelwise losses (in image or feature space) which lead to
smooth predictions and lack high-frequency information [4, 6],
many recent methods are being trained as GANs, leading to
extremely realistic denoising results [3, 5].

B. Invariances of DNNs
Our work is based on reference [7], where the authors

seek to reconstruct and interpret the invariances of image
classification DNNs using invertible neural networks (INNs).

Given a network f(x) we can analyze any internal latent
representation z thereof by decomposing f into f(x) =
 (z) =  (�(x)). To then explain z we need to know what
information of the input x is captured in z and to what
information � is invariant to (and is thus missing in z). To
this end, the authors of [7] employ a VAE comprised of an
encoder E and a decoder D that is trained to learn a complete
data representation z̄ = E(x) by reconstructing the input from
z̄ s.t. kD(E(x))� xk is minimized.

Since the complete data representation z̄ now not only
contains the information captured in z but also its invariances
v, we need to disentangle v and z by learning a mapping

t(·|z) : z̄ ! v = t(z̄|z) . (2)

Here, it is assumed that invariances v can be sampled from a
Gaussian distribution, i.e. p(v) = N (v|0, 1), and the mapping
t is realized through a normalizing flow [8–10], a sequence of
INNs between the simple (normal) distribution p(v) and the
complex distribution p(z̄).

Since t is invertible, we can generate new z̄ that only differ
in their realization of the invariances by first sampling v ⇠
p(v) and then applying the inverse mapping of t

t
�1(·|z) : v ! z̄ = t

�1(v|z) . (3)

To visualize z̄ in the low dose image space we can reconstruct
them using the previously trained decoder D: x̄ = D(z̄).
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Fig. 1: Denoising performance of Chen et al. [4] and Yang et al. [5] for six different dataset samples (columns). Blue arrows
indicate regions where the networks produced errors in the reconstruction of anatomical details.

III. METHODS

A. Dataset
For all our studies the Low Dose CT Image and Projection

dataset [11] is employed. The dataset comprises 50 head scans,
50 chest scans, and 50 abdomen scans acquired at routine
dose levels with a SOMATOM Definition Flash (Siemens
Healthineers, Forchheim, Germany) CT scanner. Additionally
the dataset provides simulated low dose reconstructions (at
25% dose for abdomen/head and at 10% dose for chest scans)
which were used as input to the denoising networks. We split
the dataset into 70%/20%/10% for training/validation/test
across all patients and trained with a weighted sampling
scheme such that slices from each patient were sampled with
equal probability.

To make results between different methods comparable we
trained and validated all denoising networks as well as the in-
variance reconstruction method on the same training/validation
split of our data.

B. Denoising Methods
While our method can be used to provide post-hoc invari-

ance analysis for any (trained) DNN-based denoising method,
for simplicity, we here focus on interpreting the invariances of
two well-known denoising methods:

Chen et al. [4] proposed a simple three-layer convolutional
neural network which was trained to minimize (1) using an
L2 loss. The authors trained their network on patches of size

33⇥33 using an SGD optimizer and showed that their method
can outperform conventional state-of the art methods.

Yang et al. [5] improved on previous works by training
a Wasserstein GAN (WGAN) [12] in combination with a
perceptual loss [13] in feature space. Furthermore, they utilize
a deeper generator compared to [4] and train the network on
larger patches of size 64⇥ 64.

We trained both [4] and [5] on the dataset described in Sec.
III-A using the hyperparameters as described in the original
papers. Whenever hyperparameters were not stated by the
authors, we ran a grid-search and used the parameters that
result in the lowest validation loss.

TABLE I: Overview of generator architectures used in Chen et
al. [4] and Yang et al. [5]. Kernel sizes of the 2D convolutions
are indicated by k and their number of filters by f. Final
nonlinearities of the original architectures were omitted to
accommodate for the normalization of our data.

Layer Chen et al. [4] Yang et al. [5]

1 Conv k9 f64 Conv k3 f32
ReLU ReLU

3 Conv k3 f32 Conv k3 f32
ReLU ReLU

5 Conv k3 f1 Conv k3 f32

...
...

15 Conv k3 f1
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Fig. 2: Best viewed in color. Analysis of Chen et al. [4], (a) & (b), and Yang et al. [5], (i) & (ii). Provided are low dose input
image x, high dose ground truth image y, VAE network reconstruction x̄ (Sec. III-C), denoised image f(x), five reconstructed
samples from the space of invariances, and the standard deviation over 250 invariance samples. Red arrows highlight errors in
the VAE reconstruction D(z̄) and blue arrows highlight regions in the reconstructed invariances D(t�1(v|z)).
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C. Recovering Invariances
Similar to reference [7] we first learn a complete data

representation z̄ = E(x) for a given low dose image x by
training a VAE g(x) = D(E(x)). Our encoder is based on a
ResNet-101 [14] and our decoder on a BigGAN [15] where
the conditioning on the class is replaced by a conditioning on
the latent representation z̄. To improve reconstruction quality
the VAE is trained together with a critic C as a WGAN and
instead of training it on entire 512⇥ 512 pixels images we
train it on 128⇥ 128 pixels patches.

For both of the two denoising networks evaluated, we
train three conditional INNs (cINNs) to learn to reconstruct
invariances at three different layers in the network. For Chen
et al. [4] we do so at layer 1, 3, and 5 and for Yang et al.
[5] at layer 1, 7, and 13 (refer Tab. I). Each of the cINNs,
t is composed of four invertible blocks, where each block is
composed of coupling blocks [16], actnorm layers [17], and
shuffling layers. For each invertible block, the conditioning
on the denoising network representation z is realized by
concatenating an embedding h = H(z), where H is a shallow
network, with the input to the respective block.

For each network and layer we then reconstruct different
samples of the invariances x̄ = D(t�1(v, z)), v ⇠ N (0, 1).
Additionally, we can compute the standard deviation over a
large set (here 250) of samples to highlight regions with high
variation across the reconstructed invariances.

IV. RESULTS

A. Denoising Methods
We find that the results from both denoising networks are

similar to those reported in the respective original papers (Fig.
1). Due to the L2 loss in image space the results from [4]
appear smooth and lack structural fidelity. This is alleviated by
training with an adversarial loss and consequently our results
for [5] look much more realistic with higher details and noise
structures very similar to those present in the high dose images.

However, we find that both methods are unable to correctly
reconstruct anatomical details in several cases (refer Fig.
1, blue arrows). This is particularly problematic when the
network is trained in an adversarial setting, where those false
anatomies can look very convincing to the radiologist.

B. Reconstructed Invariances
The reconstructed invariances for both networks and two

different samples (ref. Sec. III-C) are provided in Fig. 2. For
each sample we also show the low dose input image x, the high
dose ground truth image y, the reconstruction of the complete
data representation x̄ = D(z̄), and the denoised image f(x).

From this we find that both denoising methods are invariant
to several anatomical features to some extent (Fig. 2; blue
arrows). We also find a higher overall variance of the invari-
ances in homogeneous regions of the image for [4], indicating
that it is more invariant to the specific realization of noise
in the low dose input image. However, when inspecting the
VAE reconstructions x̄ = D(z̄) we also find major deviations
from the original low dose image x (Fig. 2, red arrows), which
may explain some of the differences between the reconstructed
invariances and x.

V. CONCLUSION

In this work we analyzed deep neural networks for CT
image denoising regarding their invariances to anatomical
features in the low dose image domain. To reconstruct those
invariances we adapted a method from prior work on inter-
pretable AI and sampled reconstructions of invariances for two
CT denoising networks. Upon analysis of the reconstructed
invariances, we find that the representations of both networks
at different layers are invariant to several anatomical features.

While this work demonstrated the potential of an invariance-
based analysis of DNNs for CT image denoising, the ability
to interpret those invariances is currently limited due to recon-
struction errors from the embedding z̄ and the complex, high-
dimensional structure of the invariance images x̄. Overcoming
this drawback by improving the embedding z̄ as well as
mapping the sampled invariances to a semantically meaningful
space remains part of future work.
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Abstract—The rapid development of deep-learning methods
in medical imaging has called for an analysis method suitable
for non-linear and data-dependent algorithms. In this work, we
investigate a local linearity analysis where a complex neural
network can be represented as piecewise linear systems. We
recognize that a large number of neural networks consists of
alternating linear layers and rectified linear unit (ReLU) activa-
tions, and are therefore strictly piecewise linear. We investigated
the extent of these locally linear regions by gradually adding
perturbations to an operating point. For this work, we explored
perturbations based on image features of interest, including lesion
contrast, background, and additive noise. We then developed
strategies to extend these strictly locally linear regions to in-
clude neighboring linear regions with similar gradients. Using
these approximately linear regions, we applied singular value
decomposition (SVD) analysis to each local linear system to
investigate and explain the overall nonlinear and data-dependent
behaviors of neural networks. The analysis was applied to an
example CT denoising algorithm trained on thorax CT scans. We
observed that the strictly local linear regions are highly sensitive
to small signal perturbations. Over a range of lesion contrast
from 0.007 to 0.04 mm�1, there is a total of 33992 linear regions.
The Jacobians are also shift-variant. However, the Jacobians of
neighboring linear regions are very similar. By combining linear
regions with similar Jacobians, we narrowed down the number
of approximately linear regions to four over lesion contrast from
0.001 to 0.08 mm�1. The SVD analysis to different linear regions
revealed denoising behavior that is highly dependent on the
background intensity. Analysis further identified greater amount
of noise reduction in uniform regions compared to lesion edges.
In summary, the local linearity analysis framework we proposed
has the potential for us to better characterize and interpret the
non-linear and data-dependent behaviors of neural networks.

I. INTRODUCTION

Recent years we have seen rapid development of deep
learning algorithms in the field of medical imaging. For CT, a
popular application of deep learning lies in “denoising” of
CT reconstructions. Many network architectures have been
proposed in literature and demonstrated potential for reducing
image noise and improving signal to noise ratio. At the
same time, the nonlinear and data-dependent nature of such
algorithms have raised questions over how to systematically
characterize their performance. While positive results have
been reported in many cases, we have also observed undesir-
able behavior where critical diagnostic features (e.g., lesion
contrast, size, etc.) can be misrepresented [1]. Therefore,
an analysis framework that allows systematic examinations
of network performance is essential in understanding the
advantages and limitations of deep learning algorithms.

An increasing number of investigations have been devoted to
characterizing the performance of deep learning algorithms. So

far, most studies have relied on evaluating traditional medical
image quality measures (e.g, resolution, noise, and detectabil-
ity index) using specific phantoms or clinical images [2] [3].
While these studies elucidated many interesting and important
dependencies in deep learning algorithms, it is difficult to
generalize such retrospective analysis in a systematic manner.

Local linear approximation is a common analysis method
for nonlinear systems and has been applied to deep learning
as well to investigate network stability [4], derive adversarial
examples [5], etc. In this work, we seek to identify locally
linear representations of a deep learning CT denoising net-
work. Using such representations, we then apply linear system
analysis tools to different local linear systems to explain the
overall nonlinear and data-dependent behavior of the network.

II. METHODS

A. Piecewise Linear Neural Networks

In this work, we consider common deep learning networks
consisting of alternating linear layers (e.g., fully connected
layer, convolutional layer, residual blocks) and nonlinear acti-
vation functions. Furthermore, we focus on the popular Recti-
fied Linear Unit (ReLU) activation function, which comprises
two piece-wise linear functions. We designate each linear
function of the ReLU by its activation indicator, o. Denoting
the input to each ReLU as z,

o = 1 if z � 0; o = 0 if z  0 (1)

For a trained network with such structure, each input and
output pair is governed by a particular linear system deter-
mined by the weights and biases in the linear layers and the
activation indicator of each ReLU. Following [6], we define
activation pattern, O, as the collective activation indicators of
each ReLU in the network:

O = {o1, o2, ...oN |on 2 {0, 1} 8 n 2 N} (2)

where N is the total number of ReLUs in the network. Inputs
that trigger the same activation pattern are governed by the
same linear system and belong to a locally linear region in the
input space. Thus, we can express the network as the following
piecewise linear system :

µout = H(µin) = hL � . . . � h2 � h1(µin) (3)

where the function associated with layer l, hl, is:

hl(µl�1) = Ol(Wlµl�1 + bl) (4)
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Fig. 1. The operating point µo was chosen as a uniform spherical lesion in
the lung region of a thorax CT scan. We present the local Jacobian for three
locations at the center, edge, and background of the lesion.

Here, Wl and bl denote the weights and biases associated
with the linear layers, and Ol is a diagonal matrix where its
diagonal is the vector of activation indicators for the lth layer.

The piecewise linear nature of these networks theoretically
allows us to use linear analysis tools to completely characterize
the system response for each locally linear system. One such
measure that is convenient to compute is the Jacobian, i.e., for
any given input or operating point, µo, we may write down
the corresponding linear system as:

H(µk) = H(µo) + Jo(µk � µo). (5)

The Jabocian, Jo, is defined as

Jo,ij =
dH(µo)i
dµo,j

. (6)

where i and j are indices of output and input voxels, re-
spetively. This equation holds for all µk that belongs to the
same linear region as µo.

B. Extent of strictly locally linear regions

While the piecewise linear interpretation of neural networks
is convenient, the question remains whether it is practical
to analyse each linear region separately. In particular, deep
networks tend to partition the input space into a large number
of linear regions [7]. It is also possible for networks to have un-
stable gradient - i.e., small perturbations in the inputs resulting
in large changes in gradient or Jacobians. To investigate these
behaviors for inputs relevant to CT denoising, we use example
CT images as operating points and gradually insert perturba-
tions of interest. For high dimensional input spaces in neural
networks, there are many potential types of perturbations that
may be explored. Here, we choose clinically relevant pertur-
bations like lesion features of interest (e.g., contrast, shape,
texture), noise, or background the lesion is embedded in. We
record the activation pattern associated with each perturbation
and report the number of changes in activation indicators
from the operating point and the total number of activation
patterns through the range of perturbations. Furthermore, we
compare the Jacobians in neighboring linear regions. In this
work, the operating point was chosen as a region of interest
(ROI) containing a spherical, uniform lesion with diameter
9.0 mm and contrast 0.007 mm�1 in the lung region of thorax
CT scan as shown in Fig 1. Results shown below pertain to
lesion contrast from 0.007 to 0.04 mm�1 in small increments
of 2⇥ 10�7 mm�1 .

C. Extent of approximately locally linear regions
Through initial experimentation, we observed that the Jaco-

bians for neighbouring linear regions are similar. We therefore
investigate whether we can extend the boundary of locally
linear regions to include multiple strictly linear regions with
approximately the same Jacobian. Using the same operating
point µo and perturbation scheme in the previous section, we
compute the output of perturbed inputs µk using the Jacobians
for µo (the right hand side of Eq.5) and compare it with the
true CNN output. For initial investigation in this work, we
compare the maximum (over voxels) absolute percent error
between the two and set a threshold below which the two
outputs are considered similar enough and that the inputs
fall within the same linear region. We developed strategies to
choose different operating points so that the percentage error
throughout the range of perturbations falls below the threshold.

For results shown below, we present the linear regions and
associated operating points for an input space encompassing
two types of perturbations - lesion contrast ranging from 0.001
to 0.08 mm�1 and the intensity of a uniform background the
lesion is embedded in from 0 to 0.04 mm�1.

D. Neural network analysis based on locally linear regions
Using the approximately linear regions identified above, we

may apply linear system analysis tools to each linear region
to understand and explain some of the overall nonlinear and
data-dependent behaviors of neural network algorithms. To
ensure generality without assumptions of shift-invariance, we
performed SVD of the Jacobians for each approximately linear
region. Then, by projecting inputs of interest µin onto the
singular basis vectors, we can analyze which features of the
inputs that are considered preserved, denoted as µp

in (i.e., with
singular values above a certain threshold) and which features
are attenuated, denoted as µa

in (i.e., with singular values below
a certain threshold). Mathematically:

µp
in =

X

i for si>✏

si(v
T
i µin)vi; µa

in =
X

i for si✏

si(v
T
i µin)vi

(7)
where si and vi are the ith singular value and basis vector,
and ✏ is the threshold on singular values, chosen as 0.10 in
this work.

We applied the SVD analysis to noisy input images to
visualize how the network “denoises”. In this case, the per-
turbation, µk � µo, is noise. We generated 100 different
noise realizations at a noise level comparable to the training
dataset, and decomposed each realization to the “preserved”
and “attenuated” components according to Eq. 7. The mean
and standard deviation over all noise realizations are presented
to visualize how neural network reduces noise.

E. Experimental setup
In this work, we applied the above analysis to a network

based on the REDCNN architecture [8]. We identified 2900
slices from thorax CT scans in the LIDC database [9] and use
them as ground truth to generate the training data. The normal
and low dose training pairs were generated from filtered-
backprojection reconstruction using a barebeam fluence of
I0 = 105 and I0 = 1.25⇥ 104, respectively.
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III. RESULTS

We first present results showing the extent of strictly linear
regions as a function of lesion contrast from the operating
point in Fig.1. Combining the number of cumulative activation
patterns in Fig.2a and the number of indicator change in
Fig.2b, we may infer how many strictly linear regions there
are within the range of perturbations investigated. Zooming in
on two small range of contrast in Fig.2c, both the cumulative
number of activation patterns and the number of indicator
changes have the same trend. The perturbation increment was
chosen small enough that the input either stays in the same
linear region, or transition to a neighboring linear region with
at most one ReLU change. Note that while the cumulative
activation patterns either stays the same or increases (by
definition) for each contrast increment, the number of indicator
change may also decrease. Overall, the neural network has
seen 33992 strictly locally linear regions for the range of lesion
contrast investigated. We further present a profile through the
Jacobian matrix that passes through each of the three locations
identified in Fig.1. The Jacobians are different from lesion
center, to edge, to background, indicating a linear but shift-
variant system. Comparing amongst the different strictly linear
regions in each portion of the plot, the Jacobians are very
similar despite belonging to different linear systems.

Investigations into strictly locally linear regions reveal that
the transition between neighboring linear region is sensitive
to small changes in perturbations but the Jacobians are sim-
ilar. We therefore investigate whether the input space can
be partitioned into fewer approximately linear regions using
methods in Sec.II-C. We perturbed both the lesion contrast
and the lesion background intensity and plotted the maximum
absolute percent error between local linear approximation and
CNN output. Four example inputs at different contrast and
background (labeled µk) are presented showing comparisons
between the empirical CNN output, a linear approximation
using Jacobians at an operating point (labeled µo), and the
percentage error map between the two. Figure 3(a) shows the
approximation errors for just one operating point shown in
Fig.1. The error is 0 at the operating point and increases
as we move further away. Figure 3(b) and (c) shows the
approximations error improving as we use more operating
points. Compared to 33992 strictly locally linear regions in
just one dimension (Fig.2), the linear approximation method
yields a much small number of linear systems that is practical
to analyze.

Using the approximate local regions identified in Fig.3(c),
we performed SVD analysis on two locally linear systems with
operating points µ1

o and µ3
o. We chose inputs belonging to

each linear region and added noise as perturbations. The inputs
contains lesions of the contrast, noise magnitude, and noise
correlation; the only difference is the background intensity.
Figure 4(a) shows the FBP input, empirical CNN output, and
its linear approximation for both a sample noise realization
and standard deviation maps over 100 noise realizations. Good
agreement was observed between the CNN outputs and linear
approximations for the µ3

o case, indicating that noise pertur-
bations can be approximated by the same linear system at the
operating point. The noise magnitude was well-approximated
for the µ1

o case but the spatial distribution could be improved,

which suggests that the criteria for linear approximation should
be revisited for noise prediction. Comparing the two linear
regions, the one based on µ

3
o imparts greater noise reduction

seen from the lower standard deviation magnitude. Figure
4b shows the “preserved” and “attenuated” input features
(Eq.7) for four sample noise realizations as well as the mean
and standard deviation maps over 100 noise realizations. The
attenuated portion is high frequency and appears noise-like for
both systems - consistent with the “denoising” purpose of the
network. The preserved signal is smoother outside the lesion
but contains more mid- to high- frequency variations inside the
lesion. Both the preserved and attenuated signals are space-
variant, with more noise removal in uniform regions (outside
and inside the lesion) compared to the edges. This behavior is
more obvious in the mean and standard deviation images.

IV. CONCLUSIONS

In this work, we presented a method for analyzing piecewise
linear neural networks. We observed rapid transitions between
strict locally linear regions and introduced an approximation
method to make the analysis more tractable. Linear system
analysis tools such as the SVD were applied to explain some
of the nonlinear and data-dependent behavior of an example
denoising network, specifically, what input features can be
preserved and which are not.

The most significant challenge with this type of analysis
is the high dimensional input space. We chose to use clin-
ically relevant image features as “perturbations” or search
directions to map out the locally linear regions. Future work
will encompass a wider range of perturbations so that neural
network performance can be analyzed in relation to whether
image features important for diagnosis can be preserved. Fur-
thermore, we will investigate strategies to identify maximally
separated operating points in the input space such that the
analysis remains tractable.
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Fig. 2. a) Number of cumulative activation pattern over the range of lesion contrast 0.007 ⇠ 0.04mm�1 b) Number of activation indicator change over the
same range of lesion contrast c) Top row: Zoom-in view of the curve in b), which shows three strict linear regions and overlays their local Jacobians at three
lesion locations. Bottom row: Similar contents for the other zoom-in region (lower lesion contrast)

Fig. 3. a) Top row: Map of maximum local linear approximation error with increasing lesion contrast and background intensity for system with operating
point µ1

o; Bottom row: four lesion inputs of interest with increasing approximation error. b) Top row: Input space being partitioned by applying two operating
points; Bottom row: lesion inputs of interest evaluated by two systems. c) Top row: Input space being partitioned by applying four operating points; Bottom
row: lesion inputs of interest evaluated by each of the system

Fig. 4. a) Top row: Sample noisy realization and standard deviation map across 100 different realizations for noisy FBP input, CNN output and local linear
approximation by using system with operating point µ1

o; Bottom row: Similar contents by using system with µ3
o. b) Top row: Preserved and attenuated

features from SVD analysis for sample noise realizations, mean and standard deviation maps across 100 noise realizations by using system with operating
point µ1

o; Bottom row: Similar contents for system with µ3
o
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Evaluation of deep learning-based CT reconstruction
with a signal-Laplacian model observer

Gregory Ongie, Emil Y. Sidky, Ingrid S. Reiser, & Xiaochuan Pan

Abstract—Recent studies have proposed to optimize deep

learning-based CT reconstruction methods for signal detectability

performance. However, obtaining objective measures of signal

detectability performance of the trained reconstruction networks

is challenging due to the non-linear nature of the reconstruction.

We propose a simple evaluation metric based on the model

observer framework. The metric is based on the performance

of a specific linear observer on signal-known-exactly/background-

known-exactly task. The linear observer uses the signal Laplacian

as a template, which we hypothesize is a better proxy for a

human model observer than the ideal/Hotelling observer. We

illustrate that the proposed metric can be used to select training

hyper-parameters for a CNN-model used to reconstruct synthetic

sparse-view breast CT data.

Index Terms—Deep learning, Model observers, CT Reconstruc-

tion

I. INTRODUCTION

There has been a surge of interest in training convolutional
neural networks (CNNs) to reconstruct low-dose/sparse-view
CT data. Most current approaches train the CNN by mini-
mizing a pixel-wise mean-squared error (MSE) or similar loss
function over a training set of images. However, these losses
are insensitive to small and/or low-contrast features that are
critical for screening and diagnosis (e.g., tumor spiculations
or microcalcifications in breast imaging), and these subtle
features can be significantly degraded in the reconstructions.

To address this issue, recent work has proposed modified
CNN training procedures inspired by the model observer
framework to enhance the detectability of weak signals in the
reconstructions [1], [2], [3]. The model observer framework,
based on signal detection theory, offers an objective means
to evaluate how well a reconstruction method preserves fine
details in the reconstructions at a statistical level.

A major challenge with these approaches – and most other
non-linear CT reconstruction techniques – is how to select
various tuning parameters. For example, [3] relies on a regular-
ization parameter that trades-off between mean-squared error
of the reconstructions and signal detectability performance.

One potential approach, investigated in [3], is to mea-
sure signal detectability performance of the reconstructions
in terms of the ideal observer, or a close proxy, such as
the (channelized) Hotelling observer, on a signal-known-
exactly/background-known-exactly (SKE/BKE) task. How-
ever, there are several issues with this approach. First, finding

G. Ongie is with the Department of Mathematical and Statisti-
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the ideal observer for a non-linear reconstruction method is
challenging. Second, ideal observer performance is known to
correlate poorly with human observer performance. Indeed, if
the goal is to maximize performance according to the ideal
observer, the optimal strategy is to not process the data at all.

Instead, in this study, we propose evaluating the signal
detectability performance using a different type of model
observer. The proposed observer model uses a linear test
statistic using the discrete Laplacian of the signal as the
template. We hypothesize that this observer model is a better
proxy for human observer performance.

We illustrate the proposed observer model on simulated data
in two settings: a simple denoising setting, and reconstruction
of sparse-view breast CT data. In both cases, we demonstrate
empirically that there is an identifiable peak in detectability
performance of the signal-Laplacian observer when varying
tuning parameters, unlike the ideal observer. We find this
peak correlates well with our own subjective assessment of
preservation of fine details in the reconstructions.

II. METHODS

The focus of this work is evaluation of learning-based re-
construction models for sparse-view CT reconstruction. First,
we briefly describe the CNN training approach proposed in [3]
that is also used in this study. Then we describe the proposed
evaluation metric based on an observer model.

A. CNN Training with Observer Regularization

Let f✓ : Rd ! Rd denote a CNN depending on parameters
✓ 2 Rp mapping noisy sparse-view FBP images y 2 Rd to
reconstructed images x 2 Rd, which we call the reconstruction

network. Let {(xi,yi)}Ni=1 be a collection of training pairs,
where each yi is a noisy, sparse-view FBP image and xi is
the corresponding ground truth image, and let D denote the
corresponding empirical distribution of these training pairs.
We train the parameters ✓ of the reconstruction network f✓
by attempting to minimize the loss given by

min
✓

E(x,y)⇠D
⇥
kf✓(y)� xk2

⇤
+ � · ObsReg(✓) (1)

The “observer regularizer” ObsReg(✓) term is defined with
respect to a user-specified distribution of random signals to be
planted within the training images. In particular, we assume
that pairs (s, ŝ) can be randomly generated, where s is the
signal in input space (e.g., its sparse-view FBP) and ŝ is
the same signal represented in output space (e.g., its gridded
reconstruction). Then we define ObsReg(✓) as

ObsReg(✓) = �E[(f✓(y + s)� f✓(y))
>ŝ ] (2)
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where the expectation above is taken with respect to both the
noisy sparse-view FBP training images y and the random
signal pairs (s, ŝ). The observer regularizer measures the
correlation between the difference of the reconstructions with
signal present/signal absent and the true signal. Minimizing
this quantity maximizes their positive correlation. Intuitively,
this should enhance signal detectability in the reconstructed
images.

B. Evaluation of CNN Reconstruction Methods Using Ob-

server Models

A challenge in deploying the above CNN-based reconstruc-
tion scheme is choosing the “best” regularization parameter
� in equation (1). This parameter trades-off between de-
noising capabilities of the reconstruction network and signal
detectability: large values of � enhance signal detectibilty per-
formance at the expense of more noise in the reconstructions.

One approach, adopted in [3], is to measure the ability
of the reconstruction network to preserve small signals on
a SKE/BKE task. In [3] a channelized Hotelling observer
(CHO) is used as a proxy for the ideal observer. For a range
of regularization parameter settings, the CHO is estimated
and its AUC is estimated empirically. However, in [3] it was
shown that the AUC as determined by the CHO increased
monotonically with regularization parameter �, plateauing for
sufficient large � where the CNN output reconstructions nearly
identical to the input noisy FBP image. Therefore, according
to this metric, the “optimal” reconstruction is the noisy FBP
image. While this may be optimal from an information-
theoretic point of view, we conjecture this is not optimal for
human observers. The main contribution of this abstract is to
investigate an alternative evaluation metric that we conjecture
correlates better with human model observer performance.

C. Proposed Observer Model

To measure performance on the SKE/BKE task we propose
using a linear observer, i.e., a linear test statistic of the form
t(y) = hw,yi, where w is a fixed template image. We propose
to use the discrete Laplacian of the signal as the template:
w = �s. where s is the signal as used in the SKE/BKE task,
and � is the discrete Laplacian computed using centered finite
differences.

III. RESULTS

In order to motivate the use of the signal-Laplacian as
a template for the human model observer in a SKE/BKE
detection task, we consider a simple imaging system of a
signal in white noise. We then apply this observer model
to parameter tuning for the CNN-based image reconstruction
algorithm.

a) Smoothing of image containing a signal in a white

noise background: We consider a 256x256 pixel noisy image
where the noise follows an uncorrelated Gaussian distribution
with uniform pixel standard deviation of 2.0. Furthermore,
a detection task is considered with a smoothed-disk signal
centered in the middle of the image of radius 5.725 pixels

Fig. 1: Blow-up of candidate templates for human model
observer signal detection on a 20⇥20 pixel grid: (Left) the
signal itself and (Right) the signal-Laplacian. The considered
imaging system is a signal in white noise on a 256⇥256 pixel
array, and the detection task is SKE/BKE.

Fig. 2: SNR for SKE/BKE signal detection as a function
of smoothing strength for the signal in white noise imaging
system. The SNRs are computed with two possible human
model observer templates shown in Fig. 1. For no smoothing
w = 0, the signal template is the ideal observer template,
and accordingly the corresponding SNR value of 4.213 is the
maximum possible SNR. The solid circles indicate values that
correspond to the images in Fig. 3.

and amplitude 1.0 and the image background is zero. The
detection task is tantamount to classifying a shown image into
either signal-present or signal-absent image hypotheses, and
the confounding factor is the image noise. The observer also
has the ability to apply Gaussian smoothing to the image with
a full-width half-max (FWHM) parameter w as measured in
units of the signal FWHM, 11.45 pixels.

The ideal observer for this simple imaging system uses a test
statistic that involves the dot product between the image and a
template that is the signal itself, because the noise distribution
is uncorrelated and uniform. Furthermore, the ideal observer
would not perform smoothing at all as its SNR for detection is
maximal already with w = 0. It is, however, not clear that this
signal template is the one that would model a human observer.
We hypothesize that a template that focuses on the edges of
the signal may be more representative of a human’s strategy
and we formulate this edge-focused model as the dot product
of the image with the signal-Laplacian. To illustrate these two
strategies, images of the signal and signal-Laplacian templates
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Fig. 3: Noisy signal-present (Left column) and signal-absent
(Right column) images for the signal in white noise imaging
system. The top row shows the noiseless signal image on the
left. The subsequent rows show noisy images for different levels
of Gaussian smoothing, w = 0, 0.62, 1.23, and 2.06 signal-
widths going from top to bottom. For the noisy background the
same noise realization is used for all eight panels so that it is
easy to observe the difference between the signal-present and
signal-absent images. The gray scale for all of the noisy images
are determined by the minimum and maximum pixel values in
the signal-present images.

are shown in Fig. 1. We note that the signal-Laplacian has
a “center-surround” structure that has been associated with
human observer 2D templates for detection [4], where a middle
region of positive weights is surrounded by a ring of negative
weights.

In Fig. 2, the SNR is computed for both signal and
signal-Laplacian templates and different levels of Gaussian

smoothing. The two curves have quite different behavior with
signal and signal-Laplacian SNRs peaking at w = 0 and
w = 1.23 signal-widths, respectively. In order to establish
correspondence of these results with visualization, noisy image
realizations for both signal-present and signal-absent hypothe-
ses are shown in Fig. 3 for different levels of smoothing. As
this figure is only illustrative, it shows a relatively large signal
that is easy to detect and the same noise realization is used on
all of the noisy images; it is not intended to be representative of
a true two-alternative forced-choice experiment. Starting at the
top with w = 0, it is difficult to distinguish between the signal-
present and signal-absent images because the noise amplitude
is large compared with the signal. As w increases the noise
amplitude is decreased relative to the signal because it is wider
than the speckle structure due to the noise, and it becomes
easier to see the signal. In the bottom row of the figure, for
w = 2.06 signal-widths, the smoothing significantly degrades
the signal amplitude and the signal once again becomes lost
in the noise. Thus, the visual trend of Fig. 3 supports the SNR
trend of the signal-Laplacian template from Fig. 2. We note
that human-observer experiments would be needed to establish
this correspondence quantitatively. For this work, we go ahead
and apply the observer model, specified by the dot product
with the signal-Laplacian template, to determine parameter
settings for the CNN-based image reconstruction algorithm.

A. Evaluation of CNN’s for Sparse-View CT Reconstruction

We focus on a sparse-view setting using synthetic breast
CT phantoms. For training data, we generate random phantom
images using a structured fibro-glandular tissue model. An
initial image is generated on a 2048 ⇥ 2048 pixel grid, from
which we numerically simulate noisy 128-view sinogram data
under a 2D circular, fan-beam scanning geometry, which is
representative of the mid-plane slice of a 3D circular cone-
beam scan. Noise-free ground truth images are formed by
downsampling the initial image to a 512⇥ 512 pixel grid. We
also compute an initial FBP reconstruction from the simulated
sparse-view sinogram data, which is passed as input to the
CNN. We generate 1000 FBP and ground truth image pairs
in this way to use for training. We use a U-net architecture
[5] for the reconstruction network in all our experiments. We
modify the standard U-net slightly by adding a residual “skip”
connection with trainable weights.

We set up a SKE/BKE task to measure signal detectability
performance on a hold-out test set of images. The test set
consists of 1000 signal present realizations and 1000 signal
absent realizations, all sharing the same fixed background
image. To facilitate computation of the signal detectability
metrics, we fix the location of the test signal to the center of
the image. The signal strength is set so that the data domain
AUC is 0.86.

In addition to the signal observer and the proposed signal-
Laplacian observer, we also compare against a channelized
Hotelling observer that uses a hybrid of pixel and Laguerre-
Gauss channels (hybrid-CHO), which have been found effec-
tive in estimating signal detectability performance of other
nonlinear reconstruction methods [6]. As our figure-of-merit,
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we compute the area under the ROC curve (AUC) of each ob-
server. This is estimated empirically using the two-alternative
forced choice (2-AFC) calculation over the reconstructed test
images.

Figure 4 shows the AUCs obtained by the model observers.
We observe that AUCs of the signal observer and the hybrid-
CHO observer roughly monotonically increase with increasing
�, plateauing at an AUC close to 0.80. The proposed signal-
Laplacian observer, though giving much lower AUCs overall,
reaches a peak AUC for a small value of the regularization
parameter, similar to the denoising experiment above.

In Figure 5 we illustrate the correspondence between visual
image quality and signal detectability metrics by reconstruct-
ing a test image containing an additional contrast-detail (CD)
insert. The CD insert consists of an 8⇥8 grid of point-like sig-
nals of varying widths and contrasts. Visually comparing the
reconstructions obtained from different networks trained with
different �, the signal-Laplacian AUC maximizer (� = 0.005)
gives a more faithful reconstruction of the CD insert than lower
values of �, while still suppressing noise.

Fig. 4: AUC of observer models vs. observer regularization
parameter � used in training a CNN reconstruction network.
Observe that the AUC of proposed signal-Laplacian observer
reaches a maximum at � ⇡ 0.005, while the AUC for the
Hybrid-CHO and signal observer increases roughly monoton-
ically with � increasing.

IV. CONCLUSION

We propose a model observer approach to assess signal de-
tectability performance of non-linear CT reconstruction using
CNNs. The proposed model observer is based on the signal-
Laplacian, which we hypothesize is a reasonable proxy for a
human model observer. We demonstrate its potential to aid in
selecting hyper-parameters when training a CNN to reconstruct
synthetic sparse-view breast CT data.
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Tunable Neural Networks for Multi-Material Image
Formation from Spectral CT Measurements

Matthew Tivnan, Grace Gang, Peter Noël, Jeremias Sulam, and J. Webster Stayman

Abstract—Quantitative estimation of multi-material density
images is an important goal for Spectral CT imaging. However,
material decomposition is a poorly-conditioned nonlinear inverse
problem. Maximum-likelihood model-based material decomposi-
tion results in very noisy material density image estimates. One
increasingly popular strategy for noise reduction is to apply deep
neural networks for multi-material image formation. The most
common loss function is mean squared error with respect to
supervised target images such as ground truth or higher-dose
cases. However, we believe that the mean-squared error loss
function has several issues for multi-material image formation. In
this work, we present a new loss function which includes multiple
noise realizations with separate weights on covariance and bias
for joint denoising of all material bases. By modulating these
weights, it is possible to tune the image quality of neural network
output images. To demonstrate our proposed approach, we
conducted a simulation of a water/calcium/gadolinium spectral
CT imaging scenario using a deep neural network for multi-
material image denoising. Our results show that by changing the
weights of our proposed loss function, it is possible to control
the tradeoff between variance and bias for individual materials
as well as the control over the bias coupling between materials.

Index Terms—Tunable Neural Networks, Spectral CT, Multi-
Energy CT, Material Decomposition, Multi-Material Imaging

I. INTRODUCTION
Spectral CT imaging systems incorporate multiple photon

energy sensitivity channels into one data acquisition which
makes it possible to estimate material composition based
on the differences in mass attenuation spectra. Quantitative
estimation of material density images has many clinical ap-
plications ranging from iodine concentration estimation, soft-
tissue/bone decomposition, and k-edge imaging of one or
more contrast agents [1] [2]. One physics-driven approach to
multi-material image formation is direct model-based mate-
rial decomposition (MBMD). However, maximum-likelihood
MBMD is a poorly conditioned nonlinear inverse problem and
results in noisy material density image estimates.

An increasingly popular strategy is to train a deep neural
network (DNN) for multi-material noise reduction. There
are many possible ways to incorporate a DNN into the
spectral CT image reconstruction and material decomposition
data processing chain. Some examples include DNNs for
projection-domain correction of spectral distortions [3], image-
domain material decomposition and noise suppression [4] [5],
virtual-non-contrast image estimation [6], and direct recon-
struction and material decomposition [7], [8]. Most multi-
material image formation DNNs (including all these cited
examples) are trained using a mean-squared error (MSE) loss
function. We believe there are several problems with MSE
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for this application. First, it places equal weight on density
errors for different materials despite the fact they may have
very different attenuation coefficients. Also, MSE is a fixed
objective function which offers no way to trade-off between
variance and bias in output images. If the network learns to
reduce noise in a way that systematically distorts low-contrast
anatomical features, that can be a major problem for many
clinical applications.

In this work, we propose a modification to the MSE loss
function which uses multiple noise realizations for train-
ing with separate weights on covariance and bias of the
DNN output image distribution. We present a demonstration
of our proposed loss function involving a simulated wa-
ter/calcium/gadolinium spectral CT imaging scenario using a
population of digital anthropomorphic phantoms. Our results
show that by modifying these weights, it is possible to
control the relative penalty on bias and variance for individual
materials as well as combinations of materials such as virtual
monoenergetic attenuation images. This loss function provides
a new capability for tunable image quality in DNN output
images. The approach is an extension of the single-energy
denoising approach presented in [9].

II. METHODS

A. Probabilisitic Model of Multi-Material Imaging

Consider an imaging scenario where a patient, X, undergoes
a spectral CT scan resulting in the measurements, Y. A multi-
material image formation algorithm is then applied to produce
the reconstruction, X̂, which is an estimation of X. In this
work, we use a probabilistic model to describe the variation
within a population of patients as well as the variation due to
noise in both measurements and reconstructions, for a given
patient. Therefore, we define X and X̂ as random vectors
representing voxelized multi-material density images and Y as
a random vector representing channelized projection-domain
spectral CT measurements. The joint probability density func-
tion for this imaging scenario is therefore given by

p(x,y, x̂) = p(x)p(y|x)p(x̂|y). (1)

We also assume that the reconstructed images are a de-
terministic function of the measurements and therefore X̂ is
conditionally indpendent of X given Y. That is, X̂ = H✓(Y)
where the function, H✓ , represents the deterministic multi-
material reconstruction algorithm parameterized by ✓. There-
fore, we have p(x̂|x,y) = p(x̂|y) = �(x̂�H✓(y)).

Depending on the choice of image reconstruction and ma-
terial decomposition algorithm, the parameters, ✓ could be
the hyper-parameters of a model-based iterative reconstruction
algorithm (MBIR) or the weights and biases of a deep neural
network (DNN). The purpose of this work is to provide method
for selecting/training ✓ to control image quality of multi-
material density estimates.
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B. Mean, Bias, and Covariance in Multi-Material Images
The probabilistic end-to-end model of a spectral CT imaging

system, including data acquisition, image reconstruction, and
material decomposition is given by the conditional distribution
p(x̂|x). Samples from this distribution are the reconstructed
images, X̂, provided to clinicians with the intention to repre-
sent some ground-truth patient, X. An ideal imaging system
would produce image estimates which are both accurate and
precise representations of the ground truth. For a given patient,
X = x, accuracy is quantified by the expectation of error, or
bias, and precision is quantified by the noise covariance of
X̂|x. Since X̂ = H✓(Y), we can define the mean, bias, and
covariance in terms of expectations over Y|x as follows:

µx̂|x =

Z
p(y|x) H✓(y) dy , (2)

bx̂|x =

Z
p(y|x)

h
H✓(y)� x

i
dy = µx̂|x � x , (3)

⌃x̂|x =

Z
p(y|x)

h
(H✓(y)� µx̂|x)(H✓(y)� µx̂|x)

T
i
dy.

(4)
In practice, these quantities can be approximated by com-

puting sample expectations for multiple measurement noise
realizations. Examples of bias, bx̂|x, in multi-material images
include spatial blur, beam-hardening artifacts, systematic er-
rors due to miscalibration of spectral sensitivity, cross-material
edge artifacts, and more. The covariance matrix, ⌃x̂|x provides
a description of the noise power or variance for each voxel and
material estimate as well as all cross-voxel and cross-material
noise correlations.
C. Spectral CT Physical Model

We define the measurement likelihood p(y|x) based on
a physical model of spectral CT. We assume that the mea-
surements represent channelized spectral measurements (e.g.
from a photon-counting detector, multi-layer detector, etc.).
We also assume Y|x follows a multivariate Gaussian dis-
tribution N (ȳ(x),⌃y(x)) where the mean model, ȳ(x) and
measurement noise covariance, ⌃y are given by

ȳ(x) = S exp
⇣
�QAx

⌘
, ⌃y(x) = D

n
ȳ(x)

o
. (5)

The matrix A is a CT forward-projector to model the line
integral sampling geometry, the matrix Q contains the mass
attenuation coefficient for each material and each photon-
energy bin, and the matrix S contains the system sensitivity
spectra for each projection and each spectral channel. The
term, D{ȳ(x)} represents the diagonal matrix with ȳ(x) as
the diagonal elements. In this work, the mean and variance of
Y|x are Gaussian approximations of Poisson noise.

D. Model-Based Material Decomposition
A physics-driven approach to image reconstruction and

material decomposition is to use the maximum-likelihood es-
timator, x̂ML(y) = argminx {� log p(y|x)}. Plugging in our
spectral CT physics model for p(y|x) leads to the nonlinear
weighted least-squares objective function,

x̂ML(y) = argmin
x

1

2
(y � ȳ(x))TD�1

n
ȳ(x)

o
(y � ȳ(x)).

(6)
This estimator can be implemented via iterative numerical

optimization such as the SPS algorithm described in [10].

E. Multi-Material Image Formation with Neural Networks
Machine learning models using deep neural networks

(DNNs) are increasingly popular for CT image reconstruction
and material decomposition. A common training training strat-
egy for these regression models is mean-squared error (MSE)
which is given by

MSEx̂,x = EX̂,X[(X̂�X)T (X̂�X)] = EX[MSEX̂|x]. (7)

In practice, the expectation, EX is typically approximated
by computing the sample mean for a batch of random patients
from the training dataset. The conditional MSE represents the
expectation over noise realizations of the DNN output, X̂ for
a given patient X = x is defined as

MSEX̂|x = EX̂|x[(X̂� x)T (X̂� x)] . (8)

MSE can be decomposed into a variance component and a
bias component as follows:

MSEX̂|x = tr
n
⌃x̂|x

o
+ bT

x̂|xbx̂|x. (9)

For a situation where the training dataset consists of only
one noise realization of the input for each ground-truth output,
MSEX̂|x must be approximated from one sample as the
squared error for one sample, (x̂ � x)T (x̂ � x). However,
if multiple noise realizations are available, the expectation,
EX̂|X, can be approximated by a sample mean over noise
realizations. It is also possible to compute sample mean,
sample bias, and sample covariance to decompose the error,
as shown in (9), into variance and bias components.
F. Weighted Covariance and Bias (WCB) Loss Function

To address some of the issues with MSE as a loss function
for DNN-based multi-material image formation models we
propose a new loss function called Weighted Covariance and
Bias (WCB) which we define as

WCBx̂|x = tr
n
WC⌃x̂|xWC

T
o
+bT

x̂|xWB
TWBbx̂|x. (10)

The WCB loss function in (10) is a modification of (9) with
the inclusion of bias weighting matrix, WB, and covariance
weighting matrix, WC. Note that the WCBx̂|x is a patient-
conditional loss but the weights WB and WC are constant
for all patients. Similar to (7), batches of patient samples
are used during training to minimize the sample expectation
EX[WCBx̂|x].

For the special case, WB = WC = I, the WCB loss
function is equivalent to MSE. One simple modification would
WB =

p
↵ I, WC =

p
1� ↵ I so that the parameter ↵ can

be used for bias/variance trade-off as introduced in [9] for
single-energy CT. For multi-material imaging, one possibility
is to use diagonal weighting matrices which scale the material
densities by their mass attenuation coefficient at a certain
photon energy. That way, all errors can be evaluated on the
same scale rather than summing density errors for different
materials. Another possibility is to penalize noise and bias in
virtual monoenergetic attenuation images which are the sum of
all materials weighted by their mass attenuation coefficients.
Finally, we hypothesize it will be possible to control the
relative importance of variance or bias in any individual
material or linear combination of materials by modifying the
relative magnitude of WC and WB.
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Fig. 1. Water, calcium, and gadolinium density images and total attenuation images at 70keV for A) the ground truth, B) maximum likelihood MBMD which
is the CNN input, C) MSE-trained CNN, D-F) WCB-trained CNN for protocol A with D) ↵Gd = 0.1, E) ↵Gd = 0.5, F) ↵Gd = 0.9, G-I) WCB-trained
CNN for protocol B with G) ↵Gd = 0.1, H) ↵Gd = 0.5, and I) ↵Gd = 0.9.
G. Simulation Study: DNN for Multi-Material Denoising

To evaluate our proposed WCB loss function, we conducted
a simulation of spectral CT for gadolinium contrast-enhanced
liver imaging with water/calcium/gadolinium decomposition.
The multi-material image formation model has two parts. First,
we apply maximum-likelihood MBMD, which produces low-
bias, high-variance material density estimates. Second, we
apply a neural network for post-processing. Therefore, the
network is trained with supervised pairs of noisy MBMD
reconstructions and ground-truth material density images.

We generated a population of 50 female and 50 male adult
patients as 3D voxelized images with 1.0 mm cubic voxels
using the XCAT anthropomorphic digital phantom generator
[11] with randomized anatomical features using the XCAT
male/female defaults ± 5% half-width at half-maximum of
an independent Gaussian distribution. Two attenuation images
were generated at 100 keV and 150 keV to which we applied
image-domain decomposition to produce ground truth water
and calcium density images. The XCAT activity feature was
also used to generate the biodistribution of exogenous gadolin-
ium contrast enhancement with 20.0 ± 1.0 mg/mL in the
liver and 40.0 ± 2.0 mg/mL in the veins to roughly represent
portal venous phase contrast enhancement. From these 100 3D
patient models, we sampled 1,000 3-material density image
slices, downsampled to size 128 ⇥ 128, randomly scaled by
100 ± 10%, and randomly rotated by 0 ± 2 degrees.

We simulated spectral CT measurements for a fan-beam
geometry with 1200 mm source-to-detector distance, 800 mm
source-to-axis distance, 360 views per rotation, and 1.0 mm
detector pixel spacing. For the system spectral sensitivity,
we simulated a 120kVp source spectrum with 107 pho-
tons per pixel per view and ideal photon-counting energy-
binning detectors with bin edges at 40, 60, 80, and 100 keV.
We used this 5-channel data to reconstruct 3-material wa-
ter/calcium/gadolinium images using 1000 iterations of the

separable parabolic surrogates algorithm from [10] with the
cross-material preconditioner from [12]. We repeated this
process for 32 noise realizations so the final training data
consisted of noisy reconstructed multi-material images with
shape 1000 ⇥ 32 ⇥ 3 ⇥ 128 ⇥ 128 and ground-truth multi-
material images with shape 1000⇥1⇥3⇥128⇥128. We used
80% of the data for training and reserved 20% for validation.

Our DNN architecture consists of five 3 ⇥ 3 convolutional
layers between the input and each layer. Each layer used
a ReLU activation function except the last layer which is
linear and the number of output channels for each layer,
in order, are 128, 64, 32, 16, and 3. We also used skip
connections to concatenate the input images to the output of
each convolutional layer.

We trained the this DNN architecture repeatedly using
the WCB loss function. We used only block-diagonal cross-
material weighting matrices. We denote the blocks of WB

as W̃B and the blocks of WC as W̃C . Note there is one
identical cross-material block matrix per voxel but these blocks
do not need to be square; they must have three columns
for water, calcium, and gadolinium, but they can have any
number of rows. We use cross-material blocks which follow
the parameterized form:

W̃B = D{

p
�}D{

p
1�↵}PD{µ} (11)

W̃C = D{

p
�}D{

p
↵}PD{µ} (12)

where µ is a vector of mass attenuation coefficients at 70
keV, P is a 4 ⇥ 3 matrix which is an identity matrix for the
first 3 rows and all ones for the fourth row to represent a
virtual monoenergetic attenuation image, ↵ is a 4⇥1 vector of
parameters controlling the level of noise suppression for each
material (or combination), and � controls the relative weights.
Tuning the output image quality is done by modulating the 8
parameters in ↵ and � before training the neural network.

We started by training the network with the Adam op-
timizer with learning rate 0.0001 for 1000 epochs using
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↵ = [0.1, 0.1, 0.1, 0.1] and � = [1.0, 1.0, 1.0, 0.0]. From this
reference point, we tuned the network with 100 training epochs
for different weighting matrices choices. We conducted two
one-dimensional parameters sweeps keeping all other weights
constant. Protocol A is defined as ↵ = [0.1, 0.1, ↵Gd, 0.1],
� = [1.0, 1.0, 1.0, 0.0] and protocol B is defined as ↵ =
[0.1, 0.1, ↵Gd, 0.1], � = [1.0, 1.0, 10.0, 10.0], where the single
parameter ↵Gd controls the level of noise reduction in the
gadolinium channel.

Fig. 2. Noise in DNN output material density images as a function of gadolin-
ium bias which is controlled by ↵Gd. The dashed line shows protocol A and
the solid line shows protocol B.

Fig. 3. Bias in DNN output material density images as a function of gadolin-
ium bias which is controlled by ↵Gd. The dashed line shows protocol A and
the solid line shows protocol B.

III. RESULTS
Multi-material density images as well as virtual monoener-

getic images at 70 keV are shown in Figure 1. The ground
truth image in column A was sampled from the validation
dataset. Column B shows a maximum-likelihood MBMD
reconstruction which has low bias but high noise. Column
C shows mean-squared error training which reduces noise but
introduces bias in all four images. Columns D-F show the
results for protocol A for three different values of ↵Gd. For
protocol A, changing ↵Gd controls the bias/variance trade-off
for the gadolinium image but has almost no effect on the other
other two material images. Large ↵Gd leads to less noise but
more bias in the gadolinium channel as well as more bias
in the monoenergetic attenuation images. Columns G-I show
the results for protocol B which strongly penalizes bias in the
monoenergetic attenuation image. As a result, a higher value
of ↵Gd leads to increased bias in both the gadolinium and
calcium channels but in such a way that the weighted sum of
materials produces low bias in the monoenergetic attenuation
images. These visual observations are also validated by the
noise and bias plots in Figures 2 and 3.

Figure 2 shows that changing ↵Gd can be used to trade-off
between variance and bias in the gadolinium density image
estimates with very little effect on the noise level for the
other materials. The dashed lines in Figure 3 show that, for
protocol A, increasing ↵Gd leads to more bias in gadolinium
and the total attenuation images with very little impact on
the other materials. The solid lines in Figure 3 show that
bias in monoenergetic attenuation images has been reduced for
protocol B relative to protocol A. However, this comes at the
cost of additional bias in the calcium channel which is needed
to cancel out the gadolinium bias. For applications requiring
low bias in the calcium channel, we recommend protocol A
and for applications requiring low bias in the monoenergetic
images we recommend protocol B.

IV. CONCLUSION
In this work, we have presented a novel loss function for

DNNs using multiple noise realizations and explicit weights
on covariance and bias of multi-material image estimates. The
results of our simulation study confirm that these weights can
be used to tune neural network output image quality. For joint
image denoising in multi-material imaging, we have shown
these weights can be used to emphasize variance and bias in
individual materials as well as linear combinations thereof.

One limitation of our proposed method is that it requires
multiple noise realizations of the network input. For our
simulation study, we used XCAT phantoms and a spectral
CT physics simulator to generate multiple noise realizations
per patient. To implement WCB in cases where only a single
noise realization is available, it may be possible to generate
many lower-dose images from one higher-dose image as
described by [13]. Another limitation is the relatively simple
DNN architecture we used since better performance is likely
possible using the latest network architectures. We note that
the WCB loss function is very general and can be applied to
all the same regression problems which would use MSE. In
future studies, we are interested in applying the WCB loss to
projection-domain denoising and deep reconstruction models
which directly estimate material densities from the data.

The proposed training method offers an new capability for
tunable neural networks for multi-material image formation.
The specific image quality goals will vary for different tasks
which will inform the weights on covariance and bias. The
WCB loss function will provide imaging scientists with a flexi-
ble new tool to tune neural networks to optimize multi-material
image quality for many clinical applications of spectral CT.
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Self-supervised nonlocal spectral similarity-induced
material decomposition network for dual-energy CT

Lei Wang, Yongbo Wang, Zhaoying Bian, Dong Zeng, and Jianhua Ma

Abstract—Dual-energy computed tomography (DECT) imag-
ing plays an important role in clinical diagnosis applications
due to its material decomposition capability. However, in the
cases of low-dose DECT imaging and ill-conditioned issue, the
direct decomposed material images from DECT images would
suffer from severe noise-induced artifacts, leading to low qual-
ity and accuracy. In this paper, we propose a self-supervised
Nonlocal Spectral Similarity-induced Decomposition Network
(NSSD-Net) to produce decomposed material images with high
quality and accuracy in the low-dose DECT imaging. Specifically,
we first build the model-driven iterative decomposition model
and optimize the objective function by the iterative shrinkage-
thresholding algorithm (ISTA) with the convolutional neural
network. Considering the intrinsic characteristics information
(i.e., structural similarity and spectral correlation) underlying
DECT images, which can be used as the prior information to
improve the accuracy of the decomposed material images, we
construct the nonlocal spectral similarity-based cost function by
using the prior information and incorporating it into the iterative
decomposition network to guarantee stability. The proposed
NSSD-Net method was validated and evaluated with real clinical
data. Experimental results showed that the presented NSSD-Net
method outperforms the other competing methods in terms of
noise-induced artifacts reduction and decomposition accuracy.

Index Terms—Dual-energy computed tomography, deep learn-
ing, material decomposition, low-dose, self-supervised learning.

I. INTRODUCTION

DUAL-energy computed tomography (DECT) has been
widely used in clinical diagnosis, including kidney stone

characterization, iodine quantitative examination, and many
other applications. Compared to traditional CT, DECT pro-
vides two sets of attenuation measurements by exploiting two
different energy spectra to achieve the material decomposition
and energy-selective imaging, which opens up new diagnosis
possibilities. However, the direct decomposed material images
from DECT images would suffer from severe noise and noise-
induced artifacts, especially under low-dose scan protocols.
The main reason is that the material decomposition process
suffers an ill-conditioned problem that leads to severe noise
in the decomposed material images [1]. To tackle this problem,
many advanced algorithms have been proposed to improve the
signal-to-noise ratio of decomposed material images.

These material decomposition algorithms can be generally
divided into two categories: model-driven material decomposi-
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tion methods and data-driven material decomposition methods.
The model-driven methods [2] generally build a model on
the physical properties and the attenuation characteristics,
then optimize the objective function to get the decomposed
material images. These methods also can be characterized
into one-step inversion, projection-domain, and image-domain
decomposition methods. One-step inversion is mathematically
the most elegant with one-step matrix inversion, but they are
very computationally expensive. Projection-domain methods
directly decompose the projection data into the basis ma-
terial sinograms and then reconstruct them with the filter
back-projection algorithm. Although the decomposition per-
formance is significant, they require accurate system cali-
brations that use nonlinear models. Image-domain methods
reconstruct each energy bin image and then directly perform
material decomposition on image data, which may lead to
beam hardening artifacts. On the other hand, the data-driven
methods [3] train the convolutional neural network (CNN) in
an end-to-end manner to obtain accurate decomposed material
images. However, these methods have two main problems.
First, these methods do not take into account the inherent
physics mechanism, their unexplained property obstacles deep
learning techniques to be widely applied in clinical. Second,
most of these existing algorithms are supervised learning
methods. The decomposition performance depends on the
quality and quantity of training data pairs. However, high-
quality training data pairs are difficult to acquire in clinic,
which limits the accuracy of decomposed material images and
the generalization performance of models.

To address these problems, we propose a nonlocal spectral
similarity-induced material decomposition network (NSSD-
Net) for DECT. The NSSD-Net couples the model-based mate-
rial decomposition model with the deep network and optimizes
by the iterative shrinkage-thresholding algorithm (ISTA). Con-
sidering the structural similarity and spectral correlation un-
derlying DECT images, the nonlocal spectral similarity-based
cost function is designed to guarantee network convergence
in a self-supervised manner. The main contributions of the
proposed NSSD-Net can be summarized as follows: the first
one is that the proposed method fully considers the material
decomposition physician mechanism and combines the bene-
fits of model-driven methods and data-driven methods. The
second one is that the proposed methods use the nonlocal
spectral similarity features as prior information and optimize
hyper-parameters by self-supervised learning strategy with no
ground-truth data, which enhances the generalization of the
proposed model. Experiments on clinical data have confirmed
the significant decomposition performance of the NSSD-Net.
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Fig. 1. The overall framework of the proposed NSSD-Net.

II. METHODS

A. Model-driven material decomposition model
According to image-based decomposition theory, the linear

combination of pixel values in the basis material images can
represent the linear attenuation coefficient of each pixel in the
input images. Based on the above assumption, the formulation
of the material composition for DECT can be written as:

U = AX, (1)

where U = [µH , µL]
T denotes the linear attenuation coef-

ficient of high and low energy spectrum, X = [x1, x2]
T

denotes the normalized densities of the basis materials, A is
the decomposition matrix and can be represented as follows:

A =

(
µM1HI µM2HI
µM1LI µM2LI

)
, (2)

where µMij denotes the mass attenuation coefficient of the
basis materials, I is an identity matrix with the dimension of
2N -by-2N , and N is the total number of pixels in one CT
image.

Direct decomposition generating decomposed material im-
ages with severely degraded SNR, especially at low-dose
levels. This is because there is a large condition number
on the matrix A, and this can be treated as an ill-posed
problem, which makes the decomposition process is sensitive
to the noise on the raw CT images. To alleviate this situation,
least-square estimation model with regularization R(X) is
introduced to suppress decomposed material images noise,
which can be expressed as follows:

X∗ = argmin
X

‖AX − U‖22 + λR(X), (3)

where R(X) = ‖X‖1 and λ is the hyper-parameters of
regularization term.

ISTA is a prevailing framework to optimize the decompo-
sition solvation process with non-smooth regularizers. Each
iteration of ISTA involves gradient descent update the decom-
posed material images followed by a shrinkage-threshold step:

X(k) = argmin
X

∥∥∥X −R(k)
∥∥∥
2

2
+ λ‖X‖1, (4)

R(k) = X(k−1) − ρAT
(
AX(k−1) − U

)
, (5)

where ρ is the step size, X(k) and R(k) denote the intermediate
variables of the decomposed results, and λ is the hyper-
parameter of the regularization term. However, the model-
based material decomposition methods are computationally
expensive, and it is difficult to select the optimal parameters
(i.e., ρ and λ) and the global optimal solution in practical
applications.

B. The proposed NSSD-Net
To address these problems, we propose a self-supervised

nonlocal spectral similarity-induced material decomposition
network. As shown in Fig. 1, the proposed NSSD-Net consists
of two parts: (a) ISTA-based decomposition network and (b)
NSS feature generation.

(a) ISTA-based decomposition network: Inspired by the
powerful representational capability and universal approxi-
mation of CNN, we use the CNN model F (·) stands for
the material decomposition nonlinear function to suppress the
noise of images. Thus, the ISTA-based material decomposition
model can be formulated as:

X(k) = argmin
X

∥∥∥F (X)− F
(
R(k)

)∥∥∥
2

2
+ θ‖F (X)‖1, (6)

R(k) = X(k−1) − ρAT
(
AX(k−1) − U

)
, (7)
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where θ is a learnable parameter. Therefore, the k-th iteration
of the decomposed material images X(k) can be efficiently
computed in closed-form as follows:

X(k) = F̃
(
soft

(
F
(
R(k)

)
, θ(k)

))
, (8)

where F̃ (·) denotes the left inverse of F (·), and has a
symmetrical structure with F (·).

(b) NSS feature generation: Considering the intrinsic char-
acteristics underlying DECT images, i.e., structural similarity
and spectrum correlation, which characterizes the priors of
desired DECT images. Based on the success of the previous
work [4], in this work, we utilize this prior information to
generate the nonlocal spectral similarity (NSS) features to
enhance the stability of the ISTA-based iterative decomposi-
tion network. Specifically, the proposed method is designed
by averaging the acquired DECT images U = [µH , µL]

T

to obtain the average image Uavi, which takes the image
similarity within the two energies into consideration. Then, we
use the aviNLM method [4] to denoise the noisy DECT images
U and estimate the decomposed material image Xp by the
image-domain-based decomposition algorithm. The decom-
posed material image Xp can provide the prior information to
guide the ISTA-based iterative decomposition network. Thus,
the proposed nonlocal spectral similarity-based cost function
can be represented as:

LNSSD =
1

N

N∑

i=1

∥∥∥Xi
(Nt) −Xp

∥∥∥
2

2
, (9)

where N and Nt are the number of training data and basic
CNN module, respectively. Xi

(Nt) is the decomposed result
of the NSSD-Net.

C. Loss Function
NSSD-Net takes the noisy DECT image {Ui}Ni=1 and NSS

feature-induced decomposed material image {Xp}Ni=1 as input,
and generates the decomposed material image, denoted by
Xi

(Nt) as output. We optimize the proposed network by the
self-supervised learning strategy and the total loss function can
be expressed as:

Lc =
1

NtN

N∑

i=1

Nt∑

k=1

∥∥∥F̃ (k)
(
F (k) (Xi)

)
−Xp

∥∥∥
2

2
, (10)

Ltotal = LNSSD + τLc. (11)

where τ is a constant and we set τ = 1 in this work.

D. Experimental Dataset and Settings
The clinical patient study was conducted to assess the

proposed NSSD-Net performance. After writing the informed
consent from 29 volunteer patients, clinical data were acquired
from the GE Discovery CT750 HD scanner with 140kVp and
80kVp. The virtual monochromatic spectral (VMS) images
were generated using the GE commercial software. In this
work, the VMS images at 90kev and 140kev were selected as

the DECT images. In addition, the linear attenuation coeffi-
cient of basis materials according to the VMS images reported
by the National Institute of Standards and Technology (NIST).
Then, we simulated the noisy DECT data by the previous
work [5] to further analyze the noise suppression performance
among different material decomposition methods.

In the experiment, 1000 simulated noisy VMS image pairs
(i.e., 90kev and 140kev) from 22 patients were used for
training and 188 simulated noisy VMS images pairs from the
remaining patients were used for testing. The network was
implemented on an NVIDIA Tesla P40 GPU based on the
PyTorch framework and using the Adam optimizer. The initial
learning rate, batch size, epoch, and iterations were set to
1e−3, 1, 50, and 100, respectively. During training, the number
of CNN basic module was set to 8. According to experience,
the initial gradient descent step ρ = 0.5, the hyper-parameter
τ = 1, and the threshold θ = 0.1.

III. RESULTS

Fig. 2 shows the decomposed material images of different
methods for two test cases. The first column is the ground-
truth decomposed material images. It can be observed that both
direct matrix inversion method (DIMD) and statistic iterative
based decomposition method (Iterative MD) failed to properly
distinguish basis materials, and the decomposed material im-
ages were heavily corrupted by the noise and noise-induced
artifacts. Compared to the DIMD and Iterative MD, the data-
based material decomposition methods (i.e., CD-Convnet and
ISTA-Net) remove the noise and artifacts further and provide
accurately estimates of different materials. However, compared
to NSSD-Net, the data-based material decomposition methods
tend to over-smoothen the images, especially in the structural
edge and soft tissue area. The results demonstrate that the
self-supervised nonlocal spectral similarity prior can provide
the spectral data structure feature information and effectively
guide the material decomposition process. Fig. 3 shows the
profile comparison indicated by the orange lines in Fig. 2. It
can be judged that the NSSD-Net achieves a good balance
between bias control and noise suppression.

In order to quantitatively validate the decomposed perfor-
mance of the proposed NSSD-Net, the peak signal-to-noise
ratio (PSNR), structure similarity index measure (SSIM) and
root mean square error (RMSE) metrics are calculated. As
shown in Tab. I, both NSSD-Net results (i.e. water and bone
equivalent fractions), achieve relative superior quantitative
metrics than the other decomposition methods expect for the
ISTA-Net. The possible reason is that the ISTA-Net utilize
the fully supervised manner to train the network, while the
proposed NSSD-Net trained without the labeled data. It is
worth noting that the proposed method outperforms the ISTA-
Net in terms of the SSIM and confirm that the NSSD-Net can
provide the global and local structure information from DECT
images.

IV. CONCLUSION

In this paper, we propose a novel material decomposition
framework for DECT based on the self-supervised nonlocal
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Fig. 2. The decomposed material images of different methods: the first and third row shows the water decomposed images with
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TABLE I. Quantitative results of different material decompo-
sition methods.

Methods PSNR SSIM RMSE

DIMD
bone 22.1648± 1.8508 0.7946± 0.0995 8.8992± 3.0836

water 21.6688± 2.0852 0.8072± 0.0866 9.1729± 2.9362

Iterative MD
bone 27.6527± 1.0160 0.9103± 0.0392 3.6492± 1.1476

water 24.0065± 0.8603 0.8932± 0.0385 4.3312± 1.0572

CD-Convnet
bone 28.1554± 0.8808 0.9264± 0.0198 4.0299± 0.8422

water 29.2132± 0.3138 0.8647± 0.0365 6.1902± 2.0852

ISTA-Net
bone 32.5106± 1.0177 0.9602± 0.0142 1.4208± 0.6827

water 32.6545± 0.7508 0.9684± 0.0251 2.6060± 0.8472

NSSD-Net
bone 31.4440± 1.0940 0.9631± 0.0215 1.6329± 0.6989

water 31.3831± 0.8861 0.9701± 0.0527 2.9008± 0.5268

spectral similarity prior. Specifically, the proposed NSSD-Net
combines the traditional model-based decomposition model

with the data-based method and optimizes the objective func-
tion by the nonlocal spectral similarity prior. The experimental
results with clinical data show that the NSSD-Net can obtain
accurate decomposed material images of dual-energy.
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Likelihood-based bilateral filtration in material
decomposition for photon counting CT

Okkyun Lee*

Abstract—The maximum likelihood (ML) principle has been
a gold standard for estimating basis line-integrals due to the
optimal statistical property. However, the estimates are sensitive
to noise from large attenuations or low dose levels. One may apply
filtering in the estimated basis sinograms or model-based iterative
reconstruction. Both methods effectively reduce noise, but the
degraded spatial resolution is a concern. In this study, we propose
a likelihood-based bilateral filter (LBF) for the estimated basis
sinograms to reduce noise while preserving spatial resolution.
It is a post-processing filtration applied to the ML-based basis
line-integrals, the estimates with a high noise level but minimal
degradation of spatial resolution. The proposed filter considers
likelihood in neighbours instead of weighting by pixel values as
in the original bilateral filtration. Two-material decomposition
(water and bone) results demonstrate that the proposed method
shows improved noise-to-spatial resolution tendency compared to
conventional methods.

Index Terms—Photon counting CT, material decomposition,
maximum likelihood, bilateral filter

I. INTRODUCTION

E nergy discriminating photon counting detector (PCD)
enables estimating line-integrals of basis materials. It

provides various potential applications in PCD-based com-
puted tomography (CT) compared to the conventional energy
integrated detector-based CT [1]. The maximum likelihood
(ML) principle has been a gold standard for estimating basis
line-integrals in PCD-CT [2, 3]. It has the optimal statistical
property–unbiased and achieves the Cramér-Rao lower bound
(CRLB), the minimum noise for an unbiased estimator. How-
ever, the noise level in the estimated basis sinograms and the
associated reconstructed basis images may not be satisfactory
for clinical purposes [4, 5]. When the dose level is low, or the
attenuation is large, the estimates greatly suffer from noise [4,
6]. One may apply low-pass filtering (LPF) in the estimated
basis sinograms or statistical iterative reconstruction (SIR) by
regularizing neighboring pixels in the image domain while
exploiting noise statistics in the forward model [4, 5, 7]. Both
approaches effectively reduce the noise in the basis images,
but the degraded spatial resolution is a concern.

In this study, we propose a likelihood-based bilateral filter
(LBF) to reduce noise while preserving spatial resolution.
Bilateral filter (BF) is an effective edge-preserving method
for image denoising[8, 9]. In a region of interest (ROI; the
central pixel is the one we want to correct), it gives more
weight for a neighborhood pixel whose value is more similar
to that of the centered one, in addition to a pixel distance
weight (e.g., Gaussian shape). The method is effective when
the central pixel in ROI is a reliable reference for filtering

*O. Lee is with the Department of Robotics Engineering, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu, Republic of Korea
(oklee@dgist.ac.kr).

purposes. However, the estimated basis sinograms may be too
noisy to apply in practice (we validate it in the simulation
study later). Instead of the pixel value-dependent weighting,
we apply the neighboring likelihood-dependent one. The pro-
posed method first estimates basis sinograms using the ML
principle. It then calculates log-likelihoods using the estimates
in the neighboring pixels for given PCD measurements at the
centered one. It gives more weight to the neighbors whose
likelihoods are greater than others. It is possible that pixel
values that are very different from the center one (the ML
estimates) may produce likelihoods close to the ML, so the
method reflects the statistical distance rather than the distance
between noisy estimates.

We validate the proposed method for a two-material de-
composition (water and bone) and compare it to conventional
methods. The ML-based estimation for basis sinograms is the
starting point for all the methods we consider here. We used
Gaussian and the original bilateral filters in the estimated
basis sinograms as the conventional methods. We also ap-
plied model-based iterative reconstruction with edge-preserved
penalty in the image domain. Both noise-reduced images (basis
images and CT images) and noise-FWHM (full width at half
maximum) behavior demonstrate that the proposed method
effectively reduces noise without sacrificing spatial resolution
compared to the conventional ones.

II. METHODS

A. The ML-based Estimation for Basis Sinograms in PCD-CT

The log-likelihood of unknown basis line-integrals for
the j-th sinogram point (xj = [x1,j , x2,j , · · · , xM,j ]T 2

RM⇥1 [cm]) for a given PCD measurements yj =
[y1,j , y2,j , · · · , yB,j ]T 2 RB⇥1 [counts] is given by (without
constant terms),

lnL(xj |yj) =
BP

b=1
yb,j ln�b(xj)� �b(xj), (1)

where yb,j is the number of photons measured at the b-th
energy bin of the PCD pixel, B is the total number of energy
bins, and M is the number of basis materials. We assume that
the counts in energy bins are independent Poisson random
variables with the expected value (�b(xj)) as follows:

�b(xj) =
R
Sb(E)e

�
MP

m=1
xm,j�m(E)

dE, (2)

for b = 1, 2, · · · , B, where Sb(E) [counts/keV] is the bin-
wise energy-dependent function, including incident spectrum,
and detector response function [2] and �(E) [cm�1] is the
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energy-dependent basis function. The ML-based estimation
can be described as follows:

x̂ML
j = argmin

x
� lnL(x|yj), s.t. xmin

m  xm  xmax
m , (3)

for m = 1, 2, · · · ,M . It includes a box constraint to the
line-integrals to restrain excessively large estimates. After the
estimation for all detector channels and projection views, one
can reconstruct the basis images by applying e.g., filtered
backprojection (FBP).

B. Proposed Likelihood-based Bilateral Filtering (LBF)

The conventional bilateral filtration (BF) we applied to the
basis sinograms is given by,

x̂BF
j = ↵(j)

P
i2Nj

x̂ML
i G(i, j,�1)H(i, j,�2), (4)

where Nj is the set of neighboring sinogram pixels centered
by the j-th pixel and ↵(j) is a normalization factor. The
first weighting function G(i, j,�1) is a spatial low-pass filter
(LPF), and we used a Gaussian filter with a standard deviation
�1. The second weighting function is given by H(i, j,�2) =

exp

⇢
�

kx̂ML
i �x̂ML

j k2

�2
2

�
, which has a control parameter �2,

where k ·k denotes the standard `2 norm (Euclidean distance).
We propose the likelihood-based bilateral filtration (LBF)

as follows:

x̂LBF
j = �(j)

P
i2Nj

x̂ML
i G(i, j,�1)H`(i, j,�2), (5)

where the second weighting function is changed to

H`(i, j,�2) = exp

⇢
�

(lnL(xML
i |yj)�lnL(xML

j |yj))
2

�2
2

�
, and

again �(j) is a normalization factor.

C. Simulation Settings and Conventional Methods

We used an incident x-ray spectrum (140 kVp) with a 5mm
aluminium pre-filtration [10]. A numerical thorax phantom
was used, as shown in Fig. 1 (512 ⇥ 512 with a pixel
size 0.75 ⇥ 0.75mm) [11]. We used water (1 g/cm3) and
bone (0.925 g/cm3) as the two basis functions for a two-
material decomposition. We applied a fan-beam geometry
(equidistance) and used the ASTRA toolbox for the projection
and backprojection [12]. The source to center and center to
detector were both 50 cm. The number of views per rotation
was 1000. The number of PCD pixels was 998 with a detector
pitch of 0.1 cm. We used four energy bins 20, 67, 77, 95 keV
with minimum CRLB when the basis line-integrals of water
and bone were 30 and 6 cm, respectively [13]. The total
number of incident photons was 5 ⇥ 105 for each ray. The
minimum photon numbers measured at PCD with the phantom
were around 350 (summed for all energy bins).

As illustrated in Fig. 1 (the first row), we measured FWHM
for the reconstructed water and CT images (indicated by
arrows) and also standard deviation indicated by the rectangles
(ROIs 1 and 2). The ROI2 was selected to examine the
severe streak artifacts in the image. The standard deviation
was calculated for a single noise trial for each method and the

FWHM using an average image from 100 noise trials. We also
showed the reconstructed two basis images and the synthesized
CT image for a single noise trial and corresponding bias
images. The ground truth was set as the FBP (Shepp-Logan)
images following the ML estimates using a substantially high
number of incident photons (109).

We compared the proposed LBF to the ML estimates, the
original BF, and the LPF given by,

x̂LPF
j =

P
i2Nj

x̂ML
i G(i, j,�1). (6)

For the ML estimates, we used the derivative-free Nelda-Mead
method with the box constraint for water and bone, �2 

xwater  40 cm and �5  xbone  15 cm, respectively. We
set �1 = 0.9 [pix] with a 3⇥ 3 window for BF and LBF, and
we varied �2. For LPF, we also used a 3⇥3 window but with
different values of �1. Once the filtration was applied to the
basis sinograms, we also combined them to synthesize a CT
image (at 65 keV).

We also applied statistical iterative reconstruction (SIR) to
the ML estimates as described in [7]. We used edge preserved
pseudo-Huber penalty [14] with the separable surrogate-based
monotonic algorithm [15]. The detailed algorithm is given in
[5] (Appendix C). We set the maximum iterations as 2000
and terminated when the relative change in the cost function
is less than 2 ⇥ 10�4. There are two control parameters in
SIR: � for the shape of the pseudo-Huber penalty and � for
the regularization parameter (weight on the penalty term). We
tried various combinations of � and � and selected the best
one by observing the reconstructed images and the FWHM
and noise measures.

III. RESULTS

We present the reconstructed basis images and the CT image
overlapped by the bias image in Fig. 1 for various methods. For
basis images (water and bone), we selected the results showing
similar noise levels in ROI1 for all the methods (except the
ML estimates; see the arrows in Fig. 2(a)). For the CT image,
we also selected the ones with similar noise levels in ROI2
(see the arrows in Fig. 2(b)). Thus, the CT image in Fig. 1
may not represent the linear combination of the water and bone
images as shown in the same figure. The images from the ML
estimates are noisier than other methods, but there is no bias at
edges inside the phantom. The LPF is effective in reducing the
streak artifacts in the basis images, but it shows noticeable bias
at edges for all basis and CT images. The images using the BF
also show substantial bias at the edges, and the streak artifact
is larger than the LPF. However, the bias at the edges from the
proposed LBF is smaller than those of the LPF and BF, and the
reduced streak artifact is qualitatively similar to the LPF. It also
clearly demonstrates the effectiveness of the proposed LBF
over the original BF (statistical difference versus pixel value
difference). The SIR shows substantial bias at the edges in the
CT image compared to the basis images. Note that all the CT
images have similar noise levels at ROI2, and it clearly shows
the trade-off between spatial resolution and noise, compared
to the results in LBF.

We show the noise-FWHM plots measured as indicated in
Fig. 1 for the water and CT images in Fig. 2(a) and (b),
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Fig. 1: Reconstructed basis and CT images using various methods. For each image, the left half is the bias calculated from
100 noise trials, and the right half is the result of a single noise trial.
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Fig. 2: Noise-FWHM plots calculated from the reconstructed water image (ROI1 and FWHM1) and CT image (ROI2 and
FWHM2) for various methods. The arrows indicate the points we selected to show in Fig. 1.

respectively. For the water image (FWHM1 and ROI1), the
FWHM from the ML is around 0.8mm, but it has the largest
noise among the methods. The LPF can substantially reduce
the noise by sacrificing spatial resolution. The tendency is
similar for the BF, but it degrades the resolution more than the
LPF for reducing the same amount of noise. Interestingly, the
proposed LBF reduces noise without sacrificing the resolution
(even slight improvement). However, for a large value of
�2, we could see slight but visible artifacts between bones
in the average image (from 100 noise trials). It corresponds
to the last point in the curve, and we indicated it with a
cross mark (dotted line). The SIR presents better property
on the noise-FWHM than the LPF, but the proposed method
shows a slightly smaller resolution than the SIR at some point
(indicated by arrow). The overall tendency in the CT image
(FWHM2 and ROI2–streak artifacts; Fig. 2(b)) is similar to
the water image. However, the noise-FWHM relation of SIR
is not as superior as shown in Fig. 1(a). We searched for all
the possible combinations of regularization parameters used
for water and bone basis images, but we might have missed
the (unknown) optimal parameters.

IV. CONCLUSIONS

We proposed the likelihood-based bilateral filtration in basis
sinograms for photon counting CT. The method can be applied
to the estimated basis sinograms from the ML principle.
It considers the neighborhood likelihoods in ROI for the
weighting function instead of the pixel values (estimates).
We demonstrated that the proposed method is more effective
in reducing noise without sacrificing the spatial resolution,
compared to the original bilateral filter and other conventional
methods.
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Experimental Evaluation of Polychromatic
Reconstruction for Quantitative CBCT

Michał Walczak, Pascal Paysan, Mathieu Plamondon, Stefan Scheib

Abstract—Polychromatic reconstruction is a promising tech-

nique for quantitative cone-beam computed tomography in radi-

ation therapy. In this study, we have implemented polychromatic

forward projection into our reconstruction framework to directly

reconstruct relative electron density volumes without the need for

additional HU calibration. The underlying spectral model takes

beam hardening into account by design. Thereby this extended

reconstruction framework is a natural step in the direction of

spectral imaging, albeit without any hardware modifications.

Reconstructed relative electron density volumes from phantom

scans show sufficiently good agreement with ground truth for

photon dose calculation; relative errors for most inserts are below

3%. We also demonstrate beam hardening artifact reduction

in virtual monoenergetic images obtained from polychromatic

reconstruction as compared to an established iterative recon-

struction using water-based correction. Similarly, polychromatic

reconstruction shows potential for mitigating metal artifacts in a

clinical scan acquired for a patient with bilateral hip implants.

Index Terms—Beam hardening, polychromatic reconstruction,

quantitative CBCT.

I. INTRODUCTION

High quality cone-beam computed tomography (CBCT)
images are essential in image guided radiation therapy for
tasks such as soft tissue based patient positioning, structure
delineation, and dose calculation. However, due to the polyen-
ergetic nature of X-ray sources, image quality in available
single energy reconstructions deteriorates as a result of beam
hardening and metal artifacts. Another limitation is that, to
determine relative electron density (RED), different HU-RED
calibrations are necessary for different acquisition protocols,
which is a common obstacle in clinical use. Spectral imaging,
e.g., dual energy or photon counting technology, addresses
these limitations. However, it generally requires specific hard-
ware solutions. By contrast, leveraging prior knowledge about
the polychromatic characteristic of the X-ray beam as well
as attenuation properties of different materials can be seen
as a middle ground software-based solution. This concept is
at the core of polychromatic reconstruction algorithms in the
literature [1]–[6].

To directly reconstruct RED volumes, we expanded our non-
clinical iterative CBCT (iCBCT) [7] reconstruction pipeline
(iTools Reconstruction, Varian Medical Systems, Palo Alto,
CA, USA) by implementing a polychromatic forward pro-
jection that maps RED volume to intensities in projection
space, as described by Mason et al. [4], [5]. The core com-
ponent of the polychromatic forward projection is a piecewise

M. Walczak, P. Paysan, M. Plamondon, and S. Scheib are employees of
Varian, a Siemens Healthineers company, Taefernstrasse 7, 5405 Daettwil,
Switzerland (e-mail: Michal.mw.Walczak@varian.com)

linear approximation of the relation between polychromatic
attenuation coefficients and RED values fitted for different
materials. Together with an energy-resolved air norm, this
polychromatic attenuation model accounts for beam hardening
by construction. The model also eliminates the need for using
different HU-RED calibrations for different scanning protocols
and can be further used to convert reconstructed RED volumes
to virtual monoenergetic images (VMI).

Unlike Mason et al. [5], we do not use a polyen-
ergetic kernel-based scatter correction, but instead utilize
Acuros® CTS, a polychromatic object scatter estimate based
on the linear Boltzmann transport equation [8], [9], available
in our iCBCT reconstruction pipeline.

In this paper, we demonstrate that our CBCT reconstruction
pipeline augmented with the polychromatic model can be used
to reliably determine RED directly. Further, we show the
benefits of polychromatic reconstruction for reducing beam
hardening artifacts and mitigating metal artifacts, as compared
to an established iterative reconstruction method.

II. METHOD

A. Iterative polychromatic reconstruction

At the core of the iterative polychromatic reconstruction
implementation is a polychromatic forward projection, adapted
from [4]:

p↵ =
NEX

j=1

r0(Ej) exp(�[Aµ̂(⇢e, Ej)]↵) (1)

where p↵ is simulated projection under angle ↵, r0(Ej)
is spectral air norm, A is forward-projection operator, and
µ̂(⇢e, Ej) is a polychromatic attenuation model transforming
the relative electron density volume ⇢e into attenuation coeffi-
cients µ. The polychromatic forward projection combines thus
prior spectral knowledge about the imaging system (spectral
air norm) and material characteristics (polychromatic attenua-
tion model).

The spectral air norm r0(Ej) resolves the (energy-
integrated) air norm after bowtie filtration rBT according to
spectral characteristics of the imaging system:

r0(Ej) =
rBT � S(Ej)PNE

j=1 S(Ej)
(2)

where � denotes element-wise product, S(Ej) is the system
sensitivity. It combines source and detector properties:

S(Ej) = Is(Ej)Fs(Ej)e
�µTi(Ej)lTi�µAl(Ej)lAl⌘d(Ej)Ej (3)
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where Is(Ej) is the spectrum flux at the source, Fs(Ej) is
inherent filtration at the source, µTi and lTi are respectively
attenuation coefficient and thickness of the titanium filter, µAl
and lAl are respectively attenuation coefficient and thickness
profile of the aluminium bowtie filter, and ⌘d(Ej) is the
detector efficiency.

The polychromatic attenuation model takes the form of a
piecewise linear fit [4]:

µ̂(⇢e, Ej) =

NfX

i=1

fi(⇢e) � [↵i(Ej)⇢e + �i(Ej)] (4)

where fi(⇢e) is a material class identification function, �
denotes element-wise product, ↵i(Ej) and �i(Ej) are energy-
dependent fit coefficients. The material class identification
function maps relative electron density values to corresponding
fit segments [4]:

fi(⇢e) =

(
1 if ki�1  ⇢e  ki
0 otherwise

(5)

where ki marks a break point between the i and i + 1 fit
segments, with k0 = 0 and kNf = 1. As described in [4],
model parameters ↵i(Ej), �i(Ej) and ki are obtained via a fit
to human tissue materials from ICRP Publication [10], albeit
in extended energy range from 15 keV to 140 keV.

Similarly to our established iCBCT reconstruction [7], for
RED volume ⇢e optimization, we use a penalized likelihood
cost function with total variation (TV) regularization [11] with
a modified expression for the data-fidelity gradient:

rDF-PL
↵ = AT(q↵ � p↵) (6)

where AT is the back-projection operator acting on the differ-
ence between measured projection q↵ and the polychromatic
forward projection p↵ defined in (1). To accelerate the poly-
chromatic reconstruction, we utilize separable quadratic sur-
rogate cost function [12], ordered subsets [13], and Nesterov
momentum method [14].

B. Reconstruction pipeline
The polychromatic reconstruction pipeline is a natural ex-

tension of our iCBCT reconstruction pipeline, which is a two-
pass approach [7]. In the first pass of the iCBCT pipeline,
the initial HU volume is reconstructed with algebraic recon-
struction technique (ART) from fASKS [15] scatter-corrected
projections. In the second pass, the initial volume is further
refined with statistical reconstruction based on penalized maxi-
mum likelihood (PL) using projection images scatter-corrected
with Acuros® CTS.

The iterative polychromatic reconstruction (IPR) requires
pre-processed projection images. The pre-processing step com-
prises object and hardware scatter corrections. In our two-
pass polychromatic reconstruction pipeline, depicted in Fig. 1,
scatter correction is done at two stages. The first pass fASKS
scatter correction is carried out identically as in the iCBCT
pipeline, and provides input for initial ART reconstruction. In
the second pass, scatter correction is done by Acuros® CTS,
which consumes the initially reconstructed HU volume to

solve the linear Boltzmann transport equation. The scatter-
corrected projection images are then fed into IPR to recon-
struct the final RED volume.

III. RESULTS

A. Direct RED reconstruction

To demonstrate the use of the polychromatic model for
direct RED reconstruction, we scanned the head insert of a
CBCT electron density phantom (Model 062MA, Computer-
ized Imaging Reference Systems, Inc., Norfolk, VA, USA) on
a Varian Halcyon™ machine (Varian Medical Systems, Palo
Alto, CA, USA). The scan was acquired in full-fan geometry
at 125 kVp and with kV blades in the longitudinal direction
collimated to the height of the phantom electron density
plugs. RED volume was reconstructed with 5 initial iCBCT
ART iterations, followed by 50 IPR iterations on projections
scatter-corrected with Acuros® CTS. Number of iterations was
determined empirically for better RED accuracy and image
quality.

Central slice through reconstructed RED volume is depicted
in Fig. 2a and the resulting difference to ground truth (GT) val-
ues relative to water is shown in Fig. 2b. As GT, we assigned
nominal RED values from the phantom specification. Mean
reconstructed RED values within each plug (areas indicated
by dashed circles in Fig. 2a) are listed in Table I. Except for
’Lung inhale’ and ’Dense bone 800’ plugs, tissue materials
were reconstructed with relative RED error below 3%, thus
enabling accurate treatment dose calculation.

TABLE I: Mean reconstructed RED values for inserts at
central slice and their differences to the ground truth (GT)
relative to water

Insert GT RED reconstructed
RED

relative differ-
ence %

(A) Trabecular
bone 200

1.12 1.146 -2.6

(B) Liver 1.048 1.038 1.0
(C) Lung ex-
hale

0.504 0.505 -0.1

(D) Adipose 0.95 0.937 1.3
(E) Solid dense
bone 800

1.441 1.533 -9.2

(F) Muscle 1.051 1.038 1.3
(G) Lung in-
hale

0.185 0.148 3.7

(H) Breast 0.977 0.967 1.0
(I) Distilled
water

1.0 0.999 0.1

B. Beam hardening artifact reduction

To illustrate the benefit of polychromatic reconstruction
for beam hardening artifact reduction, we scanned the CIRS
CBCT electron density phantom with bone inserts (from left
to right: solid dense bone 800, solid dense bone 1750, solid
trabecular bone 200, solid dense bone 800, solid dense bone
1250) aligned in one row. The phantom was scanned on a Var-
ian Halcyon™ machine in full-fan beam geometry at 125 kVp
with kV blades in the longitudinal direction collimated to the
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Fig. 1: Diagram showing a two-pass polychromatic reconstruction pipeline. In the first pass, algebraic reconstruction technique
(ART) consumes projections corrected for scatter with a kernel-based approach (fASKS). HU volume from first-pass provides
input for Acuros® CTS scatter correction for subsequent second-pass iterative polychromatic reconstruction (IPR).

(a) Reconstructed RED (b) Difference to GT relative to
water

Fig. 2: Central slice of reconstructed RED volume (left; W/L
= 0.6/1.0) compared to ground truth (GT) RED (right; W/L =
15/0 %). Positive difference (red) values in right panel denote
lower reconstructed values w.r.t. GT. Dashed circles indicate
regions for mean RED value calculations.

insert height for scatter reduction. We compared two recon-
structions shown in Fig. 3: a standard iCBCT reconstruction (5
ART iterations, followed by Acuros® CTS scatter correction
and 10 PL iterations) and a polychromatic reconstruction (5
iCBCT ART iterations, followed by Acuros® CTS scatter
correction and subsequent 50 IPR iterations; with number of
iterations determined empirically for better RED accuracy and
image quality. To compare HU values for both reconstructions,
we transformed the RED volume from the polychromatic
reconstruction to a VMI using (4) at Ej = 66.5 keV,
corresponding to the mean beam energy at 125 kVp.

The shading near bone plugs present in the iCBCT recon-
struction (Fig. 3a) caused by beam hardening is reduced in the
polychromatic reconstruction (Fig. 3b).

C. Metal artifact mitigation

We also tested the ability of polychromatic reconstruction
to reduce metal artifacts. For that purpose, we selected a scan
of a patient with bilateral metal hip implants (data courtesy
of Queen’s Hospital in Romford). The scan was acquired on
a Varian Halcyon™ machine in half-fan beam configuration at
125 kVp. We compared three reconstructions shown in Fig. 4:
a standard iCBCT reconstruction (5 ART iterations, followed
by Acuros® CTS scatter correction and 5 PL iterations), an

(a) iCBCT (b) VMI (66.5 keV)

Fig. 3: Beam hardening artifact near bone plugs is reduced
in the VMI from polychromatic reconstruction (right) as
compared to an iCBCT reconstruction (left). W/L = 500/75
HU

iCBCT reconstruction with metal artifact reduction (MAR)
and a polychromatic reconstruction (5 iCBCT ART iterations,
followed by Acuros® CTS object scatter correction and sub-
sequent 25 IPR iterations). To compare HU values for both
reconstructions, we transformed the RED volume from the
polychromatic reconstruction to a VMI at Ej = 74.5 keV. The
polychromatic model used for this reconstruction was extended
by a fit to common hip replacement alloys [16] in addition to
typical human tissues [10] and comprised of Nf = 4 segments.

The shading between hip joints caused by metal implants
visible in the iCBCT reconstruction (Fig. 4a) is reduced in
the VMI from the polychromatic reconstruction (Fig. 4b),
improving the visibility of the bladder. Some level of metal
artifacts still remains, however, we point out that, unlike in
the iCBCT MAR reconstruction (Fig. 4c) the result of the
polychromatic reconstruction is based solely on the underlying
polychromatic model without metal inpainting in projections.

IV. CONCLUSION

We have implemented physics-based polychromatic forward
projection within our CBCT reconstruction pipeline. Prelim-
inary results on phantom data demonstrate the potential of
iterative polychromatic reconstruction for direct RED vol-
ume reconstruction with reduced beam hardening artifacts. In
the presence of metal implants, polychromatic reconstruction
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(a) iCBCT (b) VMI (74.5 keV)

(c) iCBCT MAR

Fig. 4: Metal artifact within bladder region is reduced in
the VMI from polychromatic reconstruction (top right) as
compared to a standard iCBCT reconstruction (top left). As
a reference, an iCBCT reconstruction with heuristic metal
artifact reduction (MAR) is shown in the bottom panel. W/L
= 500/75 HU. Patient data courtesy of Queen’s Hospital in
Romford

helps to improve the visibility of soft tissue by partially
removing shading. However, a certain level of metal artifacts
persists. We presume metal artifact reduction with polychro-
matic reconstruction can be further improved by adapting
Acuros® CTS object scatter correction implementation to take
RED volumes directly as input and extend its material types
to include titanium as well. We also see the combination of
polychromatic reconstruction with metal inpainting in projec-
tions as a potential investigation direction to enable reliable
structure auto segmentation and dose calculation for adaptive
radiation therapy.
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Dual-Energy Cone-Beam CT with Three-Material 
Decomposition for Bone Marrow Edema Imaging 
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 Jeffrey H. Siewerdsen, and Wojciech Zbijewski 

Abstract—We investigate the feasibility of bone marrow edema 

(BME) detection using a kV-switching Dual-Energy (DE) Cone-

Beam CT (CBCT) protocol. This task is challenging due to 

unmatched x-ray paths in the low-energy (LE) and high-energy 

(HE) spectral channels, CBCT non-idealities such as x-ray scatter, 

and narrow spectral separation between fat (bone marrow) and 

water (BME). We propose a comprehensive DE decomposition 

framework consisting of projection interpolation onto matching 

LE and HE view angles, fast Monte Carlo scatter correction with 

low number of tracked photons and Gaussian denoising, and two-

stage three-material decompositions involving two-material (fat-

Aluminium) Projection-Domain Decomposition (PDD) followed 

by image-domain three-material (fat-water-bone) base-change. 

Performance in BME detection was evaluated in simulations and 

experiments emulating a kV-switching CBCT wrist imaging 

protocol on a robotic x-ray system with 60 kV LE beam, 120 kV 

HE beam, and 0.5° angular shift between the LE and HE views. 

Cubic B-spline interpolation was found to be adequate to resample 

HE and LE projections of a wrist onto common view angles 

required by PDD. The DE decomposition maintained acceptable 

BME detection specificity (<0.2 mL erroneously detected BME 

volume compared to 0.85 mL true BME volume) over +/-10% 

range of scatter magnitude errors, as long as the scatter shape was 

estimated without major distortions. Physical test bench 

experiments demonstrated successful discrimination of ~20% 

change in fat concentrations in trabecular bone-mimicking 

solutions of varying water and fat content. 

 
Index Terms—Dual-energy CT, cone-beam CT, multi-material 

decomposition, quantitative imaging, bone marrow edema. 

I. INTRODUCTION 
ONE trauma is often accompanied by bone marrow 
edema (BME), which presents as elevated fluid content 
within the fatty yellow marrow. BME detection is 

conventionally performed using MRI. However, there has been 
an increasing interest in BME detection using x-ray CT because 
of its ubiquity in the emergency department, where the presence 
of BME might aid the diagnosis of occult fractures [1,2]. Since 
the x-ray attenuation alone is insufficient to distinguish relative 
contributions of fat, water and bone to trabecular bone voxels, 
dual-energy (DE) imaging with three-material decomposition 
have been proposed for BME identifications, e.g., using a dual-
source CT [3]. Here, we investigate the feasibility of DE BME 
imaging on Flat-Panel Detector (FPD) Cone-Beam CT (CBCT) 
with the kV-switching protocol. 

The primary challenge in DE detection of BME is the narrow 
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Healthineers, XP Division, and by NIH R01 EB025470. The presented method 
is not commercially available. Due to regulatory reasons, Siemens Healthinners 
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be guaranteed. 

energy separation between fat and water-like soft-tissues. Thus, 
any imaging system biases need to be carefully controlled. This 
is particularly challenging in CBCT due to its sensitivity to x-
ray scatter and detector non-idealities (e.g., glare). We propose 
a BME imaging framework based on a DE CBCT protocol 
where the kV changes every 0.5° gantry angle (corresponding 
to a ~50 ms switching interval). The projections are processed 
with fast Monte Carlo (MC)-based scatter corrections [4], 
resampled onto matching view angles, and input into the two-
material (fat-Aluminum) Projection-Domain Decomposition 
(PDD) followed by the three-material (fat-water-cortical bone) 
image-domain base-change [5,6]. We used both simulations 
and CBCT benchtop experiments to evaluate impact of scatter 
estimation errors and other CBCT system non-idealities on the 
performance of the proposed DE BME imaging framework. 

II. METHODS 

A. kV-Switching DE CBCT of the Wrist 
Simulations and benchtop experiments emulated the Siemens 

Healthineers Multitom Rax twin robotic x-ray system in the 
wrist CBCT configuration shown in Fig. 1A. The source-axis 
distance was 750 mm, and the source-detector was 1150 mm. 
We investigated a realistic kV-switching DE protocol where the 
x-ray source alternated between the low-energy (LE) beam of 
60 kV (+2 mm Al, +0.25 mm Cu) and the high-energy (HE) 
beam of 120 kV (+2 mm Al, +0.25 mm Cu) every 0.5° views, 
yielding a total 200 LE and 200 HE frames over 200° rotation.  

B. Three-Material DE Decomposition 
We applied a two-stage three-material DE decomposition 

method in Yu et al [5] (Fig. 1B). First, PDD was performed by 
interpolating the precomputed 2D lookup tables to convert DE 
projections into line integrals of two intermediate bases – fat 
and Al. This step minimized the effects of beam hardening. 
Reconstructions of fat and Al line integrals were then obtained 
and processed with base-change to produce the final fat, water 
and cortical bone volume fraction maps. 

Throughout all studies, fat and Al reconstructions involved 
the FDK algorithm with 0.5 x 0.5 x 0.5 mm3 voxels, Parker 
weighting, and 2D ramp kernel (0.5x Nyquist frequency cutoff 
and Hann apodization). The base-change was formulated as the 
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Biomedical Engineering, Johns Hopkins University School of Medicine, 
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Figure 1. (A) The wrist CBCT scan geometry and the kV-switching protocol. 
(B) Thee-material (water-fat-bone) DE decomposition framework for the kV-
switching CBCT. 
 
least-square minimization problem constrained by the volume 
conservation principle [7,8], and optimized using the active-set 
algorithm. 10 iterations of 3D total-variation denoising with 0.8 
penalty strength were applied to the resulting material images.  

The kV switching protocol did not provide coinciding LE and 
HE ray paths required by PDD, due to 0.5° angular separation 
between successive LE and HE projection views. Therefore, 
HE projections at the gantry angles matching the LE projections 
were synthesized using the sinogram interframe interpolation; 
various interpolation approaches were compared (see Sec. III).  

Scatter correction was achieved by a previously developed 
fast MC-based approach [4]. A rapid, but relatively noisy MC 
simulation with a low number of tracked photons was first 
performed; the scatter estimate was then denoised using a 2D 
Gaussian kernel and subtracted from the projections. The object 
model for the MC simulation was given by the material maps 
obtained from a preliminary three-material decomposition of 
the uncorrected data. A second, final pass of the decomposition 
was then applied to the corrected projections (see Fig. 1B). 

C. Simulation Studies 
The sensitivity of proposed framework in Fig. 1B to scatter 

estimation errors was investigated using a previously reported 
realistic x-ray system model [9]. We assumed a 400 x 400 mm2 
FPD with 0.3 x 0.3 mm2 pixel size and a 0.6 mm thick CsI 
scintillator. The x-ray source was operated at 4 mAs/frame for 
the 60 kV beam, and 1 mAs/frame for the 120 kV beam. X-ray 
spectra and linear attenuation coefficients of all materials were 
obtained from Spektr3.0 [10]; quantum and detector electronic 
noise with correlations were included in the model. Source axial 
collimation was set to 150 mm (on the detector). No anti-scatter 
grid was installed. Ground truth scatter was simulated using the  

 
Figure 2. (A) FDK reconstruction of digital normal wrist phantom. Material 
fraction maps in the BME region (green box) are shown on the right. Volume 
fractions are provided for each material. (B) Physical phantom consisting of a 
water cylinder (not shown) with four vials containing the H2O-EtOH-K2HPO4 
mixtures specified in the table. 
 
MC algorithm with a relatively large number of photon tracks 
(107) and minimal smoothing (kernel FWHM = 4 mm). 

We used two digital anthropomorphic phantoms: a normal 
wrist of ~50 x 75 mm2 cross section shown in Fig. 2A, and a 
large wrist obtained by dilating the soft tissues of the normal 
wrist to ~80 x 105 mm2 cross section. The wrists consisted of 
an outer fat layer (skin), an inner water region (soft tissues), and 
bones made of a mixture of cortical bone and fat (yellow 
marrow). A ~0.85 mL BME stimulus containing cortical bone 
and equal fractions of fat and water was placed in the radius 
(Fig. 2A). All mixtures fulfilled the volume conservations.  

D. Sensitivity to Scatter Correction Errors 
Simulated kV-switching data were processed following the 

pipeline in Fig. 1B.  Fast MC scatter estimation was performed 
using 106 photons (Fig. 3) – an order of magnitude less than the 
ground truth in data generation (107). We studied the sensitivity 
of decomposition to inaccuracies in i) shape and ii) magnitude 
of the estimated scatter. The shape error was introduced by 
adjusting FWHM of the Gaussian smoothing kernel (ranging 10 
- 290 mm), which introduced an increasing distortion of the 
scatter as illustrated in Fig. 3. The magnitude error was 
generated by scaling the denoised scatter distribution (ranging 
80% - 120%). A total of 9x9 combinations of errors were tested. 

 

 
Figure 3. MC-estimated LE scatter profiles using 106 photon tracks without 
smoothing, and with 10 mm and 290 mm FWHM Gaussian kernels. Green 
curves show the scatter profile along the central detector row. 
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Figure 4. Absolute sinogram errors for linear (A) and spline (B) interframe 
interpolations of HE data. The errors are plotted for the detector row approx. 
200 slices inferior from the central slice. Green arrows indicate the error on the 
ulna. Decompositions (VNCa images) for DE acquisitions of unmatched 
LE/HE projections with linear (C) and spline (D) interframe interpolations, and 
of matched LE/HE projections (idealized reference) (E). Red arrows indicate 
the true BME region; red dashed circles mark the false BME enhancement. 

 
The performance of decompositions under scatter inaccuracy 

was evaluated in terms of the specificity of BME detection. We 
measured whether any connected water voxel clusters >1.5 mm 
diameter were present in the bones where there should be no 
fluid – i.e., outside of the true BME stimulus. To this end, the 
non-zero water voxels within bone boundaries were segmented; 
the segmentation was then processed with erosion followed by 
dilation using a 1.5 mm diameter sphere to remove any clusters 
<1.5 mm diameter. Detection specificity was computed as: 
𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∩ 𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑, where 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the total volume 
of water detected (segmented) within bones, and 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∩ 𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑 
is the volume of water detected within the true BME region.  

E. Physical CBCT Test Bench Study 
CBCT test bench equipped with a 300 x 300 mm2 FPD with 

0.388 x 0.388 mm2 pixels was configured to emulate Multitom 
Rax wrist scan geometry as in the simulations, with 60 mm axial 
collimation on the detector. The same DE acquisition protocol 
as in the simulations was implemented. 

A three-material physical phantom was developed to validate 
BME detection, as shown in Fig. 2B. Ethyl alcohol (EtOH) was 
used to represent yellow marrow, H2O for soft-tissue and BME, 
and K2HPO4 for cortical bone. The phantom consisted of a ~100 
mm diameter water bath with 4 Falcon® tubes of ~30 mm 
diameter. The composition in each tube is listed in Fig. 2B.  

Detector glare deconvolution [4] was performed on the DE 
projections prior to applying the two-stage DE decomposition 
framework of Sec. II.B. Fast MC scatter estimation used 106 
photons and a 10 mm FWHM smoothing kernel. The PDD stage 
used polyethylene (PE) and Al as bases; in the base-change 
stage, they were converted to EtOH, H2O and K2HPO4 bases. 
Spectra for PDD lookup tables were calibrated from attenuation 
measurements of Al filters of varying thickness. In the base-
change stage, the span of PE-Al that formed each of the final 
material was obtained from the PDD of a calibration phantom 
different from the phantom used in the study. 

III. RESULTS 

Fig. 4 provides a comparison of two different interframe 
interpolation kernels for synthesizing HE projections at view 
angles matching the LE data: 2D linear and cubic B-spline. 
(Note that in this test, the projection data was scatter-free.) The 
interpolations were applied onto the sinogram of each detector 
row separately. The differences from a reference HE sinogram 
simulated directly at the view angles of the LE scan are shown 
in Fig. 4A for the linear interpolation, and in Fig. 4B for the B- 

Figure 5. (A) Axial VNCa images (cropped around the bone region) for the scatter error study of the large wrist. Red contours mark the detected BME regions 
(both true and false positives). (B) BME detection specificity across all scatter error cases for the normal wrist. The region in the dashed box is also shown using 
a narrower error range. (C) Same as (B) for the large wrist. 
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Figure 6. Decomposition of the large wrist scan for MC scatter correction with 
0% magnitude error and the 10 mm FWHM Gaussian smoothing kernel. Red 
contours mark the detected BME areas. 

 
spline interpolation. The decompositions for the two synthesis 
techniques are displayed as the Virtual Non-Calcium images 
(VNCa – the attenuation-weighted sum of decomposed fat and 
water images [11,12]) as in Fig. 4C and 4D. Linear interpolation 
introduced false BME signals in the ulna and metatarsals, likely 
due to the sharp transitions in the sinogram of these regions. B-
spline interpolation, on the other hand, was free of such errors, 
indicating that it is an adequate choice for angular resampling 
of the sinogram. A reference reconstruction of the simulation 
with matched LE and HE frames is provided in Fig. 4E. Spline 
projection view synthesis was applied in the subsequent studies. 

Fig. 5A shows the VNCa images of the normal wrist for 
selected combinations of scatter magnitude and shape errors. 
BME (water) >1.5 mm that were detected in the bones (i.e., true 
and false positives) are marked. Fig. 5B and C present the BME 
detection specificity across investigated scatter estimation error 
settings for the normal and large wrist. Clear visualizations of 
BME and high detection specificity (<0.2 mL false detection 
volume compared to 0.85 mL true BME volume) was achieved 
for both normal and large wrists when the magnitude error was 
within +/-10% range. This, however, required that the scatter 
shape was estimated without any major distortions (smoothing 
FWHM <80 mm).  The large wrist was more sensitive to scatter 
correction inaccuracies, consistent with its elevated scatter-to-
primary ratio (SPRs for the normal wrist at the detector center 
were 6.5% and 4.6% for LE and HE frames, respectively, 
compared to 14.4% and 10.1% for the large wrist). Fig. 6 shows 
the axial and coronal VNCa images for the large wrist using 
scatter simulation with 10 mm FWHM smoothing and 0% 
introduced magnitude error. There are almost no false BME 
clusters outside of the true stimulus, illustrating the feasibility 
of DE CBCT of BME providing adequate scatter correction.  

Fig. 7A shows the FDK reconstruction of test-bench LE 
acquisitions of the physical phantom. The variation in fat (i.e., 
EtOH) fractions among inserts (less fat – more BME) cannot be 
appreciated on the attenuation image, but is readily apparent in 
the DE decompositions with proper artifact corrections. The DE 
decomposition without glare or scatter correction (Fig. 7B) 
presents erroneous fat content in the fat-free insert (Fat-0%) and 
underestimated water concentrations in the water bath. These 
errors are largely removed with scatter correction (Fig. 7C). 
Fig. 7D underscores the need for the correction of FPD non-
idealities – the VNCa image with glare and scatter correction 
achieves improved uniformity in the water bath than the image 
without glare correction. 

IV. DISCUSSION AND CONCLUSION 

We investigated the feasibility of BME detection using the 

kV-switching DE CBCT protocol paired with an analytical two- 

 
Figure 7. (A) FDK reconstruction of the test-bench LE projections of the 
physical BME phantom. The ground truth fat (EtOH) fraction in each insert is 
marked. VNCa images of decomposition with no corrections (B), without glare 
correction but with scatter correction (C), and with both glare and scatter 
corrections (D). Estimated fat fractions for each case are indicated. 

 

stage three-material decomposition pipeline. The problem is 

inherently challenging due to unmatched x-ray paths of the LE 

and HE channels and similar attenuation properties of fat-like 

yellow marrow and water-like BME. 

Using high-fidelity simulations, we found that the B-spline 

interpolation is sufficient to resample HE and LE frames onto 

common view angles required by PDD from an acquisition with 

a 0.5o shift between the two spectral channels. This result was 

achieved for the fairly complex anatomy of the wrist, indicating 

that spline projection synthesis might be useful in a broad range 

of kV-switching CBCT applications. Considering inaccuracies 

of scatter estimation, the decomposition maintains acceptable 

BME detection specificities over +/-10% magnitude errors as 

long as scatter shape is reasonably accurate. This finding 

suggests that MC or deep learning-based scatter corrections are 

likely adequate for BME detection using DE CBCT.  

The feasibility of BME detections using proposed DE CBCT 
framework was validated in physical test bench experiments, 
demonstrating successful estimation of the difference in fluid 
and fat content of trabecular bone-mimicking solutions. 

Ongoing works include experimental reproducibility study in 
complex objects under variable imaging conditions [13], and 
the application of a recently reported model-based one-step DE 
three-material decomposition algorithm (CMBMD) [8] to BME 
quantification to avoid interframe interpolations. 
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Abstract—Real-time imaging is highly desirable in 

image-guided radiotherapy, as it provides instantaneous 
knowledge of patient’s anatomy and motion during the treatment 
and enables online treatment adaptation to achieve the highest 
tumor targeting accuracy. Due to extremely limited acquisition 
time, only one or several X-ray projections can be acquired for 
real-time imaging, which poses a substantial challenge to localize 
the tumor from the scarce projections. For liver radiotherapy, 
such a challenge is further exacerbated by the diminished contrast 
between the tumor and the normal liver tissues. Here, we propose 
a framework combining graph neural network-based deep 
learning and biomechanical modeling to track liver tumor in real 
time from a single on-board X-ray projection. The liver tumor 
tracking is achieved in two steps. First, a deep learning network is 
developed to predict the liver surface deformation, using image 
features learned from the X-ray projection. Second, the intra-liver 
deformation is estimated through biomechanical modeling, using 
the liver surface deformation as the boundary condition to solve 
intra-liver tumor motion by finite element analysis. The accuracy 
of the proposed framework was evaluated using a dataset of 10 
patients with liver cancer. The results show accurate liver surface 
registration from the graph-based neural network, which 
translates into accurate real-time, fiducial-less liver tumor 
localization (<1.3 mm localization error). 
 

Index Terms—Liver, real-time tumor localization, X-ray, deep 
learning, graph convolutional network, biomechanical modeling 

I. INTRODUCTION 
The introduction of conformal radiotherapy enables 

high-precision dose delivery to the tumor and spares 
surrounding normal tissues, enabling treatment margin 
reduction, dose escalation, and improved tumor control [1]. 
However, internal anatomical motion such as respiratory or 
cardiac motion leads to tumor location uncertainties, and may 
cause the radiation beams to miss the tumor and damage normal 
tissues. Image-guided radiation therapy widely uses X-ray 
based imaging to localize the tumor before and during the 
treatment to maintain the delivery accuracy [2]. Real-time 
imaging, in particular, is highly desired as it can localize the 
tumor instantly and allow the treatment to adapt to such 
real-time changes to achieve ultimate treatment accuracy. Due 
to the stringent temporal resolution requirement (hundreds of 
milliseconds) of real-time imaging, the volumetric information 
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will be severely under-sampled via current mainstream imaging 
modalities including cone-beam computed tomography 
(CBCT). Such a degree of under-sampling makes it impossible 
to reconstruct high-quality CBCTs using conventional methods 
for tumor localization. 

Due to the recent successes of deep learning (DL), several 
groups have proposed DL-based methods for real-time 
imaging. A few network architectures were proposed to 
reconstruct three-dimensional (3D) CBCT images from 
single-view or orthogonal-view X-ray projections [3-5]. Such 
networks, however, were built on an ill-conditioned problem, 
trying to estimate high-dimensional volumetric data from a 
single X-ray projection. Considerable reconstruction errors 
remain, albeit much smaller than those of the conventional 
reconstruction algorithms. Moreover, to track tumors in 
real-time, additional steps of image registration or 
segmentation are necessary to further localize tumors from the 
reconstructed CBCT images. This is particularly challenging 
for liver tumors due to the low contrast of liver tumors against 
surrounding normal liver parenchyma. 

To address the above challenges toward real-time imaging, 
especially for liver tumor localization, we propose a mesh 
registration-based method combining deep neural networks 
with biomechanical modeling. The method directly solves the 
liver tumor motion between a prior CT/CBCT image and a 
single X-ray projection to localize liver tumors in real-time, and 
effectively eliminates the need to reconstruct a high-quality, 
intermediate CBCT image prior to localization. Specifically, a 
deep graph neural network-based architecture was trained to 
model the correlation between patient-specific liver boundary 
motion and features learned on individual X-ray projections. 
The trained network can then predict liver boundary motion 
from a single real-time X-ray projection. Using the predicted 
liver boundary motion as the boundary condition, we further 
performed finite element analysis-based biomechanical 
modeling of liver to solve intra-liver tumor motion. The method 
adopts a deformation-driven approach that incorporates prior 
information to tackle the extreme under-sampling issue. The 
two-step-based registration scheme simplifies the complexity 
of the deep graph neural network with introduced domain 
knowledge (biomechanical modeling). Biomechanical 
modeling uses information including structure geometry, 
material composition and elasticity to derive physiologically 
and physically meaningful deformation, and complements the 
intensity information provided in the X-ray projection to 
further improve the registration and tumor localization 
accuracy [6].  

The accuracy of the proposed technique was evaluated using 
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10 patients with liver cancer, and compared with the accuracy 
of two other techniques. The first technique uses the diaphragm 
as an anatomic landmark, and tracks the diaphragm motion 
directly from the on-board projections via template matching to 
represent liver tumor motion. The second technique is a 
principal component analysis (PCA) based method which 
models 3D motion into a few motion eigenvectors for 
dimension reduction and tumor tracking [7]. 

 

 
Fig. 1. Workflow of the proposed method. A deep graph neural 
network-based model was trained to predict liver surface deformation vector 
field (DVF) from a single X-ray projection. Then a biomechanical model 
solves the intra-liver DVF using the liver surface DVF as the boundary 
condition for tumor localization. 

 

II. MATERIALS AND METHODS 

II.A. Method overview 
In this study, liver motion and liver tumor localization were 

solved via deformable registration between a liver mesh 
(extracted offline from a prior CT/CBCT image available 
before the treatment) and the liver features projected on a single 
X-ray projection (Fig. 1). The registration was achieved via two 
steps: (a) liver surface motion estimation via a deep graph 
neural network-based structure (Fig. 2); and (b) intra-liver 
motion estimation via biomechanical modeling. Specifically, in 
step (a) a patient-specific DL model was trained to predict a 
liver boundary deformation vector field (DVF) that deforms the 
prior liver surface mesh to match with the liver shape variations 
encoded in the X-ray projection. In step (b), a biomechanical 
model of the liver was built, and an intra-liver DVF was solved 
through finite element analysis using the liver boundary DVF 
as the boundary condition. 

II.B. The deep-learning network architecture 
 The network was trained to learn image features from 

on-board X-ray projections to predict boundary movement 
from the prior liver mesh to each on-board projection. The DL 
network architecture is illustrated in Fig. 2, which contains two 
subnetworks. The first subnetwork extracts image features 
from each on-board X-ray projection, and the extracted feature 
maps are pooled and fed into the second subnetwork for liver 

 
Fig. 2. Overview of the deep-learning (DL) network that estimates liver 
boundary motion from an on-board X-ray projection. The network consists of 
two subnetworks performing feature extraction and liver boundary DVF 
prediction separately. The first subnetwork uses ResNet-50 to extract image 
features from an X-ray projection. The extracted feature maps were pooled for 
each node of a liver surface mesh by the perceptual feature pooling layer, 
based on the projected node coordinates on the X-ray projection. The second 
subnetwork, consisting of three deformation blocks, progressively estimates 
liver boundary DVFs. A deformation block comprises of a graph 
convolutional network (GCN) and a spatial transform layer. The GCN was 
learned to predict a liver boundary DVF based on the features extracted from 
the ResNet-50 subnetwork. A spatial transform layer deforms the prior 
reference mesh or the deformed liver surface mesh from the previous 
deformation block, using a GCN-predicted DVF. 

 
boundary DVF prediction. Here we used ResNet-50 [8] as the 
feature extraction network. Consisting of a series of 
convolutional layers stacked in a residual learning architecture, 
ResNet-50 extracts encoded liver shape variations, via local 
and global image features contained in the X-ray projection, 
and learns short- and long-range dependencies among these 
extracted features. These learned dependencies are helpful for 
the deformation estimation because they are shown common in 
respiration-induced liver motion. The perceptual feature 
pooling layer pools the ResNet-50 extracted feature maps by 
associating each 3D node of a liver surface mesh with a 2D 
point in the feature maps, based on the same geometry of the 
cone-beam projection. 

The second subnetwork comprises a series of deformation 
blocks that progressively deforms the liver surface mesh nodes 
based on the extracted feature maps from the first subnetwork. 
Each deformation block involves a graph convolutional 
network (GCN, Fig. 3) and a spatial transform layer that 
deforms the liver surface mesh using the GCN-predicted DVF 
[9]. GCN performs graph-based convolutions that generalize 
the standard convolution operations to data structures lack of 
underlying Euclidean structures, such as functional networks in 
brain imaging. A non-Euclidean data structure can be 
represented by a weighted graph comprised of a set of vertices, 
edges connecting the vertices, and weights associated with each 
vertex (e.g., vertex features, DVFs, vertex-associated image 
features). The use of GCN is indicated for our problem, as the 
liver surface mesh nodes, the geometrical connectivity (edges) 
between the nodes, and the learned image, DVF, and vertex 
features associated with each node make a standard 
non-Euclidean data structure for inputs into the GCN. Using 
extracted image features that encode the liver shape, preceding 
DVFs, and learned vertex features from the previous block, the 
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GCN learns to predict a liver surface DVF to further deform the 
surface mesh deformed by the previous block. The inputs of the 
GCN in the first deformation block contain ResNet50-extracted 
image features and an initial DVF which was set to be zero. For 
each subsequent GCN, the image features were re-pooled based 
on the new node coordinates (Fig. 2), deformed via the spatial 
transform layer and the DVF predicted by the preceding block. 
The image features were then input into the subsequent GCN, 
along with the predicted surface DVF and the learned vertex 
features from the preceding block. We used a GCN of the same 
architecture as the G-ResNet [9], which is illustrated in Fig. 3. 
The corresponding network was modified and adapted from the 
Pixel2Mesh library [10]. The model training was driven by a 
loss function involving a mesh similarity loss and 
regularization losses that regularize the deformation and 
enforce smoothness of the boundary DVFs.  
 

 
 
Fig. 3. Graph convolutional network (GCN). The inputs contain pooled image 
features from the feature extraction ResNet-50 subnetwork (Fig. 2), a surface 
DVF, and vertex features yielded from the GCN in the previous deformation 
block (if any). The GCN consists of 20 graph convolution layers that, except for 
the entrance and exiting layers, were organized in a residual learning 
architecture. The GCN yields a surface DVF and vertex features to feed into the 
subsequent deformation block. The inputs of the first GCN in the second 
subnetwork contains only image features and an initial surface DVF which was 
set to be zero. The image features were re-pooled for each GCN based on 
deformed node coordinates. The rounded box in the middle represents a 
residual learning module containing three graph convolution layers with a 
shortcut connection, which iterates 6 times. 
 

II.C. Biomechanical modeling 
After the deep neural network solves a liver boundary DVF 

to match with the liver shape features on the X-ray projection, 
the intra-liver DVF was subsequently derived using a 
biomechanical model. Here we used the Mooney-Rivlin 
material model, which describes a hyperelastic (i.e., nonlinear 
elasticity) material that fits biological tissues well. The details 
of implementing the biomechanical model can be found in Ref. 
[6].  

II.D. Dataset curation and augmentation 
A dataset of 10 patients with liver cancer from our institute 

was used to evaluate the proposed method. The study was 
approved under an institutional review boards protocol. Each 
patient had a contrast-enhanced four-dimensional CT set from 
treatment planning, and the CT images were binned into 10 
respiratory phases (from 0% to 90%), with 0% being the 
end-of-inhale phase. The CT images were resampled to a 
uniform size of 256×256×128 with an isotropic resolution of 2 
mm×2 mm×2 mm. On-board X-ray cone-beam projections 
were simulated from the CT images using a ray-tracing 
algorithm. We simulated projections from three angles: 0, 45, 
and 90 degrees. The 0- and 90-degree are for anterior-posterior 
and left-right directions, respectively.  

Since each patient had only a 10-phase 4D-CT set, to 
generate sufficient motion variation scenarios to train the 
patient-specific network and avoid overfitting, we augmented 
the dataset of each patient by simulating realistic respiratory 
deformations encountered in on-board liver imaging. The 
augmentation was based on a PCA-based motion model of each 
patient [6, 11]. We first performed deformable registrations 
between the reference 0% phase and the other phases to attain 
DVFs, using the open-source software package Elastix. To 
improve the intra-liver DVF accuracy, we applied 
biomechanical modeling to derive intra-liver DVFs, using the 
liver surface DVFs solved by Elastix as boundary conditions. 
We then replaced the Elastix intra-liver DVFs with the 
biomechanical modeling-derived intra-liver DVFs. PCA was 
subsequently performed on these high-quality DVFs of each 
patient to obtain patient-specific principal motion components. 
For augmentation, the coefficients of the first three principal 
motion components were randomly scaled to re-generate DVFs 
of various magnitudes and patterns [11]. In total, for each 
patient we generated 1,728 augmented samples which were 
partitioned into training, validation, and testing sets. The 
partitioning was assigned according to the original respiratory 
phases of the PCA coefficients prior to the random scaling. The 
training set includes the samples of which the original PCA 
coefficients were from the 10% to 40% phases; the validation 
set includes the samples whose original PCA coefficients were 
from the 60% and 70% phases; and the testing set includes the 
samples whose original PCA coefficients were from the 50%, 
80%, and 90% phases. 50% is the end-of-exhale phase that has 
the largest deformation from the 0% phase. 

II.E. Evaluation schemes 
The deformation accuracy of liver surface meshes was 

evaluated using the Hausdorff distance (HD) between the 
deformed and the ‘ground-truth’ target liver surface meshes 
extracted from the augmented dataset [12]. To evaluate the 
performance of liver tumor tracking, we manually contoured 
the tumors from the prior CT images at phase 0%. The tumor 
contours at 0% phase were then propagated using the 
augmentation DVFs (II.D.) to other augmented motion states, 
which were used as the ‘ground-truth’ to evaluate the ones 
deformed by our method. The accuracy of liver tumor tracking 
was evaluated by the Dice similarity score (DSC), 
center-of-mass error (COME), and HD. 

III. RESULTS 

III.A. Liver deformation accuracy 
 Figure 4 presents a qualitative comparison of liver surface 
meshes and projected nodes on X-ray projections at three 
projection angles (0, 45, and 90 degrees). The first row shows 
the surface mesh overlays between the prior and ‘ground-truth’ 
target meshes (left panel), and between the graph 
network-deformed and ‘ground-truth’ target meshes (right 
panel). The prior and target meshes correspond to the 
end-of-inhale phase and the end-of-exhale phase (with motion 
augmentation), respectively. The other rows show the overlay 
of the pre- (left panel) and post-registration (right panel) 
surface mesh nodes onto the corresponding X-ray projections 
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of the end-of-exhale phase, at three different angles. Both the 
surface mesh overlay and the node-projection overlay 
demonstrate high registration accuracy. 

Table I summarizes the mean (±s.d.) liver HDs of the 
proposed method and the PCA-based 2D-3D registration 
method [7]. The DL-based method results in much smaller HDs 
than the PCA-based 2D-3D method.  

III.B. Liver tumor tracking accuracy 
Table II summarizes the mean (±s.d.) liver tumor DSCs, 

COMEs, and HDs of the proposed method at three projection 
angles. In addition, the results of PCA-based 2D-3D 
registration and diaphragm tracking are also presented in the 
Table for comparison. The diaphragm tracking is only able to 
localize the diaphragm in 2D from a single X-ray projection, 
thus we only used it to represent liver tumor motion along the 
superior-inferior (SI) direction. The COME of the 
diaphragm-based method is thus only for SI direction, with 3D 
COME potentially being much larger. Table II clearly shows 
that the proposed method has the best liver tumor localization 
accuracy, and the performance is consistent among different 
angles. 

 
Fig. 4. (First row) Liver surface overlays between the prior and 
‘ground-truth’ target meshes (left) and between the graph network-deformed 
and target meshes (right). The yellow meshes are the target meshes 
corresponding to the end-of-exhale phase after augmentation, and the red 
meshes correspond to the prior (left panel) and deformed (right panel) 
meshes. (Other rows) Liver surface nodes projected on X-ray projections at 
three projection angles. Left and right columns show the projected nodes 
corresponding to the prior and deformed surface meshes, respectively. 

IV. CONCLUSION 

We proposed a method to track liver tumor motion in 
real-time from a single on-board X-ray projection, using 

combined DL-based liver surface registration and 
biomechanical modeling. The results show highly-accurate 
liver surface registrations, which translate into mean liver 
tumor localization errors of less than 1.3 mm. Our method can 
potentially be applied towards intra-treatment tumor 
monitoring and real-time plan adaptation. 

 
TABLE I. Mean (±s.d.) liver Hausdorff distances. 

Projection 
angle (degree) Prior (mm) 

Method 
DL prediction 

(mm) 
PCA-based 2D-3D 
registration (mm) 

0 
11.77±6.11 

2.99±2.42 7.27±4.18 
45 3.03±2.39 6.55±3.32 
90 3.09±2.55 6.09±2.47 

 
TABLE II. Mean (±s.d.) liver tumor DSC, COME, and HD. The COME for the 

diaphragm-based method is for the superior-inferior direction only (*). 
Project-

ion 
angle 
(deg.) 

Metric Prior  

Method 

DL 
prediction 

PCA-based 
2D-3D 

registration 

Diaphragm 
tracking 

0 
DSC 0.547±

0.269 

0.895±0.112 0.789±0.205 
-- 45 0.893±0.110 0.822±0.155 

90 0.886±0.118 0.835±0.134 
0 COME 

(mm) 
6.08± 
4.40 

1.13±1.33 2.53±4.32 1.68±2.22* 
45 1.15±1.32 1.84±1.64 2.69±2.73* 
90 1.25±1.41 1.73±1.37 3.08±3.26* 
0 HD 

(mm) 
7.24± 
4.92 

2.81±1.77 3.95±5.00 
-- 45 2.86±1.77 3.17±1.81 

90 2.93±1.85 3.01±1.36 
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3D Reconstruction of Stents and Guidewires
in an Anthropomorphic Phantom
From Three X-Ray Projections

Tim Vöth, Thomas König, Elias Eulig, Michael Knaup, Veit Wiesmann, Klaus Hörndler, and Marc Kachelrieß

Abstract—Today, the subcutaneous, minimally invasive proce-
dures performed in interventional radiology are usually guided
by 2D X-ray fluoroscopy. In 2D X-ray fluoroscopy a series of 2D
X-ray images is displayed. For challenging procedures however,
3D X-ray fluoroscopy would be advantageous. In 3D X-ray
fluoroscopy, a series of 3D images, which is reconstructed from
a series of 2D X-ray images, is displayed. Because the number
of images used for guiding an intervention is very high, little
dose can be spent per 3D reconstruction of a 3D fluoroscopy.
To save dose and to minimize motion artifacts, a reconstruction
algorithm that requires very few X-ray projections is desirable.
Earlier work showed that guidewires, stents and coils, which are
commonly used in interventions, can be reconstructed using only
four synthetic X-ray projections. The reconstruction from two or
three X-ray projections was only studied briefly. In this work,
we improve the method by using a more suitable neural network
architecture and by using a multi-channel backprojection instead
of a single-channel backprojection. We then apply the improved
method to more realistic data measured in an anthropomorphic
phantom. The results show that the method produces 3D recon-
structions of stents and guidewires with submillimeter accuracy
using only three measured X-ray projections.

Index Terms—3D fluoroscopy, sparse view, few view, X-ray, CT,
deep learning, stent reconstruction, guidewire reconstruction, 4D,
interventional guidance, interventional imaging.

I. INTRODUCTION

APPROACHES for 3D reconstruction of interventional
tools from few X-ray projections can be divided into two

categories: algorithms specialized in the reconstruction of a
single type of interventional tool and more general algorithms
capable of reconstructing different types of tools. Belonging to
the first category, many algorithms for the 3D reconstruction of
curvilinear structures, like guidewires or catheters, have been
proposed. A single guidewire [1], [2] or catheter [2] can be
reconstructed from one X-ray projection, if a prior 3D dataset
showing the patient’s vasculature is available. Without a prior
3D dataset, a single guidewire [3], [4] or catheter [3], [5] can
be reconstructed from two X-ray projections. An approach
for computing a 3D representation of a stent from a single
X-ray projection has been proposed [6]. Since it requires a
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Fig. 1. Sketch of the tool reconstruction pipeline. First, three X-ray projections
are acquired with an angular increment of 60°. Then, DTE is applied to each
X-ray projection. The DTE output images are backprojected into separate
channels (illustrated by different colors) of a backprojection volume. The
backprojection is then fed into DTR, which outputs a segmentation of the
tools (only one transversal slice of the backprojection and the DTR output
are shown).

3D model of the stent as prior knowledge, it is not a 3D
reconstruction algorithm, but rather a registration algorithm.
To the best of our knowledge, no algorithm specializing in
the 3D reconstruction of stents from few X-ray projections has
been proposed. In the second category of more general tool re-
construction algorithms, the reconstruction of guidewires and
stents from about 16 X-ray projections has been demonstrated
[7], [8], [9], [10]. Recently, the reconstruction of guidewires,
stents and coils from only four X-ray projections has been
demonstrated on synthetic data [11], [12]. In this work, we
improve this algorithm and demonstrate on measured data of
an anthropomorphic phantom, that guidewires and stents can
be reconstructed from only three X-ray projections.

II. METHODS

The tool reconstruction pipeline, which is similar to the one
proposed by Eulig et al. [12], is outlined in Figure 1. Three
X-ray projections, offset by 60°, are acquired simultaneously.
The deep tool extraction (DTE) algorithm extracts the tools
from each projection. The output images of DTE are then
backprojected into a volume. Finally, the deep tool recon-
struction (DTR) algorithm transforms the backprojection into
a 3D reconstruction of the tools. In this work, we improved
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DTR in two ways. First, we replaced the 2.5D convolutional
neural network (CNN), which performed DTR in reference
[12], with a more suitable 3D CNN. Secondly, we backproject
the three DTE output images into separate channels of the
backprojection volume, which improves the reconstruction
quality significantly.

A. Deep Tool Extraction

The task of DTE is to output the pixel-wise line integral
of the X-ray attenuation coefficient of the guidewires and
stents in the input projection. Training and validation data were
generated online by combining forward projections of simu-
lated guidewires and stents with clinical cone-beam computed
tomography (CBCT) projections containing patients without
interventional tools. In total, 12,000 guidewire projections,
12,000 stent projections and 2751 clinical projections from
nine patients were used. The data were augmented by com-
bining random tool patches and random patient patches, and
by simulating varying levels of blur, noise and scatter. DTE
was implemented in TensorFlow [13] as a 2D CNN similar to
the U-Net [14]. In each resolution stage of the encoder and
decoder, two (3⇥ 3 convolution + batch normalization [15] +
ReLU)-blocks are performed. The number of feature maps of
the convolution layers in the nth resolution stage is 32 ⇥ 2n

where n ranges from 1 (highest resolution, 1024⇥ 1024) to 7
(lowest resolution, 16 ⇥ 16). Downsampling is performed by
2⇥2 max pooling, upsampling by nearest-neighbor interpola-
tion followed by a 3⇥3 convolution layer. The mean absolute
error was used as the loss function. Training took 200 epochs,
where each epoch consisted of 16,000 training pairs and 4000
validation pairs. Each pair consisted of an input patch and
an output patch of size 384⇥ 384. The Adam optimizer [16]
(learning rate = 1⇥ 10�5, �1 = 0.9, �2 = 0.999) and a mini-
batch size of 24 were used.

B. Deep Tool Reconstruction

The task of DTR is to transform the input backprojection
volume into a 3D segmentation of the tools. Training and
validation data were generated by simulating forward pro-
jections of simulated 3D models of guidewires and stents.
The backprojection of these projections was used as input
volume, a binary voxelization of the 3D models was used
as target volume. To make DTR insensitive to errors of
DTE, i.e. false-positives and false-negatives, such errors were
simulated into the forward projections prior to backprojection.
The 3D guidewire models were simulated as curved cylinders
around center lines represented by splines with random-walk-
generated control points. The 3D stent models were simulated
by stacking cylindrical strut segments along their central axis
and subsequently bending the stent along a spline. Segment
diameter, segment height, number of strut oscillations per
segment, strut thickness, strut pattern within the segments (e.g.
sinusoidal, zigzag, ...), number of stent segments, axial offset
between segments, and bending spline were varied randomly.
We simulated aortic stents with diameters between 10mm and
30mm.

The simulated X-ray system has three imaging threads (60°
inter-thread angle) with a CBCT-like projection geometry:
each thread consists of a point-source and a flat detector
(10242 pixels, 0.3mm pixel pitch, source-detector distance
RFD = 1100mm, source-isocenter distance RF = 600mm).
For the simulation of the training and validation data and for
the application to measured data, a grid of 2563 voxels of size
(0.6mm)3 was chosen. To save disk space, since training was
performed on patches of size 1283 anyway, only a 1283-patch
of each simulated 2563-volume was stored (the full dataset
would require 840GB). The patches were augmented online
by z-axis-flips and rotations around the z-axis by integer
multiples of 90°. The dataset consisted of 40,000 scenes, each
featuring one stent and one or two guidewires. The dataset
was split 70/30 between training and validation.

DTR was implemented in TensorFlow as a 3D CNN similar
to the 3D U-Net [17]. In each resolution stage of the encoder
and decoder, two (3⇥3⇥3 convolution + batch normalization
+ ReLU)-blocks are performed. The number of feature maps
of the convolution layers in the nth resolution stage is 8⇥ 2n

where n ranges from 1 (highest resolution) to 5 (lowest resolu-
tion). Downsampling is performed by 2⇥ 2⇥ 2 max pooling,
upsampling by nearest-neighbor interpolation followed by a
3⇥ 3⇥ 3 convolution layer. The soft Dice loss with Laplace
smoothing was used for training. Training was performed for
150 epochs, where each epoch consisted of 16,000 training
pairs and 4000 validation pairs. Each pair consisted of an input
patch and an output patch of size 1283. The Adam optimizer
(learning rate = 1⇥ 10�4, �1 = 0.9, �2 = 0.999) and a mini-
batch size of 8 were used.

C. Phantom Measurements

Results will be shown on measured data of an anthropo-
morphic X-ray phantom (PBU-50, Kyoto Kagaku Co. Ltd.
Japan) with a soft-tissue-equivalent extension on the anterior
side. The interventional tools were placed between phantom
and extension. The X-ray projection geometry was the same
as described in Section II-B. The three required projections
were selected retrospectively from a 3D scan with fine angular
sampling. Results will be shown on three different scenes.
The first scene contains two guidewires. The second scene
contains one stent. The third scene contains one stent and one
guidewire, which was placed inside the stent. All projections
were acquired at 80 kV and 0.80mA s per projection (scene
1) or 1.15mA s per projection (scenes 2 and 3).

D. Evaluation on Measured Data

To assess the quality of the output Y of our 3D tool
reconstruction pipeline on measured data, a ground truth 3D
reconstruction GT is needed. For each of the aforementioned
scenes, this ground truth was generated by thresholding a 3D
reconstruction that was computed from the projections of the
respective 3D scan using the algorithm of Feldkamp, Davis
and Kress [18]. To quantify the deviation of Y from GT,
one could use the popular Sørensen-Dice coefficient (DSC).
However, since the guidewires and stent struts are only a few
(1–3) voxels in diameter, the DSC is very sensitive to whether
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Fig. 2. Volume-rendered DTR output and ground truth of the first and second
scene.

a voxel near the surface of such a structure is classified as
foreground or background. Because the classification of the
surface-voxels in the ground truth is uncertain (it is very sensi-
tive to the threshold used to generate the ground truth), another
metric is needed. We therefore decided to use the average
Euclidean distance between the voxels of a skeleton of Y and
the voxels of a skeleton of GT, DS(Y),S(GT) and the average
Euclidean distance between the voxels of a skeleton of GT
and the voxels of a skeleton of Y, DS(GT),S(Y). Skeletonization
was used to make the metrics less sensitive to the diameter of
the guidewires and stent struts. This is desirable, because the
diameter in the ground truth is uncertain (as explained above)
and because the exact diameter would likely not matter for
interventional guidance. Skeletonization was performed by the
skeletonize_3d function from scikit-image 0.17.2 [19],
which implements the algorithm proposed by Lee et al. [20].

E. Real-Time Capability

Inference of DTE on a 10242 projection takes about 40ms,
inference of DTR on a 3⇥2563 volume takes about 260ms on
an NVIDIA RTX 3090 GPU. These times were measured in
TensorFlow 2.5.0 using mixed precision, graph execution and
with the input data already in GPU memory when starting the
timer.

III. RESULTS

The training of DTR was performed twice to investigate
whether passing the backprojections of the three DTE output
images separately (3-channel backprojection) to DTR is
advantageous compared to passing a single volume, into
which all three DTE output images were backprojected

Fig. 3. Inputs, intermediate results and outputs of the tool reconstruction
pipeline on the third scene (see Section II-C). First row: the input of the tool
reconstruction pipeline are three X-ray projections separated by 60°. Second
row: the outputs of DTE, when applied to the images of the first row. Third
row: exemplary transversal slices of the backprojection of the DTE outputs
and the output of DTR when applied to said backprojection. Fourth row:
volume-rendered DTR output and ground truth.

(1-channel backprojection). For the first training, the 3-
channel backprojection was used. For the second training, the
1-channel backprojection, which was generated by summing
the channels of the 3-channel backprojection, was used. After
150 epochs, training 1 resulted in a DSC of 78.2% / 77.5%
on the training / validation dataset, while training 2 resulted
in 73.5% / 72.3%.

The tool reconstruction pipeline was applied to the mea-
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Scene DS(Y),S(GT) DS(GT),S(Y)

3-channel
backprojection

1 0.27mm 0.26mm
2 0.36mm 0.28mm
3 0.31mm 0.33mm

1-channel
backprojection

1 0.32mm 0.31mm
2 0.50mm 0.35mm
3 6.20mm 0.44mm

TABLE I
Quantitative evaluation of the deviation of the tool reconstruction from the

ground truth using the metrics defined in Section II-D.

sured projections of the three scenes described in Section
II-C. The volume-rendered tool reconstructions look very
similar to the ground truths, as can be seen in Figure 2
(scenes 1 & 2) and Figure 3 (scene 3). The red box is
a cube of size 256 ⇥ 0.6mm = 153.6mm, indicating the
extent of the reconstructed volume. For scene 3, inputs and
intermediate results are shown in Figure 3. The deviation of
the tool reconstruction from the ground truth was quantified
using the metrics defined in II-D. The results are shown in
Table I. For all scenes, the tool reconstruction using the 3-
channel backprojection outperformed the one using the 1-
channel backprojection. The value of DS(Y),S(GT) = 6.20mm
for the reconstruction using the 1-channel backprojection on
scene 3 is due to outliers in the reconstruction.

IV. NEW WORK TO BE PRESENTED
In this work, we improved an earlier method for computing

3D reconstructions of interventional tools from very few X-ray
projections and demonstrate its performance on more realistic
data, which were measured in an anthropomorphic phantom.

V. CONCLUSIONS
We demonstrated that our improved pipeline can produce

3D reconstructions of stents and guidewires with submillimeter
accuracy from only three X-ray projections measured in an
anthropomorphic phantom. Furthermore, we demonstrated that
passing the backprojections of the three DTE output images as
three separate input channels to DTR, significantly improves
the reconstruction quality. The low number of X-ray projec-
tions required per 3D reconstruction and the straightforward
adaptability to different types of tools makes this algorithm a
promising candidate for implementing 3D fluoroscopic inter-
ventional guidance.
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 Abstract— Deformable motion is one of the main challenges to 
image quality in interventional cone beam CT (CBCT). Autofocus 
methods have been successfully applied for deformable motion 
compensation in CBCT, using multi-region joint optimization 
approaches that leverage the moderately smooth spatial variation 
motion of the deformable motion field with a local neighborhood. 
However, conventional autofocus metrics enforce images featuring 
sharp image-appearance, but do not guarantee the preservation of 
anatomical structures. Our previous work (DL-VIF) showed that 
deep convolutional neural networks (CNNs) can reproduce 
metrics of structural similarity (visual information fidelity - VIF), 
removing the need  for a matched motion-free reference, and 
providing quantification of motion degradation and structural 
integrity. Application of DL-VIF within local neighborhoods is 
challenged by the large variability of local image content across a 
CBCT volume, and requires global context information for 
successful evaluation of motion effects. In this work, we propose a 
novel deep autofocus metric, based on a context-aware, multi-
resolution, deep CNN design. In addition to the inclusion of 
contextual information, the resulting metric generates a voxel-wise 
distribution of reference-free VIF values. The new metric, denoted 
CADL-VIF, was trained on simulated CBCT abdomen scans with 
deformable motion at random locations and with amplitude up to 
30 mm. The CADL-VIF achieved good correlation with the ground 
truth VIF map across all test cases with R2 = 0.843 and slope = 
0.941. When integrated into a multi-ROI deformable motion 
compensation method, CADL-VIF consistently reduced motion 
artifacts, yielding an average increase in SSIM of 0.129 in regions 
with severe motion and 0.113 in regions with mild motion. This 
work demonstrated the capability of CADL-VIF to recognize 
anatomical structures and penalize unrealistic images, which is a 
key step in developing reliable autofocus for complex deformable 
motion compensation in CBCT. 

Index Terms—Interventional CBCT, Motion Compensation, 
Deformable Motion, Convolutional Neural Network 

I. INTRODUCTION 
ONE-BEAM CT (CBCT) provides 3D guidance and 
intraprocedural imaging in interventional radiology for 

abdominal procedures but relatively long acquisition time 
makes it susceptible to patient motion from a complex 
combination of various periodic and aperiodic sources. 

Previous work showed successful application of autofocus 
optimization for rigid motion compensation [1] using only the 
acquired CBCT data, with extension to complex deformable 
motion in abdominal CBCT [2]. Autofocus methods estimate a 
motion trajectory by minimizing an image-based metric that 
encourages properties associated to motion-free images (e.g, 
sharpness or piece-wise constancy). However, such metrics are 
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agnostic to the underlying anatomy and might enforce solutions 
that satisfy the metric but feature unrealistic structural content.  

Our previous work addressed such limitation via a reference-
free image similarity metric (DL-VIF) with application to rigid 
motion compensation in neuro CBCT [3,4]. DL-VIF leveraged 
the potential of deep convolutional neural networks (CNNs) to 
extract features specific to motion image degradation and 
reproduce the capability of Visual Information Fidelity (VIF) 
[5] to quantify image degradation and structural similarity to a 
matched motion-free reference, but removing the need for such 
reference, which is usually not available in clinical settings. 

 DL-VIF was trained to act on images encompassing the 
complete head anatomy, with a moderately coarse pixel size, 
and to provide a global DL-VIF score aggregating contributions 
to VIF from all structures in the volume into a single scalar. 
While those assumptions are appropriate for global, rigid, 
motion compensation, they present various limitations in 
deformable motion scenarios: i) autofocus deformable motion 
compensation requires estimation of local VIF, to guide the 
compensation algorithm towards regions of large motion while 
ignoring static anatomy; ii) the global nature of the metric 
makes it susceptible to be dominated by high-contrast 
structures; and, iii) the coarse voxel size (~2 mm) required for 
training of the 3D DL-VIF CNN might be not be sufficient for 
capturing subtle deformation of low-contrast structures. 

A patch-based DL-VIF could provide such metric locality, at 
moderate volume size, but the lack of global context and the 
inconsistency of image contrast and structure between soft-
tissue and bone regions challenges the extraction of meaningful 
features, resulting in degraded performance, observed in 
previous attempts to CNN-based deformable autofocus [6]. 

In this work we propose a novel, context-aware, reference-
free autofocus metric, denoted CADL-VIF, that employs a 
context-aware deep CNN and a voxel-based local VIF 
definition to provide local estimations of artifacts and structural 
integrity. CADL-VIF was integrated into a deformable motion 
compensation framework and was evaluated for soft-tissue 
deformable motion compensation in simulated cases. 

II. MATERIAL AND METHODS 

A. CADL-VIF: A Context-Aware Local DL-VIF Design 
VIF provides an estimation of the similarity between a test 

image (motion-corrupted in our case) and a reference image 
(motion-free) by quantifying the information preserved after a 
distortion process (motion, in this work), weighted by a  
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convolution channel, designed as a surrogate of the human 
visual system response. VIF acts on the integral of the 
information across the complete image, providing a scalar 
output. In this work, we extend the definition of VIF to 
incorporate localized 3D estimation of preserved information. 

The resulting VIFL, was based on the approach in Ref [7] and 
adapted to 3D volumes. The key difference between VIFL and 
original VIF is that when calculating the information contained 
in motion-corrupted (!!") and motion-free(!!#) images, VIFL 
preserves spatial information by omitting integration across the 
image dimensions, summing only across different filter 
channels, as shown in Eqs. 1 and 2. 

!!" = 	 $ log(1 + '
2 ∙ )"#2
)$2 +)%2

) log%1+ )"#
2

)%2
&

#$%&'(
")*++'%,

 (1) 

!!# = 	 $ log%1 + ,!#
-

,+-
&

#$%&'(
")*++'%,

 (2) 

Where the )&'(  is the variance in motion-free image after 
convolution with kernels designed to mimic the frequency 
response of the human visual system (HVS),	))(	quantifies the 
variance introduced by motion artifacts, and	)*(	represents the 
noise in the HVS channel. The term g provides an estimate of 
the degradation in image information due to patient motion, 
which depends on the covariance between the motion-corrupted 
and motion-free images. All terms in Eq. 1 and Eq. 2 were set 
and calculated as described in Ref [3]. 
 The new VIFL was reproduced with a novel deep CNN based 
on our previous DL-VIF design and illustrated in Fig. 1. The 
network acts on small regions of interest (ROIs) of size 
64x64x64 voxels (1 mm isotropic voxel size). Context 
information is incorporated via a second branch acting on the 
entire motion-corrupted volume reconstructed at a very coarse 
voxel size (4 mm isotropically), resulting in a multi-resolution, 
context aware architecture, inspired by previous work on CT to 
MR image synthesis [8]. The two branches featured identical 
layer configurations, with an input 7x7x7 convolution layer and 
a leaky-ReLU activation, followed by 3 ResBlock layers [3]. 
Thus, both branches contained an equal number of learnable 
parameters, yet independently learned. Both branches output 
32-channel feature maps, one incorporating local, high-

frequency features, and the other providing contextual feature 
information.  

The high-resolution branch incorporated an input batch 
normalization layer, while the low-resolution branch featured 
instance normalization. The different normalization responds to 
different variability presented by the high and low-resolution 
data. The high-resolution ROIs featured variable soft-tissue and 
bone regions that present a much larger variability and benefit 
from batch normalization, compared to the relatively consistent 
appearance of the low resolution, full abdomen, context. 

The context feature map from low-resolution branch was 
then up-sampled twice and cropped accordingly to match the 
position and size of the high-resolution ROI. The local and 
context feature maps were concatenated and input to cascade of 
1x1x1 convolution and leaky-ReLU layers to generate the 
output of high-resolution branch. To facilitate contextual 
feature learning of the network during training, another series 
of 1x1x1 convolution with leaky ReLU layers were added to the 
low-resolution branch after the feature maps, generating low 
resolution output for the entire volume. 

B. Deformable Motion Compensation Framework 
CADL-VIF was incorporated as the autofocus metric in a multi-
region-based motion compensation framework (see Fig. 1). The 
time-varying motion vector field (MVF) was estimated with a 
4D spline model, integrated into the backprojector algorithm. 
Deformable motion was estimated as the set of 4D spline 
coefficients , minimizing the multi-ROI autofocus function: 
- =	./0123. $ $ −ln	[	7(	9/0(	-), 910(-, /)	)

2$3'%,(∈056,
] (3) 

Where - is the autofocus metric for high-resolution ROI, i.e., 
the high-resolution CADL-VIF Map, calculated from .+,(	,), 
the low-resolution image reconstructed with ,, and .-,(,, 0), 
the high-resolution image reconstructed with , at ROI position 
0. The negative natural logarithm served as a basic conditioning 
of the values for optimization. The final autofocus metric was 
integrated across ROI voxels and across all ROIs. The cost-
function was minimized with the Covariance Matrix Adaptation 
Evolutionary Strategy (CMA-ES) [9]. 

C. Data Generation and Training 
The CADL-VIF network was trained and validated on 

 
Figure 1. The network architecture of CADL-VIF Map and its integration into the deformable motion compensation framework. 
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simulated data generated using 75 cases from the TCIA lymph 
node abdomen multi-detector CT (MDCT) database. 61 cases 
were used for training, 7 cases reserved for validation, and the 
rest 7 cases for testing.  For each simulation instance, a MDCT 
volume was randomly selected and a 260 mm long sub-volume 
at a random longitudinal position was extracted from the 
original volume. The sub-volume was then forward projected 
using a high-fidelity CBCT projector with geometry pertinent 
to interventional robotic C-arm systems (source-to-detector 
distance of 1200 mm, and source-to-axis distance of 785mm). 
The detector was modeled as a flat-panel with 864 x 660 pixels 
and 0.64 mm isotropic pixel size. Deformable motion was 
induced during forward projection, using a MVF with random 
maximum amplitude ranging from 10 mm to 30 mm at random 
directions. The MVF featured maximum amplitude at a 
randomly placed position and decayed smoothly following an 
elliptical Gaussian kernel with lateral and antero-posterior 
width randomly chosen from 200 mm to 300 mm and 100 mm 
to 150 mm, respectively. The MVF followed a cosine temporal 
pattern with random phase and random frequency ranging from 
0.75-1.25 cycles per scan. An additional motion-free scan was 
simulated to obtain a reference for ground truth VIFL. Both the 
motion-corrupted and motion-free images were reconstructed 
on a 256x256x256 voxels volume with 1x1x1 mm3 voxel size. 

Ground truth VIFL maps of motion-corrupted images for 
training were computed using the motion-free images as 
reference. To emphasize motion artifacts in soft tissue regions, 
a [0.01, 0.025] mm-1 window, followed by CLAHE contrast-
enhancement were applied to the motion-corrupted and motion-
free volumes before calculation of VIFL. A total of 610 motion 
instances were generated for training, 70 for validation, and 70 
for testing. 

During training, the input data was normalized to [0,1], and 
data augmentation was achieved via addition of zero mean 
Gaussian noise with ) = 0.01. For each training instance pair, a 
randomly placed 64x64x64 voxels sub-volume was extracted 
from the motion corrupted image for input to the high-
resolution branch, while the full volume, downsampled by a 4x 
factor, provided the low-resolution contextual input. Training 
was achieved with a loss function based on the mean square 
error between the network output and the ground truth VIFL. 
The network was trained with the Adam optimizer (5x10-4 

learning rate), with a batch size of 30, and for 2000 epochs, on 
3 Nvidia Quadro RTX A6000 GPUs. 

D. Validation Experiments 
To test the generalizability of CADL-VIF, a separate dataset 

with 256 cases was created from the test TCIA volumes, using 
a larger range of motion frequency: 0.5 to 3 periods per scan. 
CADL-VIF was estimated on contiguous ROIs of 64 x 64 x 64 
voxels, covering the complete 256 mm x 256 mm x 256 mm 
volume. The sum of CADL-VIF within each ROI was then 
compared with the sum of ground truth VIFL in the same region. 
Results were aggregated from all 64 ROIs in each of 256 cases. 

Motion compensation with CADL-VIF was evaluated on 7 
simulated cases created analogously to the test dataset, with 
motion amplitude ranging from 8 to 15 mm, and frequency 
ranging from 0.8 to 1.2 periods per scan. Motion compensation 
was performed with a total of 4 local ROIs of 64 mm x 64 mm 
x 64 mm size, with a common contextual reference, and using 

a 9x9x9x5 4-dimensional b-spline grid. Results were assessed 
with SSIM and blurriness estimated using the formula proposed 
in Ref [7], adapted to 3D, which is calculated as follows: i) each 
voxel in motion-free and motion-corrupted images is compared 
with all its neighboring 26 voxels, and the maximum intensity 
variation is stored in two new volumes, VMF and VMC for the 
motion-free and motion-corrupted images, respectively; ii) The 
average value of VMF and VMC is calculated (1&' and 1&., 
respectively); iii) blurriness is defined as 2 =	 |0!"10!#|0!"

.   
SIM was computed on 6mm x 6mm x 6mm ROIs, that 

underwent rigid registration to avoid phase mismatches 
between the motion-corrupted volume, compensated volume, 
and the static reference. Two ROIs were used per volume, one 
placed at the center of the motion field and a second one at a 
quasi-static region.  

 
Figure 2. (A) Sum of VIFL across the entire volume as a function of nominal 
motion amplitude, for a set of motion frequency values. (B) Agreement 
between the reference-free CADL-VIF inferences and conventional, reference-
based VIFL, both integrated over 64x64x64-voxel ROIs placed in the volume.  

III. RESULTS 

A. DL-VIF Map and Deformable Motion Severity 
Figure 2 (A) shows the variation in VIFL as a function of 

motion amplitude and motion frequency, to validate is 
capability to accurately quantify the effects of motion on image 
patches. VIFL values show decreasing trend with increased 
amplitude (larger motion) and motion frequency (faster 
motion), making it a suitable metric to quantify motion induced 
image quality degradation. Validation of the capability of VIFL 
to quantify motion is accompanied by assessment of the 
agreement between reference-based VIFL maps and CADL-VIF 
inferences, illustrated in Fig. 2 (B). CADL-VIF showed good 
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agreement with reference VIFL across volumes throughout the 
entire extended dataset, achieving a slope of 0.941 and a 
linearity of 0.843. Combining these two results: i) VIFL can 
accurately reflect the severity of local motion-induced image 
quality degradation for an extended range of deformable MVF; 
ii) the combination of contextual and local features learned with 
CADL-VIF are representative of motion artifacts decreasing the 
local value of VIFL, making CADL-VIF a suitable metric for 
reference-free motion quantification. 

 
Figure 3. SSIM values (A) and blurriness (B) before and after motion 
compensation for regions with severe (black triangles) and mild motion (grey 
stars). The dashed lines mark the unity line, in which motion compensated and 
motion-corrupted images are equivalent. Values above the unity line in (A) 
indicate a net increase in SSIM after motion compensation. Values below the 
unity line in (B) are associated to sharper images. 

B. Motion Compensation with CADL-VIF Map 
Figure 3 quantitatively illustrate the performance of 

deformable autofocus based on CADL-VIF for compensation 
of motion using a multi-ROI approach. CADL-VIF autofocus 
resulted net improvement in SSIM for all 7 motion cases, 
yielding an average increase in SSIM of 0.129 for regions with 
severe motion and 0.113 for regions with mild motion. It is 
worth noting that the seemingly low SSIM is likely due to the 
low contrast in soft tissue and the presence of noise, and it is the 
increase in SSIM value that reflects improved image quality, as 
illustrated in Figure 4, which shows an example compensation 
of severely motion-distorted anatomy. Figure 3 (B) show the 
reduction of image blurriness after motion compensation with 
CADL-VIF autofocus, with an average reduction of 0.032 in 
severe motion regions and 0.052 in mild motion regions, which 
is expected in successful motion compensation. 

 Consistent improvement in SSIM and reduction in blurriness 
can be qualitatively appreciated in Figure 4. Motion artifacts 
severely distorted anatomical structures, with noticeable impact 

at the center of the volume (region of larger motion amplitude). 
The distortion and blurriness resulted in a sizable reduction of 
SSIM, to a value of 0.157. Autofocus motion compensation 
with CADL-VIF successfully restored the appearance of 
anatomical structures, mitigated shape distortion, and reduced 
image blurring, yielding a 3-fold increase in SSIM to 0.469. 

IV. DISCUSSION AND CONCLUSION 
This work presents a new learning-based image quality 

metric (CADL-VIF) to quantify the effect of CBCT deformable 
motion within a local region of interest. The proposed network 
builds on our previous approach for rigid autofocus with 
learned metrics providing simultaneous quantification of image 
quality and structural integrity of the underlying anatomy, by 
integrating contextual information and extending the reference 
similarity metrics from scalar values to spatially varying 
distributions for generation of voxel-wise maps of motion 
artifacts and distortion on high-resolution ROIs. Such locality 
is crucial for integration into multi-ROI deformable autofocus 
compensation methods that would otherwise be unfeasible due 
to large computational and memory requirements of performing 
the compensation in the complete volume, while the integration 
of contextual information allows robust estimation of motion 
effects by mitigating the effect of confusing factors associated 
to local variations of image content. 

CADL-VIF was able to accurately reproduce the motion 
quantification capability of the reference similarity metric. 
When integrated into the CBCT deformable autofocus 
framework, CADL-VIF proved capable of recovering fine 
details in soft tissue structures that challenge conventional 
metrics. Ongoing work targets application of CADL-VIF to 
clinical data scenarios via training with simulated datasets 
including complete models of the CBCT imaging chain. 
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Figure 4. Example of an instance of motion compensation using the CADL-VIF, on one of the test anatomies and motion trajectories.  
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Abstract—Cone-beam CT (CBCT) is widely used for guidance 
in interventional radiology but it is susceptible to motion artifacts. 
Motion in interventional CBCT features a complex combination of 
diverse sources including quasi-periodic, consistent motion 
patterns such as respiratory motion, and aperiodic, quasi-random, 
motion such as peristalsis. Recent developments in image-based 
motion compensation methods include approaches that combine 
autofocus techniques with deep learning models for extraction of 
image features pertinent to CBCT motion. Training of such deep 
autofocus models requires the generation of large amounts of 
realistic, motion-corrupted CBCT. Previous works on motion 
simulation were mostly focused on quasi-periodic motion patterns, 
and reliable simulation of complex combined motion with quasi-
random components remains an unaddressed challenge.  

This work presents a framework aimed at synthesis of realistic 
motion trajectories for simulation of deformable motion in soft-
tissue CBCT. The approach leveraged the capability of conditional 
generative adversarial network (GAN) models to learn the 
complex underlying motion present in unlabeled, motion-
corrupted, CBCT volumes. The approach is designed for training 
with unpaired clinical CBCT in an unsupervised fashion. This 
work presents a first feasibility study, in which the model was 
trained with simulated data featuring known motion, providing a 
controlled scenario for validation of the proposed approach prior 
to extension to clinical data. Our proof-of-concept study illustrated 
the potential of the model to generate realistic, variable simulation 
of CBCT deformable motion fields, consistent with three trends 
underlying the designed training data: i) the synthetic motion 
induced only diffeomorphic deformations – with Jacobian 
Determinant larger than zero; ii) the synthetic motion showed 
median displacement of 𝟎. 𝟓 mm in regions predominantly static 
in the training (e.g., the posterior aspect of the patient laying 
supine), compared to a median displacement of 3.8 mm in regions 
more prone to motion in the training; and iii) the synthetic motion 
exhibited predominant directionality consistent with the training 
set, resulting in larger motion in the superior-inferior direction 
(median and maximum amplitude of 4.58 mm and 20 mm, > 2x 
larger than the two remaining direction). Together, the proposed 
framework shows the feasibility for realistic motion simulation 
and synthesis of variable CBCT data. 

Index Terms — Interventional CBCT, Motion Simulation, 
Motion Compensation, Deep Learning.  

I. INTRODUCTION 
Cone-beam CT (CBCT) is becoming widespread for guidance 

and intraprocedural imaging in interventional radiology, but it 
suffers from relatively long image acquisition time that makes it 
prone to degradation from patient motion. Motion in 
interventional CBCT displays a complex nature and a wide 
variety, spanning from rigid aperiodic motion (as in brain CBCT) 

to multi-source deformable motion in abdominal imaging, mixing 
quasi-periodic motion components (e.g., respiratory) with 
aperiodic, quasi-random motion (e.g., peristalsis). 

Motion compensation for interventional CBCT has gained 
significant attention, with image-based approaches including 
autofocus methods based on handcrafted metrics [1-3], and 
methods leveraging deep convolutional neural networks (CNNs) 
to directly learn motion trajectories from distortion patterns [4], 
or to learn features associated to motion effects that are 
aggregated into deep autofocus metrics [5, 6]. Common to those 
approaches is the need for simulation methods that allow the 
generation of large amounts of realistic, motion-corrupted, CBCT 
data to enable training and evaluation. The fidelity of simulated 
datasets to experimental CBCT data is of dual nature: i) the data 
should show a realistic image appearance, attenuation pertinent 
to CBCT, and realistic noise and artifacts patterns; and, ii) the 
synthetic motion should be true to motion observed in clinical 
CBCT. Recent work showed the capability of fulfilling the first 
condition via accurate models of the CBCT imaging chain and 
biological tissues [7]. However, the generation of realistic motion 
patterns remains an open question in interventional CBCT. 

Previous efforts to motion simulation yielded highly accurate 
models of temporal motion patterns and tissue deformation for 
quasi-periodic (respiratory and cardiac) motion simulation [8]. 
However, those models did not provide mechanisms to integrate 
the remaining sources of motion present in interventional CBCT, 
some of which feature a highly unpredictable nature (e.g., head 
involuntary motion or peristaltic motion). 

Recent advances in deep learning-based data synthesis 
architectures and conditional generative adversarial network 
(GAN) models, have shown the capability of such approaches to 
learn features associated with complex underlying characteristics 
of the training data that, when combined with random 
perturbation models, allowed the synthesis of highly realistic, 
variable, datasets. Such methods were recently proposed for 
simulation of non-periodic respiratory motion in 4D CT data 
synthesis for image-guided radiotherapy applications [9]. 

In this work we hypothesize that conditional GAN models can 
be used to learn the underlying motion characteristics in unpaired, 
motion-corrupted, clinical datasets, with no prior knowledge or 
prior assumptions on motion nature. A GAN model is proposed, 
and a proof-of-concept study is presented. This proof-of-concept 
study used simulated data with known motion fields. The training 
was completely agnostic to the known motion, analogous to 
training with clinical datasets, but knowledge of the true motion 
pattern allowed validation of the characteristics of the random 
synthetic motion generated by the trained model. 

II. MATERIAL AND METHODS 

A. Learning Complex Deformable Motion with a GAN model 
The proposed GAN architecture is illustrated in Fig. 1. The 

proposed approach leveraged the concept of Partial Angle  
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Reconstruction (PAR) combined with spatial transformer 
modules, previously used in CBCT motion compensation [4]. 
A complete, motion-free, CBCT projection dataset, with a total  
of 360 projections, is reconstructed into 𝑁𝛼 = 12 PAR volumes 
of 512 × 512 × 128 voxels, each containing the backprojection 
from 30 consecutive projection views. Those PARs are the 
input to the generator network, which outputs 𝑁𝛼 sets of 36 × 
36 × 12 B-spline coefficients that serve as a lower 
dimensionality representation for each of the 𝑁𝛼 motion vector 
fields (MVFs) representing the simulated 4D deformable 
motion of the volume. Dense MVFs, with size equal to that of 
the PAR volumes, are then generated via B-spline interpolation. 
The set of dense MVFs and the original motion-free PARs are 
then input to a spatial transformer module that applies the 
simulated deformation to each of the PARs and add them 
together to obtain a final motion-corrupted volume. In the 
resulting architecture PARs are considered static, effectively 
assuming a piecewise constant temporal motion trajectory. A 
discriminator network was used to provide a GAN loss 
discriminating between real and simulated motion-corrupted 
volumes. The architecture of each of the components is 
discussed below. 
Generator: The generator featured a non-symmetrical 3D 
UNet-like [10] structure with a 3-stage encoding branch, and 2-
stage decoding branch. The encoding branch received the 
motion-free PARs as the input and extracted into the latent 
space features associated to structural content of the image 
associated with motion characteristics. This way, the input, 
motion-free PARs act as the condition variable of the 
conditional GAN architecture. Each stage on the encoder 
branch included a set of two 3×3×3 convolution layers, batch 
normalization, leaky ReLU activation, and a final 2x max 
pooling layer.  

The set of latent space features were combined with a 
Gaussian random perturbation field to generate random, 
distinct, motion patterns for a given input condition during both 
training and inference time. The set of latent features and 
random perturbation entered the decoder branch, with 2 stages 
implementing a 3×3×3 convolution layer, a batch normalization 
layer, and leaky ReLU activation, followed by a 3×3×3 
transposed convolution for up-sampling of the feature maps. 
Skip connections were placed between equivalent levels of the 
encoder and decoder branches. The output of the decoder is 
input to three branches implementing a cascade of two 3×3×3 
convolution layers, with leaky ReLU activations, that generate 
the B-spline coefficients for the directional components of the 
MVFs in the antero-posterior (AP), lateral (LAT), and superior-
inferior (SI) directions. 
Discriminator: The discriminator acts on motion-corrupted 
CBCT volumes to predict whether the input comes from a real 
or simulated instance. During training, the Binary Cross 
Entropy (BCE) loss was calculated for the simulated and real 
datasets, and the total loss was defined as the average of both. 

In the proposed model, the discriminator featured a cascade 
of 5 convolution layers (4×4×4 kernel), followed by batch 
normalization, leaky ReLU activation, and a dropout layer (0.2 
dropout). The final fully connected layer (with sigmoid 
activation) acted on the flattened set of features. 

B. Data Generation and Motion Model 
For this proof-of-concept study, training and validation data 

were generated from 70 Multi-detector CT (MDCT) abdominal 
datasets from the TCIA Lymph Node Abdomen collection. 60 
distinct MDCT instances were used for training, 5 for 
validation, and 5 for testing. For each source MDCT volume, 
we randomly selected a subvolume of 128 mm length at a 
random longitudinal position within the abdomen. The 

 
Figure 1. Schematic depiction of the realistic motion simulation framework, based on a deep generative adversarial network model. Motion-free simulated CBCT 
projections are divided into 𝑁𝛼 = 12 groups of consecutive projections that generate a set of  𝑁𝛼. The generator network, based on the U-NET architecture, receives 
at input the set of static PARs and a random perturbation of the latent space. The sparse 4D MVF output by the generator induces the deformation into the individual 
PARs that were added together into the final motion-corrupted volume. For GAN training, a discriminator receives as input the generated simulated motion volumes 
and samples of the real motion-corrupted volumes from the training dataset. 
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subvolume was then forward projected using a high-fidelity 
CBCT model with a geometry with source-to-detector distance 
of 1200 mm, and source-to-axis distance of 785 mm. The 
detector was modeled as a flat panel with 576 × 440 pixels 
(0.616 mm isotropic pixel size). 

 
Figure 2. Example training case. Deformable motion was induced 
following with a motion field with randomly selected central location and 
amplitude. In this proof-of-concept study, the spinal region was 
automatically detected and an exclusion mask with smooth boundaries was 
defined (see cyan delineation). The motion field was attenuated to preserve 
the spine region quasi-static. 

Motion corrupted datasets were obtained by inducing 
deformable motion during forward projection. The simulated 
motion field followed a cosine temporal trajectory with random 
frequency between 0.75 – 1.25 cycles per scan and random 
phase. Spatial distribution of motion amplitude was modelled 
as an elliptical field with maximum amplitude (randomly set 
between 10 and 25 mm) at the center, and randomly placed at a 
soft-tissue region of the volume. The amplitude faded following 
a Gaussian decay curve that reached zero at the ellipse axis 
length, randomly chosen from 200 to 300 mm in the medial-
lateral (LAT) direction and between 100 and 150 mm in the 
antero-posterior (AP) direction. Motion amplitude was kept 
constant across slices. Motion direction was randomly chosen, 
allocating between 60% and 80% of motion to the SI direction 
and the rest to the AP direction, with no lateral motion. 

To avoid unrealistic large motion of the spine region, the 
center of the spine was detected in the volume and a cylindrical 
motion-exclusion mask with 100 mm radius was defined. The 
mask performed a smooth transition from one to zero and 
multiplied the motion field, to minimize the motion in the spine, 
as illustrated in Fig 2. 

The motion-corrupted datasets featured 3 distinct properties 
that were used for validation of the GAN capability for 
inference of consistent motion instances: i) the induced motion 
was composed of diffeomorphic deformations; ii) the spine 
region remained nearly static for all training instances; and, iii) 
the majority of the motion was allocated to the SI direction with 
the rest in the AP direction. 

Motion-corrupted datasets were reconstructed into volumetric 
grids of 512 × 512 × 128  voxels with 0.5 × 0.5 × 0.5 mm3 voxel 
size, and motion-free cases were reconstructed into 12 PARs 
with equivalent parameters. The PARs were downsampled to 
128 × 128 × 32 voxels for input to the generator.  

C. Network training and validation studies 
A total of 720 motion-corrupted volumes based on 60 

anatomical instances were included in the training set, and 15 

instances from 5 separate anatomical structures were used for 
validation. Each dataset contained a motion-free collection and 
a motion-corrupted collection. During training, a sample with 
𝑁𝛼 = 12 PARs from the motion-free collection was randomly 
selected as input to the generator, while one sample from 
motion-corrupted collection was input to the discriminator. 
Training was performed with an unbalanced scheme in which 
the generator is updated every 1 batch while the discriminator 
is updated every 2 batches for 100 epochs, with a batch size of 
12. We used the ADAM optimizer for both generator and 
discriminator with learning rates of 10−5  and 10−4 , 
respectively. BCE Loss was selected as objective function to be 
maximized by generator while minimized by discriminator. 

To validate the results, we used a test set of 15 samples based 
on 5 anatomical structures not seen by the network. For testing, 
static PARs were input to the generator together with the 
Gaussian random perturbation. Validity of the generated 
motion fields was validated via measurements of 
diffeomorphism, based on the determinants of the Jacobian of 
the deformation, and metrics of average displacement at regions 
of maximum motion and regions static in the training set. 
Furthermore, directional components of the synthetic motion 
were evaluated in comparison with underlying trends in the 
training dataset. 

 
Figure 3. (A) Motion vector field on an example inference instance, with 
motion predominantly present in soft-tissue structures. (B) Validation of the 
diffeomorphism of the generated deformable motion fields for the 
aggregated test set. 

III.  RESULTS 
Figure 3 illustrates the predominant soft-tissue nature of the 

simulated motion, as well as its diffeomorphic nature. An 
example simulated MVF is shown if Fig. 3A, demonstrating the 
majority of the deformation induced to anterior soft-tissue 
regions with minimal deformation towards the central posterior 
area, where the spine is located. Fig. 3B shows the accumulated 
distribution of Jacobian determinant values across the ensemble 
of test datasets. The induced deformable motion vector fields 
consistently show Jacobian determinant values larger than zero, 
consistent with diffeomorphic motion.  

Fig. 4A shows the average displacement for the aggregated 
motion synthesis dataset, obtained by adding the absolute value 
of the motion amplitude for each time point (viz. PAR) and 
normalizing the result by the total number of PARs (𝑁𝛼 = 12). 
Average displacement was evaluated in a soft-tissue region in 
the anterior area of the abdomen and in a region inside the spine. 
Results show displacement values in anterior soft-tissue areas 
of 3.9 ± 2.5 mm, while spine regions showed minimal motion, 
with average displacement of 0.5 ± 0.0 mm. Fig. 4B shows the 
directional properties of the random motion instances 
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synthesized by the GAN model. Consistent with the trends 
underlying the training data, the synthetic motion fields 
exhibited larger motion in the SI direction with median 
amplitude of 4.58 mm and ranging upwards of 20 mm 
consistent with voluntary or involuntary respiratory motion. 

 
Figure 4. Quantitative evaluation of the synthetic random motion. (A) 
Average displacement of voxels in the maximum amplitude and in the spine 
regions, showing preservation of the quasi-static nature of the spine. (B) 
Motion amplitude in the AP, LAT, and SI directions for the generated 
random motion vector fields. 

Motion amplitude in the AP and LAT directions was lower, 
with median values of 2.02 mm, and 2.18 mm, respectively. The 
comparable amplitude observed for the AP and LAT directions 
illustrate the challenge in differentiation of motion patterns that 
can result in similar artifacts, as lateral motion was minimal in 
the training data. 

Note that while the current design did not implement any 
control mechanism on the output motion amplitude, several 
options for such controlled simulation can be easily integrated, 
including coarse stratification of the training data into mild, 
moderate, or severe cases within a semi-supervised training 
strategy; normalization of the output motion fields; or 
controlled scaling of the latent space random perturbation.  

Validation of the realism of the synthetic motion-corrupted 
datasets and of capability to generate distinct motion for a given 
input is shown in Fig. 5. Image results in Fig. 5 show distinct, 
realistic motion artifacts in soft-tissue regions, with minimal 
distortion of the (static) spine. Quantitative evaluation of 
motion amplitude in Figs. 5D and 5H illustrates the generation 
of variable motion patterns for single input conditions.  

IV. DISCUSSION AND CONCLUSION 
This work presented an adversarial model for simulation of 

realistic, random, deformable motion in CBCT using motion-
corrupted datasets with no prior assumptions on the motion 
characteristics. The framework was evaluated in a controlled 
study in which the properties of the random synthetic motion 
fields were compared with known motion trends underlying in 
the training data cohort. The model was able to generate distinct 
motion instances, while replicating principal properties of the 
training dataset, such as diffeomorphism, proper spatial 
distribution of motion amplitude (maximized anteriorly and 
minimized posteriorly), and predominantly SI motion direction 
in agreement with learned patterns. The results enable 
generation of large training datasets for development of deep 
learning autofocus methods. 
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Figure 5. Example motion simulation cases for two motion-free source anatomical instances (A, E), and two instances of the latent space random perturbation (B, 
C, and F, G), showing distinct motion artifacts but respecting the learned properties in terms of motion distribution and main direction. (D, H) Distribution of motion 
amplitude as a function of time (viz. PAR index) for the random realization in (B, F) in red and the motion realization in (C, G) in green. 
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Abstract— Cardiac CT exams are some of the most complex CT 

exams due to need to carefully time the scan to capture the heart 
during the quiescent cardiac phase and when the contrast bolus is 
at its peak concentration. We are interested in developing a robust 
and autonomous cardiac CT protocol, using deep learning 
approaches to extract contrast timing and cardiac phase timing 
directly from pulsed projections. In this paper, we present a new 
approach to generate large amounts of clinically realistic virtual 
data for training deep learning networks. 

We propose a five-dimensional cardiac model generated from 
4D cardiac coronary CT angiography (CTA) data for synthetic 
contrast bolus dynamics and patient ECG profiles. We apply deep 
learning to segment 7 heart compartments and simulate 
intravenous contrast propagation through each compartment to 
insert contrast bolus. Additional augmentation techniques by 
randomizing a bolus curve, patient ECG profile, acquisition 
timing, and patient motion are applied to increase the amount of 
data that can be generated. We demonstrate good performance of 
the deep learning segmentation network, examples of simulated 
bolus curves using a realistic protocol, and good correspondence 
between virtually generated projections and real projections from 
patient scans. 
 

Index Terms— Cardiac CTA, CT simulation, deep learning, 
contrast bolus, cardiac phase 

I. INTRODUCTION 

Cardiac CT exams such as Coronary CT Angiography (CTA) 
are some of the most complex CT exams due to need to 
carefully time the scan to capture the heart during the quiescent 
cardiac phase (when the heart is moving least) and when the 
contrast bolus in the heart chambers is at its peak concentration 
to achieve good contrast enhancement. 

Timing the CT scan to coincide with the peak contrast 
concentration can be done using a ‘timing bolus’ or with ‘bolus 
tracking’. With a timing bolus, a small volume of contrast is 
injected to a patient in a pre-session and repeated single slice 
axial collimated low-dose scans are performed to establish the 
timing delay between the start of injection and peak 
enhancement. Then the diagnostic cardiac CTA exam is 
performed with the full contrast bolus and the CT scan start 
after this timing delay. With bolus tracking, there is no pre-
session: the full contrast bolus volume is injected, and single 
 

Eri Haneda (haneda@ge.com), Bernhard Claus, Jed Pack, and Bruno De 
Man are with GE Research, Niskayuna, NY. Darin Okerlund is with GE 

slice axial collimated scans are performed until the CT number 
in a region-of-interest reaches a predefined threshold. During 
the following ‘diagnostic delay’ of several seconds, the scan 
table is repositioned, breath hold instructions are delivered, and 
the scanner is reconfigured, after which the diagnostic CTA 
scan is performed. Both approaches have pros and cons, and 
require highly trained operators to achieve consistent bolus 
enhancement. 

The quiescent phase of the cardiac cycle is typically 
estimated based on recordings from an ECG monitor and 
evaluated by visually assessing the degree of motion artifact on 
reconstructed cardiac CTA images. Based on the ECG R-peaks, 
the time of the next end-diastolic phase (or end-systolic phase 
for higher heart rates) is estimated [1]. Application of the ECG 
may take several minutes per exam and in some patients may 
lead to reliability problems, such as due improper lead 
positioning. 

Our overall project goal is to develop a smart cardiac CT 
scanner that autonomously determines the optimal scan time 
interval without ECG, traditional bolus tracking or timing 
bolus, but based on real-time deep learning analytics of sparsely 
pulsed projections [2, 3]. However, one of the challenges to 
developing deep learning algorithms is collecting enough data 
to train without exposing volunteers to ionizing radiation. To 
address this challenge, we here present a new approach to 
generate virtual CT projection data at any view angle, bolus 
dynamics, and cardiac phase, based on a five-dimensional 
model of the cardiac CT volume, derived from retrospectively 
collected clinical images and using a series of data 
augmentation steps. 

II. METHODS 
Figure 1 shows an overview of our virtual data generation 

scheme. We first derive five-dimensional cardiac CT models 
from multi-phase clinical cardiac (cine) CT scans by 
segmenting the heart compartments and identifying a blood (or 
contrast) flow propagation map in each compartment. To model 
contrast concentration at multiple bolus time points from 
datasets that were acquired at (approximately) a single bolus 
time point, we segment the cardiac compartments, we 
parametrize the voxels inside those compartments based on 
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their location along the flow direction, and then increment the 
voxel values to model different bolus distributions based on 
location and time point.   We then define multiple instantiations 
of CT exams based on specific timing of cardiac cycle, contrast 
bolus, and CT acquisition to generate virtual CT projection 
data. Each of the steps is described in detail in the next 
paragraphs. 

 
Clinical datasets: We retrospectively collected multiple 

phase (cine) cardiac CT data from 40 Transcatheter Aortic 
Valve Replacement (TAVR) patients. The data were acquired 
under IRB approval (IRB #191797X) at University of 
California San Diego using a GE Revolution CT scanner with a 
16 cm z-coverage to image the whole heart in one rotation. ECG 
data was acquired simultaneously, and iodine contrast agent 
(bolus) was administered to each patient. Cine scan mode was 
used to image all cardiac phases, resulting in 1.1-1.4 sec scan 
times and covering at least one full R-R cycle. Phase-specific 
cardiac volumes were retrospectively reconstructed every 
70ms. The image volume size was 512x512x256 voxels 
covering the full 50-cm-diameter field-of-view and 16 cm in the 
z direction. Approximately 15-20 volumes (phases) were 
reconstructed for each patient and the associated R-R% was 
extracted from the ECG. By interpolation, a cardiac CT image 
dataset can be extracted at any R-R%, which represents the 
fourth dimension in the five-dimensional model. 

Segmentation: A subset of 149 datasets representing 
multiple phases were selected from 28 different patients. For 
each dataset, 7 compartments were manually segmented: right 
atrium (RA), right ventricle (RV), pulmonary artery (PA), left 
atrium (LA), left ventricle (LV), ascending aorta (AA), and 
descending aorta (DA), resulting in 149 3D masks. The PA 
region was further segmented into three regions: main 
pulmonary artery (MPA), left pulmonary artery (LPA), and 
right pulmonary artery (RPA). Any overlap between two 
adjacent compartments is removed by assigning the overlap 
voxels to one of the compartments. Any gaps between two 
adjacent compartments are avoided by inserting a 3D cylinder 
padding between them. Figure 2 shows an example of the 
resulting compartment segmentations with color coding.  

Blood flow propagation labeling: We defined blood flow 
propagation labels by parametrizing the voxels inside the 
compartments based on their position along the blood flow (or 

bolus) propagation direction. The label assigned to each voxel 
are integer numbers that approximately represent how the blood 
propagates from RA to RV, and PA, then from LA to LV, to 
AA, and to DA. The propagation direction is determined by 
multiple reference points: the center-of-mass locations of each 
compartment and a set of touch points where each pair of 
compartments touch each other. From the manual segmentation 
masks, we first find touch points between RA-RV (RAV touch), 
RV-PA (ROV touch), LA-LV (LAV touch), and LV-AA (LOV 
touch), where O refers to an outgoing vessel from a ventricle. 

 
We developed two blood propagation models depending on 

the compartment. For RA, LA, PA, AA, and DA, a ‘linear 
propagation model’ is used. For RA, we assign linearly 
increasing values along the line which passes from the center-
of-mass of the atrium (RActr) to the RAV touchpoint. Then, 
each voxel is labeled based on its projected location on the line, 
normalized from 100 to 199, such that the blood flow mask 
value increases linearly in the direction from 100 at the entrance 
to 199 at the exit of the atrium. Similarly, the LA voxels are 
labeled from 400 to 499. For PA, we find the end of the LPA 
branch and the end of RPA branch by identifying maximum 
distance from ROV touch. Then, voxels are labeled linearly 
from 300 at ROV touch to 399 at the end of the LPA and the 
RPA. For AA, the direction for linear propagation is defined by 
the line from LOV touch through the center of the AA (AActr) 
and voxels are labeled from 600 to 699. For DA, assuming that 
DA is a straight vessel running in z direction, the voxels are 
labeled from 700 at the maximum z to the pixel to 799 at the 
minimum z position. For RV and LV, an ‘angular propagation 
model’ was developed. First a rotation center point was defined 
outside of the ventricle, triangulated from the center-of-mass of 
the ventricle (Vctr) and the two adjacent touch points. Then an 
angle is computed for each voxel relative to that line, encoding 
a circular path. Voxels are labeled from 200 to 299 in the RV 
and from 500 to 599 in the LV.  

Blood flow propagation labels were computed for all 149 
segmented volumes and will be used for deep learning network 
training and validation, as described in the next section. 

Deep learning segmentation and blood flow propagation 
labeling - We trained a 3D Unet [4] (Figure 3) to perform both 
segmentation and voxel labeling to model the blood 
propagation direction. The input to Unet are patient images, 
truncated to a 30cm field-of-view and then downsampled to 
(152x152x64). The network has two output of the same size. 
The first output is the probability prediction for a voxel to be 
inside the bloodpool (i.e. one of the 7 compartments). The 

 
Fig. 2:  An example of manual segmentation. The left image contains right 
atrium (red), right ventricle (green), ascending aorta (pink), left atrium 
(purple), left ventricle (yellow), and descending aorta (light blue). The right 
image contains ascending aorta (pink), main pulmonary artery (light red), 
left pulmonary artery (light green), and right pulmonary artery (light 
purple), and descending aorta (light blue). 

 
 

Fig. 1: Overview of our virtual data generation scheme 
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second output volume is the voxel label prediction. Finally, 
both output volumes are combined by setting zero to all voxel 
coordinates that have less than 50% probability, and the 
resulting volume is upsampled to the original voxel size. 

A two-part loss function was used with one part being a mean 
squared error on the voxel labels.  Outside the ground truth 
mask, this error was set to zero. The second part of the loss 
function was a piecewise linear function on the absolute error 
of the mask output.  This function has three sections, with the 
steep portion residing between 0.4 and 0.6. 

We finally used this network for inference on additional 488 
volumes. We obtained a total of 637 blood flow propagation 
masks (149 manually and 488 using Unet) from 40 patient data.  

 
Bolus dynamics definition: The obtained volumes are 

preprocessed to remove the estimated real average bolus level 
from all compartments and then adding in the simulated bolus 
level. A simulated bolus time sequence B(t) is defined by the 
parameters in Figure 4. The bolus curve remains 0 HU for a 
given Bolus Delay, rises from 0 HU to Bolus Height during the 
Bolus Rise Time (with a cosine shape), remains at Bolus Height 
for the Bolus Peak Width, decays from Bolus Height to 
Converged Bolus Level during the Bolus Decay Time (with a 
cosine shape), and remains at Converged Bolus Level for the 
remainder of the time.  

 
The new bolus level is assigned to voxels based on the 

current simulated scan time and the delay associated with each 
voxel location. The time delays at the compartment boundaries 
are set to 0RR, 0.5RR, 1.0 RR, and 1.5RR for the right side of 
the heart, where RR refers to the R-to-R interval. The 
pulmonary circulation delay is then added before re-entering 
the left heart side, after which the following set of additional 
delays are applied 0RR, 0.5RR, 1.0 RR, 1.5RR and 1.8RR for 
the compartment boundaries on the left side of the heart. To 
implement dispersion of bolus in the left cardiac region relative 
to the right cardiac region, a trapezoid filter is applied. That 
means the bolus levels for RA, RV, and PA follow the original 
bolus curve, and the bolus levels for LA, LV, AA, and DA 
follow the dispersed bolus curve. We also scaled all delays by 
a random number between [0.3 0.55]. For this particular study 
we also averaged the bolus curve over each period between two 

time points at neighboring compartment boundaries and 
assigned the average value uniformly to each compartment. In 
future work, this model will be refined to better model realistic 
behavior in discussion with experts in cardiac blood flow. 

Protocol instantiation: We simulate series of acquisitions 
by randomly selecting a patient, acquisition time points, cardiac 
conditions, bolus curve parameters, and patient rigid motion 
parameters. In this study, only anterior-posterior (AP) and 
posterior-anterior (PA) view acquisitions are simulated with 
125 rotations. The rotation time is set to 0.28 sec, therefore data 
is acquired every 0.14 sec and the total scan time is 35 sec.  For 
each instantiation, we randomly select a bolus curve and a 
cardiac condition. Table 1 and 2 summarize the value range of 
bolus curve parameters and cardiac motion parameters. For 
each acquisition time point 𝑡𝑎𝑞, we find two closest R-peaks 
time (𝑡𝑅1, 𝑡𝑅2) from the patient’s ECG to compute 𝑅𝑅% =
(𝑡𝑎𝑞 − 𝑡𝑅1)/(𝑡𝑅2 − 𝑡𝑅1). We then interpolate a new dataset 
from the original patient dataset based on the respective RR%. 
In this study, we used nearest neighbor interpolation. 

 
 
Extrapolation, Augmentation, and Reprojection:  
The voxels outside cone beam are extrapolated from the 

neighboring slice if available. Extra z slices are also padded on 
the top and bottom by repeating the boundary slice to prevent 
boundary artifacts during forward-projection. Then, a random 
rigid motion augmentation was performed per patient by 
rotation, scaling and shifting to add more anatomy variation. 
Finally, we forward-projected the volumes using a distance-
driven projector [5] and modeling a GE Revolution CT cone 
beam geometry.  

III. RESULTS 
Figure 5 shows a specific CT exam instance as a function of 
time. The top row shows the CT gantry rotation angle. The 
second row shows the patient ECG signal. The 7 colored curves 
show CT number averaged over each of the 7 cardiac 
compartments. For each curve, we can clearly observe a rising 
edge, a plateau, and a more gradual decay. The large delay  
between compartments in the right left sides of the heart is due 
to the pulmonary circulation. For the same reason there is some 
additional dispersion in the curves for the left side of the heart. 
The bottom row shows the time of the injection, the start of the 
pulsed-mode projections (PMPs), the breath-hold command, 
and the actual CTA scan. Note that the gantry rotation angle, 
ECG signal, and PMPs are shown for illustration purpose. The 
spacing is not exact. 

 
Fig. 3:  Neural network architecture to generate a blood flow mask 

 
Fig. 4:  Bolus curve definition by parameters 

Table 1:  Bolus curve parameters  
Parameter  Value range  
Bolus Delay  [0.5, 3.5] sec 
Bolus Rise Time [2, 12.5] sec 
Bolus Peak Width [1.0, 7.0] sec 
Bolus Decay Time [7.0, 15.0] sec 
Converged Bolus Level [15, 65]% of peak height 
Bolus Height  [120 180]% 
Trapezoid filter full-width [60, 95]% of pulmonary circ delay 

Table 2:  Cardiac motion parameters 
Parameter  Value range  
Heart rate [40, 75] bpm 
RR% offset at scan start [0, 1] 
Pulmonary circulation delay [4.0, 9.0] sec 
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Figure 6 shows example CT images and the corresponding 
compartment segmentation and blood flow propagation labels. 
The color coding reflects the integer labels from 100 to 799. 
The top row shows two examples of CT images and the 
corresponding the labels, which were analytically generated. 
The bottom row shows two test CT images with the inferred 
segmentation and integer labels. The cardiac regions were quite 
accurately segmented, and the blood flow propagation labels in 
seven compartments were visually similar to the training 
examples from the top row. 

 
Figure 7 shows a sequence of AP projections, comparing real 

measurements (left) and virtual projections (right). The top row 
shows the first actual projections in the sequence. The next 4 
rows show the difference images of the subsequent projections, 
i.e.: subtracting the first projection in the respective sequence. 
In the real data, the heart rate was 58.5 bpm and the cardiac 
phase was 0.89, 0.17, 0.44, 0.71, and 0.99 %RR from the top to 
bottom. The simulated data was generated using used these 
same parameters. Bolus insertion and motion augmentation 
were skipped. The simulated projections visually match the real 
projections quite well. More work is needed to verify the 
accuracy of the virtual bolus insertion. 

IV. CONCLUSION 
In this paper, we proposed an innovative method to generate 

large amounts of virtual but clinically realistic cardiac CT 
projection data. Our approach used a five-dimensional model of 
the cardiac CT volume derived from multi-phase 3D cardiac CT 
images with programmable bolus dynamics and cardiac phases. 
This dataset could be used to train a real-time deep learning 
network which determines the optimal scan time from raw data 
without ECG and traditional bolus tracing or timing bolus.  
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Fig. 5:  Example of a CT exam instance as a function of time. From top to 
bottom: gantry rotation angle, ECG signal, average CT number in the 7 cardiac 
compartments, and the timing of injection (INJ), pulsed-mode projections, 
(PMPs), breath-hold command (BHC), and CTA scan. 

 
Fig. 6:  Four example CT images and corresponding segmentation and 
blood flow propagation labels: the two training examples show the 
analytically computed labels (top row) and the two test examples show the 
inferred values (bottom row). 

 
Fig. 7:  Comparison between real projections (left) and simulated 
projections (right) for a sequence of AP projections. The first row in the 
sequence shows the first AP projection. The next rows show subsequent  
AP projections after subtracting the first projection in the sequence. 
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Abstract— Cardiac CT is a safe, accurate, non-invasive 

method widely employed for diagnosis of coronary artery 
disease (CAD) and planning therapeutic interventions. 
Even with state-of-the-art CT technology, calcium 
blooming artifacts may limit the accuracy of coronary 
stenosis assessment. A variety of solutions to reduce 
blooming artifacts have been proposed, including hardware 
improvements, protocol optimizations, and software 
deblooming techniques [1-6]. Hardware developments and 
clinical studies (for protocol optimization or training data 
generation) can be expensive, time-consuming, and 
impractical. Hence, there is an opportunity for a Virtual 
Clinical Trial (VCT) framework [7-8] to help researchers to 
evaluate the impact of various solutions on calcium 
blooming and to create training datasets for developing 
deep learning solutions for deblooming. 

In this paper, we present a new VCT framework for 
generating cardiac CT images with calcium blooming with 
a variety of CT hardware parameters, CT scan protocols 
and CT reconstruction kernels. As an example, we use the 
VCT framework to investigate the impact of three common 
scan and reconstruction parameters (X-ray tube voltage, 
focal spot size, and reconstruction kernel) on calcium 
blooming artifacts. We conclude that tube voltage and 
reconstruction kernel have the most direct impact on 
calcium blooming, which is consistent with earlier clinical 
reports [9-12]. 
 

Index Terms—Computed tomography, Cardiac CT, 
Calcium blooming 

I. INTRODUCTION 

ardiac CT Angiography (CCTA) is used for the 
identification of significant coronary stenoses in patients 
and is guideline-recommended as a valuable noninvasive 

alternative in the diagnostic evaluation of CAD [13-14]. One of  
the main limitations of CCTA is inaccuracy in evaluating 
calcified lesions. The presence of calcified lesions leads to 
blooming artifacts in CT images. This may obscure the lumen 
and cause a false-positive CCTA. Diffuse or extensive 
calcifications often lead to overestimation or paradoxically, 
underestimation of coronary stenosis severity. 

A variety of solutions to reduce blooming artifacts have been 
proposed. Hardware improvements have focused on smaller 
detector cell size to improve spatial resolution [1]. Protocol 
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optimizations have been proposed, either optimizing the X-ray 
tube voltage to minimize blooming artifacts or subtracting two 
scans, one with and one without contrast agent [2-3]. Multiple 
processing techniques have been proposed, including analytical 
and more recently data-driven deblooming techniques [4-6]. 

The goal of the research presented in this paper is two-fold. 
First, we aim to develop a virtual clinical trial (VCT) (or more 
specifically virtual imaging trial) framework [7-8] to enable 
inexpensive and relatively fast evaluation of various solutions 
for calcium blooming. Second, we want to use the VCT 
framework to evaluate the effect of three example 
scan/reconstruction parameters: X-ray tube voltage, focal spot 
size, and reconstruction kernel. In future work, we will use the 
VCT framework to train and test DL-based deblooming 
methods.  

II. METHODS 

A. VCT framework 
Figure 1 shows an overview of the VCT framework. The 

framework uses two types of data: clinical images and virtual 
calcifications, which are combined to produce images with and 
without blooming artifacts, including the following steps. 

Clinical images - When using existing clinical images as 
software phantom in CT simulations and reconstructions, some 
blur is introduced in the process, and the simulated-
reconstructed image does not look identical to the original 
clinical image. To minimize that discrepancy, we developed 
and optimized a frequency-based blur compensation algorithm 
to minimize the pixelwise error before and after CT simulation 
and reconstruction. Figure 2 shows the error image without 
(left) and with (right) frequency-based blur compensation. The 
latter shows a very small error indicating that the resulting 
images are representative for real clinical images in terms of 
noise and resolution. 

Virtual calcifications– We used an in-house semiautomatic 
image segmentation tool to develop a three-dimensional mesh 
models of virtual calcifications, matching the geometry of the 
surrounding calcification-free coronary arteries (Figure 3). The 
three-dimensional mesh representation is converted to a 
voxelized representation with a resolution of 0.1 mm, so it can 
conveniently be used as input to the CT simulation tool CatSim. 
(CatSim is also compatible with NURBS-based representations 
and polygonal phantoms but these were not used here). For this 
study, the calcifications were all defined as pure calcium. 
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CT scanner simulation – A Lightspeed VCT scanner model 

in our CT simulation toolkit CatSim [15] is used to perform two 
sets of virtual CT scans: one set of the patient images and one 
set of the virtual calcifications. Unlike the clinical image (which 
already has all the physics effects of the real CT scan), the 
calcification needs to be simulated with realistic geometric blur 
effects related to finite focal spot, finite detector size, and 
rotation (azimuthal) blur. The distance-driven projector was 
used, which inherently accounts for finite detector size. We 
performed an over-sampling study to optimize the number focal 
spot samples, and the number of view samples for 
computational efficiency.  

The patient sinograms are combined with the calcium 
sinograms and reconstructed, resulting in virtual clinical images 
with blooming artifacts. The patient sinograms are also 
reconstructed separately and subsequently combined with a 
voxelized version of the calcification, resulting in clinical 
images without blooming artifacts.  

One limitation of this study is that summing patient and 
calcium sinograms ignores any non-linear spectral effects. This 
was done for simplicity and we concluded it is justified since 
the calcifications are small perturbations, which we have 
previously shown to cause minimal beam hardening impact. In 
future work, we will incorporate joint simulation of patient and 
calcifications. Figure 4 shows the example results of virtual 
images with and without blooming artifacts. 

B. Experiments and analysis 
The VCT framework was used to investigate the impact on 

calcium blooming of three parameters: X-ray tube voltage 
(kVp), reconstruction kernel, and focal spot size. The 
following table shows the parameters that were used in the 
VCT study: 

 

Figure 2. Difference between real clinical images and virtual 
clinical images without (left) and with (right) blur 

compensation. 

 

Figure 3. A virtual calcification in the context of a centerline 
of a coronary artery (left) and a magnified view of the virtual 

calcification (right). 

 

Figure 4. Examples of virtual calcified coronary artery images 
with (left) and without (right) blooming artifacts. 

 

Figure 1. The VCT framework produces images with and without blooming artifacts from patient images and virtual calcifications. 

Tube voltage/spectrum 70 keV (mono) 
80 kVp 
140 kVp 

Focal spot size 1.2 mm 
0.6 mm 

Reconstruction kernel Standard 
Detail 
Bone 
Edge 

Source-to-iso 541 mm 
Source-to-detector  949 mm 
Detector cell size 1.02 mm x 1.09 mm 
Focal spot sub-sampling 3 x 9 
View sub-sampling 3 
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A total of 14 CT exams were used and combined with 
separate simulations of 130 embedded virtual calcifications. 
The CT images were acquired by Dr Pontone and the Centro 
Cardiologico Monzino (University of Milan, Italy) using a 
Revolution CT scanner (GE Healthcare, Waukesha, WI). 
Calcifications were detected in both the recon images and the 
ground truth images using the following automated approach. 

First a coronary artery mask is computed using a 3D 
segmentation tool. Second, calcifications are found based on a 
CT number threshold and a connected-volume threshold 
(optimized to be robust for image noise).  

The calcium segmentation threshold was derived from the 
average iodine value in the aorta: 

𝑐𝑎𝑙𝑐𝑖𝑢𝑚 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑎𝑣𝑔. 𝑖𝑜𝑑𝑖𝑛𝑒 𝑎𝑡 𝑎𝑜𝑟𝑡𝑎 − 25 
The average iodine value at aorta region is obtained by 1) 

identifying a volume of interest around aorta; 2) computing the 
CT number (in HU) histogram for the volume of interest; 3) 
computing the average CT number of the histogram peak. 
Figure 5 shows a typical histogram of an aorta region. The 
green lines are the standard deviation of the iodine values 
around aorta. 

III.  RESULTS 
Figures 6 and 7 summarize the experimental results. They 

show the average (over 130 calcifications) percent increase of 
calcium volume due to blooming for different scan parameters: 
𝑎𝑣𝑔. % 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑛𝑔𝑒

=  
(𝑐𝑎𝑙𝑐𝑖𝑢𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑐𝑜𝑛 − 𝐺𝑇 𝑐𝑎𝑙𝑐𝑖𝑢𝑚 𝑣𝑜𝑙𝑢𝑚𝑒)

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ (𝐺𝑇) 𝑐𝑎𝑙𝑐𝑖𝑢𝑚 𝑣𝑜𝑙𝑢𝑚𝑒  

The insets show corresponding images for one example 
calcification. Figure 6 shows the impact of tube voltage or 
standard recon kernel and a 1.2 mm focal spot size. Figure 7 
shows the impact of reconstruction kernel (standard, detail, 
bone, edge) and focal spot size (1.2 mm and 0.6 mm) for a 
monochromatic 70 keV spectrum.  

Figure 6 shows that higher kVp helps reduce the calcium 
blooming effect. For example, the average percent volume 
change is approximately 36% when using 140kVp for a cardiac 
CT scan and the calcium volume change increases to 68% when 
using 80 kVp. 

Figure 7 shows that sharper reconstruction kernels (bone, 
edge) substantially reduce blooming artifacts, although at the 
expense of increase noise or aliasing artifacts. Reducing the 
focal spot size has minimal effect when combined with the 
lower-resolution standard kernel, and results in a small 
additional improvement when combined with the higher-
resolution bone kernel.  

While our results show that both kVp and reconstruction 
kernel have a significant impact on the degree of calcium 
blooming, it is important to note that in this study we did not 
adjust the threshold based on the inherent intensity change for 
calcium at the different kVps. As a result, it is possible that 
these results have exaggerated the impact of kVp on calcium 
blooming. In other words, the reduced apparent blooming one 
achieves by using a higher kVp might just as well be 
accomplished by using a wider HU window setting in 
reviewing the images. Further study is needed to assess this in 
more detail. 

IV. CONCLUSION 
A VCT framework is developed to evaluate calcium 

blooming as a function of CT scan and reconstruction 
parameters. An overview of the VCT framework is presented, 
as well as a study to explore the relative impact of X-ray tube 
voltage, reconstruction kernel, and focal spot size on calcium 
blooming severity. We conclude that: 

 

Figure 5. Histogram of CT numbers in a region around the 
aorta. The aorta CT number is estimated as the average of the 

peak around 400. 
 

 

 

 

 

 

Figure 6. Impact of X-ray tube voltage/spectrum on calcium 
volume increase due to blooming (in %). 

 

Figure 7.  Impact of reconstruction kernel and focal spot size 
on calcium volume increase due to blooming (in %). 

mono kvp14 kvp80 mono 140kVp 80kVp 
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• X-ray tube voltage/spectrum and reconstruction kernel 
have significant impact on calcium blooming  

• Focal spot size is not the limiting factor and only has 
an impact when combined with a high-resolution 
reconstruction kernel. 

• Calcification segmentation strongly depends on the 
threshold and could be greatly improved by tuning 
threshold settings as a function of scan and 
reconstruction parameters. This is a complex 
dependency and requires a more dedicated 
investigation. 

In future work, the current study can be refined by using a 
more realistic range of calcification compositions and by jointly 
simulating patient and calcifications. Another next step is to 
work with clinical experts to evaluate the images under various 
parameter settings and the practical impact on stenosis 
assessment. 
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Abstract—X-ray phase contrast (XPC) computed tomography 
(CT) gives access to an increased contrast for weakly attenuating 
samples such as soft biological tissue, opening new application 
pathways. We have developed an XPC-CT approach based on 
amplitude modulation of the beam, achieved by using a mask with 
alternating absorbing and transmitting septa placed immediately 
upstream of the scanned sample. Our approach can be 
implemented with two distinct sensing mechanisms: beam 
tracking and edge illumination, applicable to different imaging 
scenarios and experimental constraints. Crucially, both are 
compatible with “single-frame” retrieval retrieval approaches, 
which allows fast scans in which the sample is continuously rotated 
(flyscans).  

While our group has dedicated the best part of the last decade 
to developing the technique(s), more recently we have explored 
their potential clinical use. Here, we discuss two applications 
currently under investigation: the real-time intra-operative 
scanning of excised breast and oesophageal tissue.  We also 
provide an outlook on how recent technological advances could 
further improve performance, especially in terms of meeting 
clinical constraints on scan time. 
 

Index Terms—x-ray imaging, phase contrast, computed 
tomography 

I. INTRODUCTION 
OMPUTED tomography (CT) is a versatile, non-invasive, 

imaging modality with applications ranging from 
biomedical research to clinical practice and material science 
[1]. It can provide 3D information of the internal structure of 
materials with a spatial resolution in a wide range of scales, 
from millimeters down to nanometers. Conventional x-ray CT, 
however, suffers from insufficient contrast when imaging 
materials with a low atomic number. Those materials benefit 
from an alternative imaging method, x-ray phase contrast 
(XPC) CT. 

XPC-CT is based on phase changes that the x-rays undergo 
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as they traverse the sample, while conventional CT is based on 
attenuation. Both effects are characterised by the complex 
refractive index, 

 
 𝑛𝑛 = 1 − 𝛿𝛿 + 𝑖𝑖𝑖𝑖 ,           (1) 
 

where β and δ describe attenuation and phase shifts, 
respectively. XPC-CT exploits the fact that δ can be up to three 
orders of magnitude larger than β, which can result in 
substantial increases in contrast, and therefore Contrast to Noise 
Ratio (CNR) at given statistics. Phase effects can manifest on 
the pixel- and sub-pixel scale; while the former give rise to x-
ray refraction, the latter are responsible for the so-called dark-
field contrast channel (ultra-small angle x-ray scattering, 
USAXS), which is related to microscopic features in the sample 
[2].  

II. AMPLITUDE MODULATION XPC-CT 
Although initially XPC-CT had stringent requirements on the 

x-ray beam’s coherence, imposing the use of either synchrotron 
or microfocal sources, technological developments enabled its 
use with non-microfocal laboratory sources. Here, we discuss 
an amplitude modulation-based XPC-CT method by which the 
x-ray beam is structured into an array of narrow, physically 
separated beamlets created by a mask placed immediately 
upstream of the sample (see Fig. 1). In this configuration, 
attenuation, phase (refraction), and scattering effects manifest 
as an intensity reduction, a shift, and a broadening of the 
individual beamlets, respectively. In the following, we present 
two approaches to separately retrieve and quantify these three 
effects under different experimental conditions and constraints.  
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A. Sensing Mechanism 1: Beam tracking 
A relatively straightforward approach is to resolve the 

individual beamlets by using a detector with sufficiently high 
resolution, which allows observing their intensity reduction, 
shift and broadening directly [3]. A Gaussian fit of the beamlet 
profiles and subsequent extraction of their integrated area, 
mean, and standard deviation enables the quantitative 
separation of the three effects and the consequent retrieval of 
three contrast channels (attenuation, refraction, dark-field) [4]. 
Hence, beam-tracking enables multi-contrast imaging from a 
single exposure of the sample and is compatible with flyscans. 
A CT scan can be conducted by taking many such exposures as 
the sample rotates over at least 180 degrees, and reconstructing 
tomograms (axial slices) from the three separate sinograms 
corresponding to each of the contrast channels. The beam-
tracking mechanism is efficient, in the sense that the entire 
radiation that passes through the sample reaches the detector 
(by contrast, this is not the case for XPC techniques relying on 
an analyzer to sense phase effects). On the downside, since a 
small pixel is needed and detectors typically have 2,000 x 2,000 
pixels, the field of view (FOV) tends to be limited, which 
excludes applications with a certain (larger) sample size. 
Although a few exceptions exist, small pixel detectors also tend 
to have a limited detective quantum efficiency at high x-ray 
energies, which can increase dose and exposure time. 
 

 
Figure 1.  Schematic diagram depicting the 

implementation of the edge illumination method with 
laboratory sources and a 2D detector [5]. In the beam 
tracking case, the detector mask is removed and a detector 
with ~5-6 pixels per inter-beamlet distance is used. 

  

B. Sensing Mechanism 2: Edge Illumination 
The need for small pixels can be circumvented by 

implementing edge illumination (EI), which works with much 
larger pixels (~100 µm or more possible). Each pixel receives 
at most one beamlet, hence the beamlets are not resolved and it 
is no longer possible to observe their amplitude reduction, shift 
and broadening directly. Instead, EI requires that a second mask 
is used, placed immediately upstream of the detector (see Fig. 
1), which acts as an analyzer. With that in place, the system’s 
response to attenuation, refraction, and small-angle scattering is 
encoded via a measurement of the illumination curve (IC). The 
IC is obtained by step-scanning the sample mask laterally 
(vertically with respect to Fig. 1) through the setup and 

recording the intensity per pixel and per scanning step. It is 
typically well-approximated by a Gaussian, owing to the x-ray 
tube’s Gaussian source profile. When a sample is placed into 
the setup, refraction causes the IC to shift, small-angle 
scattering causes it to broaden, and attenuation causes an 
amplitude reduction. To isolate these effects and thereby 
retrieve the three contrast channels, we need to measure the IC 
(with the sample in place) in at least three points (corresponding 
to three exposures), to obtain three independent equations 
which allow for the extraction of the three unknowns. To 
conduct a CT scan, those three exposures must be obtained at 
each rotational position of the sample. If the sample is known 
to be non- or weakly scattering, the retrieval problem reduces 
to two unknowns (attenuation and refraction), which can be 
solved from two IC measurements.   

As the need for three (or two) exposures per angle implies 
long CT scan times, we have developed an additional, 
approximation-based retrieval method for which a single 
exposure per angle is sufficient. In brief, by assuming a constant 
scaling factor between attenuation and phase (more precisely, 
δ/β = constant) across the sample, the number of unknowns in 
the retrieval problem reduces to one, which can be recovered 
from a single measurement on the IC. This means that the pre-
sample mask is kept at a fixed position during the scan 
(typically at the maximum slope of the IC, which corresponds 
to maximum phase sensitivity), and the sample can be 
continuously rotated thus maximizing the acquisition speed.  

In practice, the retrieval is performed by applying a dedicated, 
sample-specific low-pass filter to each acquired frame, yielding 
the sample’s projected thickness, which can be given as input 
to standard CT reconstruction methods [6]. Although the 
assumption of constant δ/β ratio appears to be highly restrictive, 
the “single-frame” retrieval has been found to perform 
extremely well on biological samples consisting of different 
soft tissues. In comparison to beam tracking, EI has an 
approximately 50% reduction in the efficiency with which the 
beam is used, owing to the second mask which prevents some 
radiation from reaching the detector. However, since it can be 
used with larger pixels it offers access to larger FOVs and 
generally greater flexibility in terms of practical use. 

III. TOWARDS CLINICAL USE 
The ability to perform scans in reasonable acquisition times 

(a few minutes compared to the several hours required by 
previous approaches) has opened the way to previously 
inaccessible applications. A key one, which has enabled early 
experimentation on human patients, is intra-operative specimen 
imaging. While application areas are broad, this has so far been 
trialed in breast and oesophageal operations. Both cases require 
the imaging of relatively large (several cm) specimens, so the 
EI implementation was used; however, future applications 
requiring the imaging of smaller specimens would equally 
allow the use of beam tracking. 

In breast operations, we targeted Wide Local Excisions 
(WLEs), where the issue is making sure that the entirety of the 
tumour has been removed, i.e. that the margins of the resected 
WLE are clear. This is a well-known problem in breast 
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conserving surgery, as tumour involvement at the margins is 
often only detected at post-operative histopathology, the results 
of which only become available several weeks after the 
operation, resulting in the patient having to be re-called for a 
second operation. 

This study was structured in two parts: we first scanned 
approximately 120 specimens resulting from tissue surplus to 
the pathology evaluation, as this enabled us to assess the 
increased sensitivity and specificity of our method compared to 
standard practice (in the UK, specimen radiography) without 
disrupting the clinical workflow. This resulted in comparable 
specificity and a >2.5 fold increase in sensitivity [7]. In the 
second part of the study, we used the system in real time on 
entire WLEs as they were extracted from patients undergoing 
breast conservation surgery, to demonstrate that the system 
could be used in an operational situation without disrupting the 
clinical workflow. This showed that full-size (up to 8 cm) 
specimens could be scanned, with the “single-frame” retrieval 
approach, in 10-15’ without compromising in image quality. 
One example from the “real time” procedure was reported in 
[7], the analysis of the additional cases, e.g. see Fig. 2, is 
underway and results will be presented at the conference. 

 

 
Figure 2.  Maximum intensity projection of a XPC CT of 

a WLE. The zoomed-up region on the top right shows a cyst, 
with the matching histology shown immediately below. 

 
An alternative use of the same machine was also investigated, 

based on the observation that the ultimate resolution in our 
images is determined by the size of the apertures in the pre-
sample mask [8]. In practical terms this means that, through 
longer scans in which the sample is laterally displaced at every 
projection angle in steps equal to the aperture size over a mask 
period, a process termed as dithering, we were able to achieve 
a resolution of the order of 10 µm over the entire specimens. 
Analysis of the resulting higher-resolution images, combined 
with the enhanced contrast resulting from XPC, revealed a 
wealth of previously undetected features: alongside the 
detection of thinner tumour strands, which could to some extent 
be expected, it was also possible to detect the tissue response to 
chemotherapy [9]. This suggest an alternative use of the same 
machine as a “virtual histology” device, for example to be used 
during the down-time of the intra-operative use. While this 
currently requires significantly longer acquisitions, approaches 
to reduce these are discussed in the next section.   

In parallel with the last stages of the breast project, we started 
a new project on the real-time imaging of oesophageal tissue, 

resulting from the resection of entire oesophagi during 
oesophagectomy operations. The aims were similar to those of 
the breast tissue, with the assessment of the number and 
infiltration status of the surrounding lymphnodes as an 
additional target alongside the detection of involved margins. 
This was a more challenging project compared to the breast one, 
because the oesophagus consists mostly of muscle tissue which 
is more absorbing than breast; moreover, tumours typically 
appear as a distortion of the natural tissue architecture, rather 
than a clearly identifiable mass. 

This required some degree of sample preparation which was 
not needed in the breast case (namely immersion in ethanol), 
and a longer exposure time compared to the breast case. While 
these procedures still need to be optimised, we are reasonably 
confident of their compatibility with intra-operative use, since 
oesophagectomies last much longer than breast conserving 
surgery interventions, thus allowing longer timeframes for 
intra-operative scans. Also in this case, the early analysis of the 
obtained image quality reveals a wealth of unexpected details, 
which seems to suggest an ability to stage tumours directly from 
the x-ray images (and therefore in real time), which has the 
potential to change patient pathways (for example by allowing 
the implementation of additional in-room interventions) which 
goes beyond the anticipated detection of margin involvement 
and lymph node infiltration status. Also in this case, data 
analysis is currently underway, e.g. see Fig. 3, and the early 
results will be presented at the conference. 
 

 
Figure 3.  XPC-CT of an entire human oesophagus. While 
this is a tumour-free example, the exquisite detail with 
which all the different soft tissue layers are resolved is 
apparent. 
 

All studies on human tissue were conducted in full 
compliance with the local ethics regulations and with informed 
consent from all patients involved. 

IV. RECENT ADVANCES 
The process that, above, has been referred to as dithering (i.e., 
overcoming the resolution limit otherwise imposed by the 
period of the sample mask by laterally displacing the sample in 
steps equal to the mask apertures) has significant advantages 
when it comes to detecting minute details like tumour margins, 
strands etc. However, as a substantial downside, dithering 
prolongs scans due to the multiple exposures involved and, 
crucially, it is not compatible with flyscans (the fact that a 
lateral scan of the sample is required for each rotation angle 
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means that dithered scans are bound to be step-and-shoot 
scans). Consequently, dithered scans are suitable for digital 
histology type applications that can run during down-times but 
may not be performed intra-operatively where a short scanning 
time is very much of the essence. To overcome this issue, we 
have been investigating solutions that allow performing EI (or 
beam tracking) XPC-CT scans with sub-period resolution as 
flyscans.  
 So far, we have developed an approach termed “cycloidal” 
CT [10]. This is an acquisition scheme by which the sample is 
translated laterally through the setup simultaneously with being 
rotated. Note the difference to dithering, which involves 
multiple exposures per angle; in cycloidal CT, only a single 
exposure is required. This makes it compatible with flyscans, 
given that it is implemented along with either beam-tracking, or 
EI with the “single-frame” retrieval method. The name 
cycloidal stems from the trajectory outlined by the sample as it 
undergoes the “roto-translation” motion. Its effect is a 
spreading out of the acquired data in the sinogram. Although 
this does not solve the under-sampling problem created by the 
amplitude modulating mask (the reason for which resolution is 
typically limited to its period), a more favorable basis for 
recovering the missing sinogram entries through a 
mathematical method (e.g., bivariate interpolation) is achieved. 
As a result, cycloidal CT can improve resolution compared to a 
scan in which the sample is only rotated. Early cycloidal CT 
experiments [10] have resulted in an in-slice resolution of ~30 
μm. For comparison, the resolution of a much longer, dithered 
scan of the same sample was estimated at ~20 μm, and the 
corresponding rotation only scan provided ~100 μm. 
Development of the approach is ongoing, but the observation 
that resolution in an amplitude modulated XPC-CT scan can be 
increased by translating the sample while it rotates suggests that 
it could become a way of improving the detection performance 
of intra-operative scans without exceeding clinical constraints 
on scan time. Indeed, preliminary experimental results support 
this [11]. 

Despite this potential, a limitation of cycloidal CT is that the 
resolution improvement is confined to the in-slice plane, while 
the slice thickness remains to be defined by the pixel size. This 
is because it is implemented with a 1D amplitude modulation 
(achieved with a sample mask with slit-shaped apertures, Fig. 
1) and lateral (that is, horizontal) translation of the sample. 
Consequently, the reconstructed images have a non-isotropic 
spatial resolution. To enable a resolution increase isotropically, 
we are investigating the extension of the cycloidal concept to a 
cycloidal-spiral approach. The 1D amplitude modulation is 
replaced by a 2D one (achieved with a sample mask that shapes 
the beam into an 2D array of pencil beams), and the acquisition 
involves translating the sample along both the vertical and 
horizontal direction, simultaneously with being rotated. Again, 
this results in one exposure per rotation angle. Development of 
this approach, including the interpretation of simulated and 
experimental data, is currently ongoing. In our talk, we will 
present results for both the cycloidal- and cycloidal spiral 
scanning schemes, and discuss their potential for clinical 
applications of XPCI-CT. 

V. CONCLUSION 
In summary, we have developed an amplitude modulation 

approach to XPC-CT, compatible with laboratory x-ray 
sources, that has shown significant potential for clinical use in 
the intra-operative imaging of excised breast or oesophageal 
tissue. Two possible sensing mechanisms exist (beam tracking, 
EI), and both can be implemented as flyscans thanks to phase 
retrieval methods applicable to a single exposure of the sample. 
While this implies that clinical constraints for scan times can be 
met, resolution was limited to the period of the sample mask. 
To increase this, stepping of the sample at each rotation angle 
was required, inevitably prolonging scans. Our investigation 
into cycloidal (and, more recently, cycloidal-spiral) acquisition 
schemes has led to options for increasing resolution that do not 
prolong scans. We expect those schemes to bear great potential 
for advancing the clinical utility of amplitude modulation XPC-
CT.  
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