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Monday, June 13

Welcome Address

Oral Session

08:20 — 08:40

: Novel CT Technologies

Time : 08:40 — 09:40
Moderators : Bruno De Man, Ke Li
Time Title

08:40 — 09:00

Dark-Field Imaging on a Clinical CT System:
Realization of Talbot-Lau Interferometry in a
Gantry

Web Stayman

Authors Page

Manuel Viermetz, Nikolai Gustschin, 17
Clemens Schmid, Jakob Haeusele, Roland

Proksa, Thomas Koehler, and Franz Pfeiffer

09:00 — 09:20 Dark-Field Imaging on a Clinical CT System: Nikolai Gustschin, Manuel Viermetz, 21
Performance and Potential based on first Results ~ Clemens Schmid, Jakob Haeusele, Frank
Bergner, Tobias Lasser, Thomas Koehler,
and Franz Pfeiffer
09:20 — 09:40 Non-invasive real-time thermometry via spectral  Nadav Shapira, Leening P. Liu, Johoon 25
CT physical density quantifications Kim, David P. Cormode, Gregory J.
Nadolski, Matthew Hung, Michael C.
Soulen, Peter B. Noél
Coffee Break  09:40 —10:00
Oral Session  : Reconstruction and Deep Learning
Time :10:00 — 11:40
Moderators : Marc Kachelrief3, Koen Michielsen
This session is made possible by a generous gift from United Imaging Healthcare
Time Title Authors Page
10:00 — 10:20 Cone-beam reconstruction for a circular trajectory Mathurin Charles, Rolf Clackdoyle, and 29

10:20 —10:40

10:40 —11:00

11:00 — 11:20

11:20 - 11:40

with transversely-truncated projections based on
the virtual fan-beam method

Iterative image reconstruction for CT with
unmatched projection matrices using the
generalized minimal residual algorithm

Deep Learning-Based Detector Row Upsampling
for Clinical Spiral CT

DL-Recon: Combining 3D Deep Learning Image
Synthesis and Model Uncertainty with Physics-
Based Image Reconstruction

Learned Cone-Beam CT Reconstruction Using
Neural Ordinary Differential Equations

Simon Rit

Emil Y. Sidky, Per Christian Hansen, Jakob 33
S. Jergensen, and Xiaochuan Pan

Jan Magonov, Julien Erath, Joscha Maier, 37
Eric Fournié, Karl Stierstorfer, and Marc

Kachelrief3

Xiaoxuan Zhang, Pengwei Wu, Wojciech B.
Zbijewski, Alejandro Sisniega, Runze Han,
Craig K. Jones, Prasad Vagdargi, Ali Uneri,
Patrick A. Helm, William S. Anderson,
Jeftrey H. Siewerdsen

41

Mareike Thies, Fabian Wagner, Mingxuan 45
Gu, Lukas Folle, Lina Felsner, and Andreas

Maier
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Lunch 11:40 —13:20

Poster Session 13:20 —15:00

The poster session will begin with 30-second teaser presentation given by presented in the Glass

Pavilion. General presentation and discussion of posters will follow in the Great Hall.

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

Mi11

M12

M13

Mi14

M15

M16

M17

M18

Title

First results on Compton camera system used for X-ray
fluorescence computed tomography

Iterative grating interferometry-based phase-contrast CT
reconstruction with a data-driven denoising prior

A scatter correction method of CBCT via CycleGAN and
forward projection algorithm

Design and Optimization of 3D VSHARP® Scatter
Correction for Industrial CBCT using the Linear
Boltzmann Transport Equation

Motion Correction Image Reconstruction using NeuralCT
Improves with Spatially Aware Object Segmentation

Photon-Counting X-ray CT Perfusion Imaging in Animal
Models of Cancer

Undersampled Dynamic Tomography with Separated
Spatial and Temporal Regularization

Full-Spectrum-Knowledge-Aware Unsupervised Network
for Photon-counting CT Imaging

Soil matrix study using a hybrid a-Se/CMOS pixel
detector for CT scanning

The Reason of Why Dynamic Dual-Energy CT is Better
than Multi-Energy CT in Reducing Statistical Noise

Cone-Beam X-ray Luminescence Computed Tomography
Reconstruction Based on Huber Markov Random Field
Regularization

Dual-domain network with transfer learning for reducing
bowtie-filter induced artifacts in half-fan cone-beam CT

Organ-Specific vs. Patient Risk-Specific Tube Current
Modulation in Thorax CT Scans Covering the Female
Breast

An Analytical Prj2CH Covariance Estimation Method for
Iterative Reconstruction Methods

Material Decomposition from Photon-Counting CT using
a Convolutional Neural Network and Energy-Integrating
CT Training Labels

Using Tissue-Energy Response to Generate Virtual
Monoenergetic Images from Conventional CT for
Computer-aided Diagnosis of Lesions

Detruncation of Clinical CT Scans Using a Discrete
Algebraic Reconstruction Technique Prior

Deep Learning based Respiratory Surrogate Signal
Extraction

Authors
Chuanpeng Wu and Liang Li

Stefano van Gogh, Subhadip Mukherjee,
Michat Rawlik, Zhentian Wang, Jingiu Xu,
Zsuzsanna Varga, Carola-Bibiane
Schonlieb, Marco Stampanoni

Tianxu Tang, Wei Zhang, and Weiqi Xiong

Kevin Holt, Devang Savaliya, Amy
Shiroma, Martin Hu, David Nisius, Steve
Hoelzer, Mingshan Sun, Don Vernekohl,
Josh Star-Lack

Zhennong Chen, Kunal Gupta, Francisco
Contijoch

Darin P. Clark, Alex J. Allphin, Yvonne M.
Mowery, and Cristian T. Badea

Xiufa Cao, Yinghui Zhang, Ran An,
Hongwei Li

Danyang Li, Zheng Duan, Dong Zeng,
Zhaoying Bian, and Jianhua Ma

Akyl Swaby, Adam S. Wang, Michael G.
Farrier, Weixin Cheng, and Shiva
Abbaszadeh

Yidi Yao, Liang Li, and Zhigiang Chen

Tianshuai Liu, Junyan Rong, Wenqin Hao,
Hongbing Lu

Sungho Yun, Uijin Jeong, Donghyeon Lee,
Hyeongseok Kim, and Seungryong Cho
Lucia Enzmann, Laura Klein, Chang Liu,
Stefan Sawall, Andreas Maier, Joscha
Maier, Michael Lell, and Marc Kachelrief3.

Xiaoyue Guo, Li Zhang, Yuxiang Xing

Rohan Nadkarni, Alex Allphin, Darin P.
Clark, and Cristian T. Badea

Shaojie Chang, Yongfeng Gao, Marc J.
Pomeroy, Ti Bai, Hao Zhang, and
Zhengrong Liang

Achim Byl, Michael Knaup, Magdalena
Rafecas, Christoph Hoeschen, and Marc
Kachelrief3

Jean Radig, Pascal Paysan, Stefan Scheib
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M19  Deep learning enabled wide-coverage high-resolution
cardiac CT

M20  Preliminary study on image reconstruction for limited-
angular-range dual-energy CT using two-orthogonal,
overlapping arcs

M21  Correcting spurious signal using an automated Deep
Learning based reconstruction workflow

M22  Dual-Energy Head Cone-Beam CT Using a Dual-Layer
Flat-Panel Detector: Physics-Based Material
Decomposition

M23  Combining Deep Learning and Adaptive Sparse Modeling
for Low-dose CT Reconstruction

M24  X-ray Dissectography Enables Stereotography

M25  Mixed coronary plaque characterization with the first
clinical dual-source photon-counting CT scanner a
phantom study

Coffee Break 15:00 — 15:20

Oral Session  : CT Acquisition
Time :15:20-17:00
Moderators : Adam Wang, Rolf Clackdoyle

Time Title

15:20 — 15:40 LaBr3:Ce and Silicon Photomultipliers: Towards
the Optimal Scintillating Photon-Counting
Detector

15:40 — 16:00 Preliminary Investigations of a Novel Dynamic
CT Collimator

16:00 — 16:20 X-ray CT Data Completeness Condition for Sets
of Arbitrary Projections

16:20 — 16:40 CT imaging with truncation data over limited-
angular ranges

16:40 —17:00 Cone Beam Field of View Extension through
Complementary Short Scan Trajectories with
Displaced Center of Rotation

Dinner 19:00 — 21:20
(Charles Commons Banquet Room)

Tzu-Cheng Lee, Jian Zhou, John Schuzer,
Masakazu Matsuura, Takuya Nemoto,
Hiroki Taguchi, Zhou Yu, Liang Cai

Buxin Chen, Zheng Zhang, Dan Xia, Emil
Y. Sidky, and Xiaochuan Pan

Matthew Andrew, Andriy Andreyev, Faguo
Yang and Lars Omlor

Zhilei Wang, Hao Zhou, Shan Gu, Hewei
Gao

Ling Chen, Zhishen Huang, Yong Long,
Saiprasad Ravishankar

Chuang Niu and Ge Wang

Thomas Wesley Holmes, Leening P. Liu,
Nadav Shapira, Elliot McVeigh, Amir
Pourmorteza, Peter B. Noél

Authors

Stefan J. van der Sar, David Leibold, Stefan
E. Brunner, and Dennis R. Schaart

Web Stayman, Nir Eden, Yiqun Q. Ma,
Grace J. Gang, Allon Guez

Gabriel Herl, Andreas Maier, and Simon
Zabler

Dan Xia, Zheng Zhang, Buxin Chen, Emil
Y. Sidky, and Xiaochuan Pan

Gabriele Belotti, Simon Rit, Guido Baroni

142

145

149

157

153

161
165

Page
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66
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Tuesday, June 14

Oral Session  : Invited Talks on Photon Counting CT
Time : 08:20 — 09:40
Moderator : Web Stayman

Time Title Presenter

08:20 — 09:00  Photon counting detector computed tomography: technical ~ Peter Noel
background

09:00 — 09:40  Photon counting detector computed tomography: clinical Shuai Leng
applications

Coffee Break  09:40 —10:00

Oral Session  : Spectral CT
Time :10:00 — 11:40
Moderators : Kevin Brown, Cristian Badea

This session is made possible by a generous gift from Philips Healthcare

Time Title Authors Page

10:00 — 10:20 Consistency-based auto-calibration of the spectral Jérome Lesaint, Simon Rit 170
model in dual-energy CT

10:20 — 10:40 Direct binning for photon counting detectors Katsuyuki Taguchi and Scott S. Hsieh 174

10:40 — 11:00 Co-clinical photon counting CT research for Cristian T. Badea, Darin P. Clark, Alex 178
multi-contrast imaging Allphin, Juan Carlos Ramirez-Giraldo,

Prajwal Bhandari, Yvonne M. Mowery,
Ketan B. Ghaghada
11:00 — 11:20 Reproducibility in dual energy CT: the impact of a Viktor Haase, Frederic Noo, Karl 182
projection domain material decomposition method Stierstorfer, Andreas Maier, and Michael
McNitt-Gray
11:20 — 11:40 Dual-source photon-counting CT: consistency in  Leening P. Liu, Nadav Shapira, Pooyan 186
spectral results at different acquisition modes and Sahbaee, Harold 1. Litt, Marcus Y. Chen,
heart rates Peter B. Noél

Lunch 11:40 —13:20
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Poster Session  13:20 — 15:00
The poster session will begin with 30-second teaser presentation given by presented in the Glass
Pavilion. General presentation and discussion of posters will follow in the Great Hall.

T1

T2

T3

T4

TS

Té6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

Title

Photon Starvation Artifact Reduction by Shift-Variant

Processing

Data-driven Metal Artifact Correction in Computed
Tomography using conditional Generative Adversarial

Networks

CT-Value Conservation based Spatial Transformer

Network for Cardiac Motion Correction

Exploiting voxel-sparsity for bone imaging with sparse-

view cone-beam computed tomography

Estimation of Contrast Agent Concentration from Pulsed-
Mode Projections to Time Contrast-Enhanced CT Scans

Time Separation Technique Using Prior Knowledge for

Dynamic Liver Perfusion Imaging

A hybrid neural network combining explicit priors for

low-dose CT reconstruction

High Resolution Cerebral Perfusion Deconvolution via
Mixture of Gaussian Model based on Noise Properties

Simulating Arbitrary Dose Levels and Independent Noise

Image Pairs from a Single CT Scan

Dark-Field Imaging on a Clinical CT System: Sample

Data Processing and Reconstruction

S2MC: Self-Supervised Learning Driven Multi-Spectral

CT Image Enhancement

Virtual Non-Metal Network for Metal Artifact Reduction

in the Sinogram Domain

Attenuation Image Guided Effective Atom Number
Image Calculation Using Image domain Neural Network

for MeV Dual-energy Cargo CT Imaging

Residual W-shape Network (ResWnet) for Dual-energy

Cone-beam CT Imaging

Dark-Field Imaging on a Clinical CT System: Modelling

of Interferometer Vibrations

Fully Utilizing Contrast Enhancement on Lung Tissue as
a Novel Basis Material for Lung Nodule Characterization

by Multi-energy CT

Image Reconstruction in Phase-Contrast CT with

Shortened Scans

Authors
Gengsheng L. Zeng

Nele Blum, University of Lubeck,
Germany, Thorsten M. Buzug and Maik
Stille

Xuan Xu, Peng Wang, Liyi Zhao, Guotao
Quan

Emil Y. Sidky, Holly L. Stewart,
Christopher E. Kawcak, C. Wayne
Macllwraith, Martine C. Duff, and
Xiaochuan Pan

Isabelle M. Heukensfeldt Jansen, Eri
Haneda, Bernhard Claus, Jed Pack,
Albert Hsiao, Elliot McVeigh, and Bruno
De Man

Hana Haselji¢, Vojtéch Kulvait, Robert
Frysch, Fatima Saad, Bennet Hensen,
Frank Wacker, Inga Briisch,

Thomas Werncke, and Georg Rose
Xiangli Jin, Yinghui Zhang, Ran An,
Hongwei Li

Sui Li, Zhaoying Bian, Dong Zeng, and
Jianhua Ma

Sen Wang, Adam Wang

Jakob Haeusele, Clemens Schmid, Manuel
Viermetz, Nikolai Gustschin, Tobias
Lasser, Frank Bergner,

Thomas Koehler, Franz Pfeiffer

Chaoyang Zhang, Shaojie Chang, Ti Bai,
and Xi Chen

Da-in Choi, Taejin Kwon, Jachong Hwang,
Joon Il Hwang, Yeonkyoung Choi and
Seungryong Cho

Wei Fang, Liang Li

Xiao Jiang, Hehe Cui, Zihao Liu, Lei Zhu
and Yidong Yang

Clemens Schmid, Manuel Viermetz,
Nikolai Gustschin, Jakob Haeusele, Tobias
Lasser, Thomas Koehler,

Franz Pfeiffer

Shaojie Chang, Yongfeng Gao, Marc J.
Pomeroy, Ti Bai, Hao Zhang, and
Zhengrong Liang

Zheng Zhang, Buxin Chen, Dan Xia, Emil
Y. Sidky, Mark Anastasio, and Xiaochuan
Pan

Page

210

214
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226

230

234
238
242

246

250

254

258

262

266

270

274
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T18  Self-trained Deep Convolutional Neural Network for
Noise Reduction in CT

T19  2D-3D motion registration of rigid objects within a soft
tissue structure

T20  Gas Bubble Motion Artifact Reduction through
Simultaneous Motion Estimation and Image
Reconstruction

T21  Comparing One-step and Two-step Scatter Correction
and Density Reconstruction in X-ray CT

T22  Material decomposition from unregistered dual kV data
using the cOSSCIR algorithm

T23  PixelPrint: Three-dimensional printing of patient-specific

soft tissue and bone phantoms for CT

T24  Practical Workflow for Arbitrary Non-circular Orbits for
CT with Clinical Robotic C-arms

T25  Rigid motion correction based on locally linear
embedding for helical CT scans with photon-counting
detectors

Coffee Break

Oral Session

Time :15:20-17:00
Moderators : Xiaochuan Pan, Jerome Z. Liang
Time Title

15:20 - 15:40

15:40 - 16:00

16:00 —16:20

16:20 —16:40

16:40 — 17:00

Dinner
(R. House)

15:00 - 15:20

: Artifacts and Sparse CT

Deep Scatter Estimation for Coarse Anti-Scatter
Grids as used in Photon-Counting CT

Cross-Domain Metal Segmentation for CBCT
Metal Artifact Reduction

Sparsier2Sparse: Weakly-supervised learning for
streak artifacts reduction with unpaired sparse
view CT data

Dual Domain Closed-loop Learning for Sparse-
view CT Reconstruction

Hybrid Reconstruction Using Shearlets and Deep
Learning for Sparse X-Ray Computed
Tomography

19:00 — 21:20

Zhongxing Zhou, Akitoshi Inoue, Cynthia
McCollough, and Lifeng Yu

Nargiza Djurabekova, Andrew Goldberg,
David Hawkes, Guy Long, Felix Lucka and
Marta M. Betcke

Kai Wang, Hua-Chieh Shao, You Zhang,
Chunjoo Park, Steve Jiang, Jing Wang

Alexander N. Sietsema, Michael T.
McCann, Marc L. Klasky, and Saiprasad
Ravishankar

Benjamin M. Rizzo, Emil Y. Sidky, and
Taly Gilat Schmidt

Kai Mei, Michael Geagan, Nadav Shapira,
Leening P. Liu, Pouyan Pasyar,

Grace J. Gang, Web Stayman, and Peter B.
Noél

Yiqun Ma, Grace J. Gang, Tess Reynolds,
Tina Ehtiati, Junyuan Li, Owen Dillon,
Tom Russ, Wenying Wang, Clifford Weiss,
Nicholas Theodore, Kelvin Hong, Ricky
O’Brien, Jeffrey Siewerdsen, Web Stayman

Mengzhou Li, Chiara Lowe, Anthony
Butler, Phil Butler, and Ge Wang

Authors

Julien Erath, Jan Magonov, Joscha Maier,
Eric Fournié, Martin Petersilka, Karl
Stierstorfer, and Marc Kachelrief3

Maximilian Rohleder, Tristan M.
Gottschalk, Andreas Maier and, Bjoern W.
Kreher

Seongjun Kim, Byeongjoon Kim, and
Jongduk Baek

Yi Guo, Yongbo Wang, Manman Zhu,
Dong Zeng, Zhaoying Bian, Xi Tao and
Jianhua Ma

Andi Braimllari, Theodor Cheslerean-
Boghiu, Tobias Lasser

279

283

288

292

296

300

304

308

Page
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194

198

202

206
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Wednesday, June 15

Oral Session

: Modeling and Assessment

Time : 08:20 — 09:40
Moderators : Grace J. Gang, Kirsten L. Boedeker
Time Title

08:20 — 08:40

08:40 — 09:00

09:00 — 09:20

09:20 — 09:40

Coffee Break

Oral Session

Time
Moderator

Time
10:00 — 10:40

Oral Session

Trade-offs between redundancy and increased
rank for tomographic system matrices

Stationary X-ray Tomography for Hemorrhagic
Stroke Imaging - Sampling and Resolution
Properties

Angular normalized glandular dose coefficient in
breast CT: clinical data study

Estimating the accuracy and precision of
quantitative imaging biomarkers as endpoints for
clinical trials using standard-of-care CT

09:40 — 10:00

: Invited Talk on Deep Learning
:10:00-10:40
: Web Stayman

Title

Authors

Feriel Khellaf and Rolf Clackdoyle

A. Lopez-Montes, T. McSkimming, W.
Zbijewski, J. H. Siewerdsen, A. Skeats, B.
Gonzales, A. Sisniega

Hsin Wu Tseng, Andrew Karellas, and
Srinivasan Vedantham

Paul Kinahan, Darrin Byrd, Hao Yang,
Hugo Aerts, Binzhang Zhao, Andrey
Fedorov, Lawrence Schwartz, Tavis
Allison, Chaya Moskowitz

Presenter

Hallucinations and objective assessments of deep learning ~ Mark Anastasio

technologies for image formation

: Deep Learning Assessment

Time :10:40 —11:40
Moderators : Saiprasad Ravishankar, Rongping Zeng
Time Title Authors

10:40 —11:00

11:00 —11:20

11:20 —11:40

Lunch

Reconstructing Invariances of CT Image
Denoising Networks using Invertible Neural
Networks

Local Linearity Analysis of Deep Learning CT
Denoising Algorithms

Evaluation of deep learning-based CT
reconstruction with a signal-Laplacian model
observer

11:40 - 13:20

Elias Eulig, Bjorn Ommer, and Marc
Kachelrief3

Junyuan Li, Wenying Wang, Matt Tivnan,
Jeremias Sulam, Jerry L Prince, Michael
McNitt-Gray, Web Stayman and Grace J.
Gang

Gregory Ongie, Emil Y. Sidky, Ingrid S.
Reiser, & Xiaochuan Pan

Page
414

418

422

426

Page
430

434

438
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Poster Session
The poster session will begin with 30-second teaser presentation given by presented in the Glass
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13:20 - 15:00

Pavilion. General presentation and discussion of posters will follow in the Great Hall.

W1

w2

W3

W4

W5

Wé

W7

W8

W9

W10

W11

W12

W13

W14

W15

W16

W17

W18

W19

W20

Title

An Attempt of Directly Filtering the Sparse-View CT
Images by BM3D

Assessment of perceptual quality measures for multi-
exposure radiography and tomography

Geometric calibration of seven degree of freedom Robotic
Sample Holder for X-ray CT

A generalized total-variation-based image reconstruction
method for limited-angle computed tomography
Comparison of Energy Bin Compression Strategies for
Photon Counting Detectors

A visible edge aware directional total variation model for
limited-angle reconstruction

Dual-task Learning For Low-Dose CT Simulation and
Denoising

Statistical Iteration Reconstruction based on Gaussian
Mixture Model for Photon-counting CT

Deep Learning Ring Artifact Correction in Photon-
Counting Spectral CT with Perceptual Loss

Photon Counting Detector-based Multi-energy Cone
Beam CT Platform for Preclinical Small Animal
Radiation Research

Design of Novel Loss Functions for Deep Learning in X-
ray CT

Effect of Attenuation Model on lodine Quantification in
Contrast-Enhanced Breast CT

Motion Compensated Weighted Filtered Backprojection
Considering Rebinning Process

On the use of voxel-driven backprojection and iterative
reconstruction for small ROI CT imaging

A Decomposition Method for Directional Total Variation
With Application to Needle Reconstruction in
Interventional Imaging

New Reconstruction Methodology for Chest
Tomosynthesis based on Deep Learning

Iterative Intraoperative Digital Tomosynthesis Image
Reconstruction using a Prior as Initial Image

Learning CT Scatter Estimation Without Labeled Data - A
Feasibility Study

Implementations of Statistical Reconstruction Algorithm
for CT Scanners with Flying Focal Spot

Multiple Linear Detector Off-Line Calibration

Authors
Larry Zeng

Joaquim G. Sanctorum, Sam Van der
Jeught, Sam Van Wassenbergh, Joris J. J.
Dirckx

Erdal Pekel, Florian Schaff, Martin Dierolf,
Franz Pfeiffer, and Tobias Lasser

Xin Lu, Yunsong Zhao, and Peng Zhang

Yirong Yang, Sen Wang, Debashish Pal,
Norbert J. Pelc, Adam S. Wang

Yinghui Zhang, Ke Chen, Xing Zhao,
Hongwei Li.

Minggiang Meng, Yongbo Wang, Manman
Zhu, Xi Tao, Zhaoying Bian, Dong Zeng,
and Jianhua Ma

Danyang Li, Zheng Duan, Dong Zeng,
Zhaoying Bian, and Jianhua Ma

Dennis Hein, Konstantinos Liappis, Alma
Eguizabal, and Mats Persson

Xiaoyu Hu, Yuncheng Zhong, Kai Yang,
and Xun Jia

Page
313

317

321
325
329
333

337

341
345

349

Obaidullah Rahman, Ken D. Sauer, Madhuri 353

Nagare, Charles A. Bouman, Roman
Melnyk, Jie Tang, Brian Nett

Mikhail Mikerov, Koen Michielsen, James
G. Nagy, and loannis Sechopoulos

Nora Steinich, Johan Sunnegérdh, and
Harald Schondube

Leonardo Di Schiavi Trotta, Dmitri
Matenine, Margherita Martini, Yannick
Lemaréchal, Pierre Francus, and Philippe
Després

Marion Savanier, Cyril Riddell, Yves
Trousset, Emilie Chouzenoux and Jean-
Christophe Pesquet

F Del Cerro. C, Galan. A, Garcia-Blas. J,
Desco. M, Abella M.

Fatima Saad, Robert Frysch, Tim Pfeiffer,
Sylvia Saalfeld, Jessica Schulz, Jens-
Christoph Georgi, Andreas Niirnberger,
Guenter Lauritsch, and Georg Rose

Joscha Maier, Luca Jordan, Elias Eulig,
Fabian Jéager, Stefan Sawall, Michael
Knaup, and Marc Kachelrie3

Robert Cierniak and Jarostaw Bilski and
Piotr Pluta

Sasha Gasquet, Laurent Desbat, and Pierre-
Yves Solane

357

362

366

370

374

378

382

386

390

13



The 7th International Conference on Image Formation in X-Ray Computed Tomography

W21 lodine-enhanced Liver Vessel Segmentation in Photon
Counting Detector-based Computed Tomography using
Deep Learning

W22  Optimization of Empirical Beamhardening Correction
Algorithm

W23  Deep Learning-based Prior toward Normalized Metal
Artifact Reduction in Computed Tomography

W24  On use of augmentation for the DNN-based CT

W25  Joint Multi-channel Total Generalized Variation
Minimization and Tensor Decomposition for Spectral CT and Hengyong Yu
Reconstruction

Coffee Break

Oral Session

15:00 — 15:20

Time :15:20-17:00
Moderators : Emil Sidky, Johan Sunnegaardh
Time Title

15:20 - 15:40

15:40 - 16:00

16:00 —16:20

16:20 —16:40

16:40 — 17:00

Dinner

Tunable Neural Networks for Multi-Material
Image Formation from Spectral CT Measurements

Self-supervised nonlocal spectral similarity
induced material decomposition network

Likelihood-based bilateral filtration in material
decomposition for photon counting CT

Experimental Evaluation of Polychromatic
Reconstruction for Quantitative CBCT

Dual-energy cone-beam CT with three-material
decomposition for bone marrow edema imaging

19:00 — 21:20

(Ministry of Brewing)

Sumin Baek, Okkyun Lee, and Dong Hye 394
Ye

Andriy Andreyev, Faguo Yang, Lars Omlor, 402
and Matthew Andrew

Jeonghyeon Nam, Dong Hye Ye, and 398
Okkyun Lee
Prabhat Kc, Kyle J. Myers, M. Mehdi 406

Farhangi, Rongping Zeng
Huihua Kong, Xiangyuan Lian, Jinxiao Pan, 410

: Spectral and Polyenergetic CT Reconstruction

Authors Page
Matthew Tivnan, Grace Gang, Peter Noél, 442
Jeremias Sulam, and J. Webster Stayman

Lei Wang, Yongbo Wang, Zhaoying Bian, 446
Dong Zeng, and Jianhua Ma

Okkyun Lee 450

Michat Walczak, Pascal Paysan, Mathieu 454
Plamondon, Stefan Scheib

Stephen Z. Liu, Magdalena Herbst, Thomas 458
Weber, Sebastian Vogt, Ludwig Ritchl,

Steffen Kappler, Jeffrey H. Siewerdsen, and
Wojciech Zbijewski

14



The 7th International Conference on Image Formation in X-Ray Computed Tomography

Thursday, June 16

Oral Session

: Invited Talk on Interventional CT

Time : 08:20 — 09:00

Moderator : Web Stayman
Time Title Presenter
08:20 — 09:00  Engineering the Future of Spine Surgery Nick Theodore

Oral Session  : Interventional Imaging
Time :09:00 - 09:40
Moderator : Cyrill Riddell

Time Title Authors

09:00 — 09:20 Real-time Liver Tumor Localization via a Single =~ Hua-Chieh Shao, Jing Wang, and You
X-ray Projection Using Deep Graph Network- Zhang
assisted Biomechanical Modeling

09:20 — 09:40 3D Reconstruction of Stents and Guidewires in an Tim V&th, Thomas Konig, Elias Eulig,
Anthropomorphic Phantom From Three X-Ray Michael Knaup, Veit Wiesmann, Klaus
Projections Horndler, and Marc Kachelrie3

Coffee Break  09:40 —10:00

Oral Session  : Cardiac CT and Motion Compensation
Time :10:00 — 11:20
Moderators : Ken Taguchi, Simon Rit

Time Title Authors

10:00 — 10:20 Context-Aware, Reference-Free Local Motion H. Huang, J.H. Siewerdsen, W. Zbijewski,
Metric for CBCT Deformable Motion C.R. Weiss, M. Unberath, and A. Sisniega
Compensation

10:20 — 10:40 Simulation of Random Deformable Motion in Y. Hu, H. Huang, J. H. Siewerdsen, W.
Soft-Tissue Cone-Beam CT with Learned Models Zbijewski, M. Unberath, C. R. Weiss, and

A. Sisniega

10:40 — 11:00 A five-dimensional cardiac CT model for Eri Haneda, Bernhard Claus, Jed Pack,
generating virtual CT projections for user-defined Darin Okerlund, Albert Hsiao, Elliot
bolus dynamics and ECG profiles McVeigh, and Bruno De Man

11:00 — 11:20 A Virtual Imaging Trial Framework to Study Ying Fan, Jed Pack, and Bruno De Man
Cardiac CT Blooming Artifacts

Conclusion 11:20 - 11:40 Web Stayman

Lunch 11:40 — 13:20

Optional 13:20 - 15:00 (JHU Laboratories and Hospital)
Tours

Page
464

468

Page
472

476

480

484

15



The 7th International Conference on Image Formation in X-Ray Computed Tomography

Monday, June 13

Novel CT Technologies
Reconstruction and Deep Learning
Monday Poster Session

CT Acquisition

16



The 7th International Conference on Image Formation in X-Ray Computed Tomography

Dark-Field Imaging on a Clinical CT System:
Realization of Talbot-Lau Interferometry in a Gantry

Manuel Viermetz, Nikolai Gustschin, Clemens Schmid, Jakob Haeusele,
Roland Proksa, Thomas Koehler, and Franz Pfeiffer

Abstract—Computed tomography (CT) is a foundation of
modern clinical diagnostics but it presently only retrieves in-
formation from X-rays attenuation. However, it is known that
micro structural texture or porosity — which is well below
the spatial resolution of CT - can be revealed by grating-
based dark-field imaging. Diagnostic value of this sub-resolution
tissue information has been demonstrated in pre-clinical studies
on small-animal disease models and recently also in a first
clinical radiography system [1]. These studies show that dark-
field imaging is particularly useful for early detection and staging
of lung diseases.

While dark-field CT is regularly realized in laboratory envi-
ronment, the transfer to human scale and bringing it to clinical
application poses several technical challenges. Switching from
a step-and-shoot acquisition to a mode where the gantry and
acquisition operate continuously as well as reducing scan times
to below seconds and ensuring stability against vibrations are
key concerns when it comes to the translation of the established
laboratory dark-field technology to full-body medical CT. In [2],
we recently demonstrated the first dark-field CT implementation,
which collectively solves these roadblocks and therefore is a mile-
stone in the development of clinical CT imaging. The prototype
we present allows to reconstruct the attenuation and dark-field
channels of a human thorax phantom from a one second long
acquisition and covers a 45 cm diameter field of view.

In this work, we present how the first dark-field CT prototype
works and focus particularly on the technical design, optimized
design of the gratings for CT application and the first character-
ization of the interferometer in the rotating gantry. We discuss
which steps where particularly important for the realization and
where we see potential for further improvements. These results
provide key insights for future dark-field CT implementations.

Index Terms—X-ray Imaging, Dark-field contrast, Computed
Tomography, Talbot-Lau interferometer

I. INTRODUCTION

-RAY Computed Tomography (CT) is a well-established
technique, which is — in its conventional form — lim-
ited to attenuation contrast. There it allows high resolution
imaging, fast acquisition times, and decent contrast for many
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purposes such as material research, inspection, and medical
diagnostics. Throughout the last decade Talbot-Lau interfer-
ometry, which started as a synchrotron-only technology, gained
attention as it unlocks additional contrast channels [3], [4].
A Talbot-Lau interferometer, as illustrated in Fig. 1, allows
simultaneous imaging of attenuation, refraction, and small-
angle scattering of the transmitted object [5], [6].

Particularly the access to sub-resolution tissue properties by
analyzing the small-angle scattering power — also referred to
as dark-field signal — of the material is a promising application
in biomedical imaging. Previous work at laboratory setups
demonstrated that the dark-field modality is useful for lung
diagnostics as it enables the detection of micro-structural
changes in lung parenchyma [7]-[10].

Recently the first clinical study on dark-field chest ra-
diography of COPD and COVID-19 patients validated these
pre-clinical results and clearly showed the potential of this
additional image contrast [1], [11]. This first in-vivo human

X-ray source ¢

Detector

Fig. 1. Talbot-Lau interferometer in a CT gantry. It consists of three
cylindrically bent gratings illustrated as line patterns, referred to as Gy, Gy,
and Gy, which structure the X-ray beam as they absorb or phase-shift the
radiation. By the Talbot effect a self-image of G; appears at the location of G,.
The object induces attenuation, refraction, and small-angle scattering, which
subsequently change this self-image characteristically. Using the Moiré effect
and the G, grating which has a period matching to the G, self-image these
distortions can be retrieved with a common X-ray detector. Since this approach
relies on coherent radiation, a Gy source-grating is required to convert the
incoherent source spot into a set of sufficiently coherent slit sources.
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dark-field imaging system can now retrieve otherwise unde-
tectable changes in the porous lung tissue which are correlated
with diseases progressions. However, this chest radiography
provides no 3D information and anatomical structures overlap
in image domain. To overcome these restrictions our approach
is to install the interferometer into a clinical CT gantry.
However, this step involves a variety of problems since the
space on a clinical CT gantry is limited, an extremely large
field of view must be covered by the gratings (compared
to current state of the art dark-field implementations), and
vibrations of the system can quickly degrade the measured
signal. In this work we discuss our design of a Talbot-Lau
interferometer which has been integrated into a Brilliance iCT
(Royal Philips, The Netherlands) and produces the first dark-
field CT reconstructions of human sized phantoms [2].

II. TALBOT-LAU INTERFEROMETER LAYOUT

In our presented design the most important design rules have
been (1) to maintain the bore diameter of the conventional
CT, which is 70cm (blue dashed line in Fig. 1), (2) to
not modify the conventional gantry and its primary imaging
components, i.e., source and detector, and (3) to have at least
45 cm coverage which is 90% of a conventional CT which has
an diameter of 50 cm (highlighted area and green dashed line
in Fig. 1, respectively).

The presented Talbot-Lau interferometer consists of three
gratings and must be optimized for the 80kVp spectrum,
which is the lowest available energy on the iCT platform.
As this method only works for coherent radiation a source
grating Gy is required [12]. It splits the radiation from the
incoherent X-ray source into several slit sources which fulfill
the coherence requirement for the length of the interferometer
setup. Because of the weak interaction between hard X-rays
and grating the aspect ratio of the structures must be high —
which is difficult to fabricate — and gold as a good absorber
is used as the grating material. The grating G; introduces
a fine intensity modulation on the incident radiation, which

E Source

570

470

G,
G,

Asymmetric design

Inverse design

Fig. 2. Asymmetric and inverse interferometer geometry. a, in an asymmetric
design the gratings G; and G, are both behind the patient and must cover a
large area due to the large field of view. Furthermore, the periods of these
two gratings are rather fine, compared to the Gy grating. b, in the inverse
geometry, Go and G are in front of the patient, their size is relatively small
due to the strong divergence of the setup, and the period of the largest grating
G, is coarse, which makes fabrication easier. Another advantage of this design
is its dose efficiency because G is positioned in front of the patient.

is basically a fine line pattern with a periodicity of a few
micrometers. Attenuation of the radiation by the object causes
a decrease of intensity, whereas refraction and small-angle
scattering induce small distortions of the pattern. To resolve
these small changes an analyzer grating G, is positioned in
front of the detector and makes use of the Moiré effect to
translate the changes to an intensity pattern which can be
measured by the detector.

The grating periods and distances define the sensitivity of
the system to small-angle scattering. Basically, smaller periods
and longer distances lead to a more sensitive setup. Note that
a too small sensitivity results in a poor signal to noise ratio
and a too high sensitivity can lead to artefacts due visibility
starvation. From previous work in [13], [14] a sensitivity
range that is meaningful for lung imaging can be derived.
To achieve a sufficient sensitivity the position and the period
of the grating structures must be selected carefully. Certainly
higher sensitivity is preferred, however, there are limitations
in the grating fabrication and the available space on the CT
gantry which limit the maximum sensitivity of our prototype.

In Fig. 2 two sketches of different geometries illustrate
possible implementations of the three gratings into a CT
gantry. Increasing inter-grating distances as well as decreasing
the grating periods improve sensitivity. Evidently, it is there-
fore a good design choice to maximize the distances within
the constraints given by the CT platform [15]. Consequently
Gy and G, are positioned as close to the X-ray source and
the detector, respectively, and G; as close to the bore as
possible. The inverse geometry is advantageous for our CT
implementation as it requires only one large coverage G, with
relatively coarse period and the gratings Gy and G, are small
enough to be manufactured as single parts.

III. INTEGRATION INTO THE CT GANTRY

In our implementation we position a combined mount which
holds Gy and G into the collimator box which is positioned
downstream the X-ray source before the patient. This assembly

Fig. 3. Gg and G; bending frame for CT implementation. The two gratings
are rigidly mounted on a machined structure which ensures a precise inter-
grating distance and bends the gratings cylindrically. This focuses the trenches
between the grating lamellae towards the X-ray source spot to compensate for
the strongly divergent radiation and reduce shadowing artefacts.
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Fig. 4. Modular G, implementation covering 80 cm width. The specialized
mount allows adjustment of each G tiles individually to minimize the gap
between the tiles and to ensure parallel alignment of the G, lamellae to the
line pattern produced by the G;. Again, each grating tile is bent cylindrically
and also the combined assembly follows this curvature to focus into the source
spot, which reduces shadowing artefacts.

is shown in Fig. 3 where the two gratings are cylindrically
bent to focus towards the X-ray source spot of the CT. This
is an important design characteristic since grating Gy exceeds
an aspect ratio of 100 (relation between height and width of
the lamellae). In an un-bent state, a significant fraction of the
radiation would traverse the grating not with a perpendicular
incident angle because of the strong divergence. This would
lead to a degradation of the slit-sources by shadowing, which
should be generated by the Gy, and consequently the perfor-
mance of the interferometer vanishes.

The large G, grating must cover about 80 cm of arc length
which is realized by combining several smaller tiles to one
large grating. We developed a specialized mount which allows
us to adjust the tiles inside the gantry individually and which
additionally bends each tile to focus towards the source spot.
It is shown in Fig. 4 covering 90% of the CT detector columns
and 32 pixel rows which leads to a total coverage of 20 mm
in the iso-center and a reconstructible volume diameter of
450 mm.

IV. OPTIMIZATION OF THE GRATING PARAMETERS

Based on the state of the art fabrication technology for
X-ray absorption gratings, which are compatible with the
80kVp spectrum used in our dark-field CT prototype and
a ballpark sensitivity estimation that shows that we will not
reach the upper sensitivity limit for human lung imaging where
signal saturation occurs, the period of Gy is fixed to 4.8 um.
From this parameter and the introduced inverse interferometer
geometry we derive the optimal grating parameters using a
wave propagation simulation. It is similar to previous work
by [16] and includes the geometrical effects of the diverging
beam, the selected X-ray source spot, the clinical 80kVp
spectrum, its filtration, and the imperfections in the extended
gratings, i.e. bridges in the layout.

Apart from the sensitivity (which is defined by distances and
periods), another key parameter of the interferometer is the

a,, b 0.7 0:25
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= [C) 2
o 015 £
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Fig. 5. Wave optical simulation results of the interferometer for different G,
parameters (using gold as a grating material). a, shows the performance for
a conventional Talbot-Lau interferometer with rectangular or binary grating
profile. Here we find no significant performance in the height range typical
for phase-shifting G; (below 25um) merely a design with an absorption
G, (height exceeding 200 um) would give good performance. b, only for
a triangular G; grating profile with a height of 18 um a good performance
exceeding 26% visibility is found.

so-called fringe visibility, which directly translates into signal
to noise ratio of the dark-field image [17]. This visibility is
strongly influenced by the height, shape, and duty cycle of the
grating G;. In Fig. 5 simulation results of these free parameters
reveal significant performance differences, particularly for two
different G; grating profiles. We find that the best system
performance can be achieved with a triangular shaped G;
grating profile [18]. The elegance of a triangular G, profile
is that it requires only about 18 um high structures and thus,
X-ray flux through this grating remains high whereas the
alternative — an absorption G; — would reduce the flux at least
by 50%. Furthermore, an absorption G; would require a high
aspect ratio which makes its fabrication difficult.

The dark-field CT prototype is equipped with a triangular
G; on a flexible polyimide substrate. The flexibility of the
substrate enables us to bend the structure as discussed earlier
and ensures that the performance is not degraded, e.g. by
scattering of radiation in the substrate material. Gy and G,
use graphite substrates which are also flexible for bending to
the required radii.

V. PERFORMANCE OF THE TALBOT-LAU INTERFEROMETER

The design utilizes the standard iCT detector and can be
rotated with rotation times between 0.27 and 1.5s which are
the standard settings for this clinical CT model. From the cen-
trifugal acceleration and the vibrations induced by the X-ray
tube as well as other sources of instabilities the interferometer
is periodically leading to a corresponding distortion of the
fringe pattern.. Fortunately, the frame rate of the detector is
high enough to resolve the distortions with high accuracy, thus,
with a sophisticated processing framework the attenuation and
dark-field signal can be extracted from the measurements.

The visibility of the presented interferometer, which is the
most important measure for the performance of a Talbot-Lau
interferometer, is around 22% for the central 50% of the
field of view. Fig. 6 shows the flat-field performance of the
interferometer where a characteristic reduction towards the left
and right is induced by remaining partial shadowing in Gy due
to the large source spot. For larger fan angles, the width of
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Fig. 6. Performance evaluation of the Talbot-Lau interferometer during
rotation. a, the intensity has a characteristic maximum in the center and
decreases to the left and right due to partial shadowing in the Gy. b, the
system visibility is highest in the center exceeding 26%, but due to partial
shadowing there is a drop to the left and right. ¢, the interferometer phase
is optimized for about 10 pixels per fringe for ideal phase sampling during
processing and reconstruction.

the X-ray source spot appears to be bigger, because the actual
source area is an inclined plane on the anode target surface.
Only under the projection through the iso-centre the source
spot is smallest.

VI. CONCLUSION

We conclude that the presented design is most suitable for
clinical dark-field CT implementation within the limitations
of current grating fabrication and the geometrical boundary
conditions imposed by the desire to use a conventional clinical
CT as a platform for the prototype. We analyzed the impact
of the most important design parameters to identify potential
problems and could verify that a triangular grating profile for
G has the best performance, besides an absorption Gj.

In our implementation shadowing is avoided by cylindrically
bending all gratings to focus into the source spot. Nevertheless,
partial shadowing in the Gy due to the extended source causes
a visibility decrease towards larger fan-angles.

With this proposed design, we demonstrate that implemen-
tation of a Talbot-Lau interferometer into a clinical CT is
feasible with state of the art gratings. This development now
brings dark-field CT an important step closer to the clinics as
it demonstrates that up-scaling to human sized field of views
works and sub-second scan times are now easily possible.
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Dark-Field Imaging on a Clinical CT System:
Performance and Potential based on first Results

Nikolai Gustschin, Manuel Viermetz, Clemens Schmid, Jakob Haeusele, Frank Bergner, Tobias Lasser,
Thomas Koehler, and Franz Pfeiffer

Abstract—X-ray computed tomography (CT) has been es-
tablished as a daily tool in clinical diagnostics and has been
continuously refined by more recent innovations in the last
years. These systems are, however, limited by fundamental
constraints since they are only capable of mapping X-ray
attenuation differences in the tissue. Phase-contrast and dark-field
imaging provide complementary contrast, which originates from
physically different interaction processes of X-rays with matter.
Particularly the dark-field signal is considered to have significant
diagnostic potential since it is capable to retrieve micro-structural
information below the actual resolution limit of the imaging
system. This was demonstrated in various laboratory setups and
recently also in the fist study with human patients in a clinical
radiography system based on a grating interferometer.

In a recent work, we presented the first implementation of such
an X-ray interferometer into a clinical CT gantry. Upscaling and
adapting this technology for a rotating CT gantry involves several
challenges and tradeoffs ranging from limitations in interferometer
design over fast, continuous signal acquisition requirements to
tolerances in applied patient dose. In this work we discuss the
performance of the first clinical dark-field CT prototype. For this
purpose, we present results of our phantom studies which were
designed to evaluate whether and how the dark-field contrast
generated by the system is capable to provide additional structural
sample information. The key aspects include the possibility of
quantitative imaging and a gradual approach to simulate results
that come as close as possible to a real application in a human
patient.

Index Terms—X-ray imaging, dark-field contrast, computed
tomography

I. INTRODUCTION

-RAY computed tomography has evolved to one of the
most commonly used and indispensable diagnostic 3D
imaging modalities. Moreover, the technique is continuously
optimized by recent innovations like dual energy or photon-
counting technologies as well as advanced data acquisition,
reconstruction, and evaluation procedures. Those are, however,
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still based on a contrast which is measured by retrieving the
X-ray attenuation properties of different tissues and hence
fundamentally limited. Considering the wave nature of X-rays,
additional and complementary contrast can be achieved by
measuring the small-angle scattering (dark-field) properties
of an object [1]. Contrary to attenuation contrast, the dark-
field signal hence retrieves information on micro-structures
without the need to actually resolve them on the detector [2].
The potential of the dark-field channel in clinical diagnostics
has been discussed in various studies, which were mainly
focused on lung diseases like chronic obstructive pulmonary
disease (COPD) [3], [4], fibrosis [5] or lung cancer [6]. This is
because, particularly in lung parenchyma, the dark field signal
is significantly more sensitive to small changes in the alveolar
structure compared to the attenuation.

One of the most promising approaches for dark-field imaging
with respect to clinical applications is Talbot-Lau interferometry
[7]. While first clinical prototypes of this kind are limited to
2D radiographic imaging, all bench top or small-animal CT
systems feature a step and shoot data acquisition which leads to
total scan times of at least several minutes, which is unfeasible
for realistic clinical applications [8], [9]. Recently, we reported
on the first successful integration of a Talbot-Lau interferometer
into a rotating clinical CT gantry [10]. Restrictions in total
interferometer length and grating positioning on a compact
CT gantry along with limitations in state of the art grating
fabrication technology constrain the theoretically achievable
system sensitivity.

Here, we present first results from our prototype system
starting from a basic proof-of-concept towards more realistic
phantoms for an actual clinical application. This allows to
practically evaluate the system performance and discuss its
potential and limitations for clinical application. In this context,
we also consider a possibility of quantitative dark-field imaging
and discuss the patient dose resulting from the applied scanning
protocols.

II. DARK-FIELD SIGNAL CALIBRATION

A physical interpretation of the dark-field signal is a
scattering distribution, which is continuously broadened along
the beam path [11]. Similar to the exponential decay of the
attenuation signal, the measured dark-field signal therefore
depends on the penetrated sample thickness. Compared to 2D
radiographic imaging, computed tomography provides a more
suitable basis for quantitative imaging. However, the dark-field
signal strength further depends on several additional parameters
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Fig. 1. Reconstruction results from a multi-material cylinder phantom. a, Conventional attenuation and b, dark-field tomograms calibrated to the attenuation
Hounsfield (HUa) and dark-field Hounsfield scales (HUd). The dark-field channel maps the scattering power of different materials and hence provides
complementary sub-resolution information. The arrows in b indicate a locally stronger dark-field signal from the same neoprene material, where it is slightly
compressed by the tube housing. ¢, Summary of the measured HUa and HUd units from the reconstruction shown in a and b including standard deviation. The
coloured arrows indicate a rough classification of the signal within the overall measured signal range of the respective contrast modality. They demonstrate that
different HUa and HUd signal combinations contain uncorrelated information which can facilitate material differentiation.

like the feature size of the small-angle scattering structures and
also system specific characteristics like the X-ray spectrum
or the interferometer sensitivity [2]. Similar to the attenuation
Hounsfield scale, a quantitative consistency between different
system parameters can be achieved by a calibration using
predefined reference materials [8]. For this purpose we use
a neoprene foam and air as reference materials in order to
transform the measured linear diffusion coefficient £(z) to a
dark-field Hounsfield unit (HUd) according to:

e(x) — exir

HUd (z) = 1000 - (1)

Eneoprene — Eair
In this HUd scale, the signal from the strongly scattering and
weakly attenuating neoprene is defined by a value of 1000
while the non-scattering air yields a value of zero. Darker

regions thereby indicate a lower density of scattering interfaces.

For a better differentiation to the attenuation Hounsfield scale
(HUa), the HUd scale reference values are chosen such that

the signal from lung tissue is expected to give positive values.

III. MULTI-MATERIAL PHANTOM

For a proof-of-principle that the dark-field CT prototype
is capable to differentiate a varying density of scattering
structures below its resolution limit, we use a multi-material
phantom. It is composed of different materials in plastic tubes
which are arranged around a larger polyoxymethylene (POM)
cylinder. The reconstructed attenuation and dark-field images
are shown in Fig. 1a and b and demonstrate that our system
is able to retrieve the complementary nature of the dark-field
signal. Dry wool for example, has a relatively weak attenuation
but strong dark-field signal. A decreasing density is hardly
noticeable in the attenuation while it is clearly visible in the
dark-field. On the other hand, the dark-field signal also fades
with an increasing water content, which gradually neutralizes
the amount of scattering interfaces and is more apparent in the
attenuation modality.

Similarly, pathological changes in lung parenchyma can
either be a loss of pulmonary structures (e.g. emphysema), or

a replacement with conjunctive tissue (e.g. pulmonary fibrosis).

The example demonstrates that the system can successfully

provide perfectly registered multi-modal images which enable
a better differentiation of material compositions relevant for
diagnostic purposes. Moreover, the results demonstrate that
also material inhomogeneities which are hardly noticeable in
the attenuation contrast can be more distinctly revealed in
the dark-field modality. This is for example apparent in the
cylinders stuffed with wool or also in the periphery of the top
neoprene cylinder, where the material is locally compressed
by a tube housing.

IV. ANTHROPOMORPHIC THORAX PHANTOM

To evaluate the dark-field CT prototype regarding clinical
application, we employed an anthropomorphic human chest
phantom. First, it allows us to assess the performance of
the system on a large field of view (FOV). Secondly, it also
simulates a more realistic attenuation of the incoming photon
flux by artificial bones and soft tissue, which is important
when it comes to dose and noise considerations. To simulate
lung tissue, we modified the commercially available phantom
(Lungman, Kyoto Kagaku, Tokyo, Japan) [12] with a neoprene
insert. It features a relatively weak attenuation as well as a

porous micro-structure in the size range of lung alveoli [13].

A POM cylinder in the centre simulates additional attenuation
by the heart and several plastic tube inserts allow to evaluate
additional embedded materials.

The respective attenuation and dark-field images are depicted
in Fig. 2a and b. The FOV of the prototype system (45cm) is
capable to map the entire human thorax along with the patient
table. As expected, the conventional reconstruction yields a
good contrast for highly attenuating materials like bones, POM
and the artificial soft tissue. In contrast, the scattering properties
of the neoprene insert and apparently also of the synthetic bones
stand out in the dark-field domain. It is, however, evident
that the latter modality features a distinctly lower resolution
compared to the conventional attenuation image. This is caused
by low-frequency artefacts originating from the sliding window
phase retrieval approach [10] and is acceptable, since the
dark-field signal inherently already contains sub-resolution
information.
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Fig. 2. Reconstruction results of an anthropomorphic human chest phantom
where a neoprene foam is used to simulate the attenuating and scattering
characteristics of lung parenchyma. The field of view (FOV) comprises the
whole thorax cross-section along with the patient table. a, The conventional
reconstruction shows the expected good contrast for bones and a very low
signal from the lung area. b, In the dark-field reconstruction, homogeneous
materials like POM or soft tissue generate no signal, while the scattering
properties of the foam material and powdered sugar are clearly retrieved.

V. PORCINE LUNG SAMPLE

Although the used neoprene material features micro-
structures in size comparable to pulmonary alveoli, it cannot
fully model the anatomical structure of actual lung parenchyma.
The phantom material is highly uniform while lung tissue
additionally comprises a capillary system and bronchioles
of different sizes. We therefore extended the measurements
examining a porcine lung. The additional attenuation of human
tissue was again modeled by inserting the lung into the thorax
phantom along with a water and neoprene reference sample.
A dissected porcine lung was ordered from a butcher and the
measurements were conducted more than 24 h post-mortem.
The lung was inflated externally with 30 mbar in order to
partially revert an incipient collapse of lung alveoli. The
resulting attenuation and dark-field images are shown in Fig. 3a
and b. From the conventional reconstruction it is evident that
the attenuation of lung tissue is similar to the neoprene foam,
but also reveals additional bronchi. The scattering properties
of the lung tissue are clearly captured in the dark-field domain,
however, the signal is significantly lower compared to the
neoprene reference material. Previous work with dark-field
radiography already showed a significant dependence of the
dark-field signal on the applied ventilation pressure [14]. It
hence can be justifiably assumed that a higher density of
scattering interfaces in the case of a decreased ventilation
pressure will favour dark-field signal intensity. Moreover, a
further increased signal can also be expected in living subjects
since a decomposition processes of lung parenchyma starts
immediately after death when the tissue is no longer perfused.

VI. NON-CLINICAL APPLICATIONS

Beyond clinical application, dark-field imaging finds general
use when examining microscopic defects and fibrous or porous
materials in the field of non-destructive testing or for quality
control purposes. The key features of the presented dark-field
CT prototype system enable new possibilities for applications
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Fig. 3. Reconstruction results of a dissected porcine lung placed inside the
human chest phantom. a, Conventional reconstruction shows the additional
bronchial system while the alveolar structure has comparable attenuation
characteristics to the neoprene material. b, The scattering properties of the
porcine lung tissue are clearly retrieved in the dark-field, however, the signal
is significantly lower compared to the neoprene reference.

where the FOV or acquisition time has been a significant
limiting factor. Here, we demonstrate a potential for security
screening applications with large samples. For this purpose
a cloth bag was imaged after filling it with several items
along with a sample of fine baby powder. In the attenuation
image in Fig. 4a the powder appears to be a microscopically
homogeneous object. On the dark-field Housfield scale in
Fig. 4b it reaches values of up to 13 x 103 HUd which is
close to a total extinction of the maximum visibility of the
system (see [10]). Soft homogeneous materials could be thus
efficiently separated from similarly absorbing explosives or
drugs that incorporate micro-granular scatterers. Depending on
the respective scattering power and the thickness or volume
of the material, however, a higher maximum visibility might
be required. Moreover, metallic structures which are not
uncommon in such applications will be a major challenge
for a reasonable performance of a grating interferometer.

~1000 -800 -600 -400 -200 0O 200 O 2¢°  4e’  4e’  8e' 10e° 12¢°
HUa HUd

Fig. 4. Reconstruction results of a bag filled with different objects (water
bottle, wool, powdered sugar, packaging material, rolled towels and cardboard).
a, In the conventional reconstruction, micro-granular powder appears to be
homogeneous and cannot be distinguished from bulk material or fluids with
similar attenuation. b, In the dark-field image, the powder can be clearly
differentiated even from other strongly scattering materials like powdered
sugar.

23



The 7th International Conference on Image Formation in X-Ray Computed Tomography

VII. DOSE CONSIDERATIONS

The presented phantom scans were acquired in axial data
acquisition mode using an 80kVp spectrum and a tube current
of 550 mA. The integrated grating interferometer consists out
of three optical X-ray gratings which absorb a significant
part of the generated X-ray flux. With an unmodified CT
system, our settings would result in a volume CT dose
index (CTDI,,) of about 13 mGy. The measured CTDI,, of
7.39 mGy with these settings according to the constancy test
protocol [15] with a standard body phantom (32 cm diameter)
and a calibrated dosimeter (NOMEX, PTW, Germany) indicates
that the combination of the first two gratings can be considered
to absorb around 50% of the generated X-ray photons in front of
the patient. This value lies well within the clinically applicable
range for chest CT of adults at state of the art CT systems
[16]. Since one of the absorbing gratings is positioned after
the patient directly in front of the detector, a substantial part
of the applied patient dose does not actually reach the detector.
This is, however, compensated by retrieving sub-resolution
information in the additional dark-field modality, which can
not be accessed by attenuation contrast only.

VIII. CONCLUSION

In this work we presented results of recent phantom mea-
surements with the first clinical dark-field CT prototype system.
Despite the restrictions posed by the compact interferometer
geometry and limitations in current grating fabrication technol-
ogy, the system performs reasonably well on a sufficient FOV
and within a clinically conceivable dose range. We propose a
HUd scale for quantitative dark-field imaging and discuss the
expected signal strength of lung tissue by means of different
phantom materials. Although the presented phantom studies
are mainly dedicated to lung imaging, further clinical as well
as non-clinical applications are now accessible due to a large
FOV in combination with a fast data acquisition procedure.

ACKNOWLEDGMENTS

The authors wish to thank Julia Herzen, Daniela Pfeiffer,
Alexander Fingerle, Ernst Rummeny, Pascal Meyer, Jiirgen
Mohr, Maximilian von Teuffenbach, Amanda Pleier, Tom
Kumschier, Michael Heider, Sven Prevrhal, Thomas Reichel,
Ami Altman, and Shlomo Gotman for their help, support,
and dedication to launch this complex project. This work
was carried out with the support of the Karlsruhe Nano
Micro Facility (KNMF, www.kit.edu/knmf), a Helmholtz
Research Infrastructure at Karlsruhe Institute of Technology
(KIT). We acknowledge the support of the TUM Institute for
Advanced Study, funded by the German Excellence Initiative,
the European Research Council (ERC, H2020, AdG 695045)
and Philips GmbH Market DACH .

(11

(2]

(31

(4]

(51

(6]

(7]

[91

[10]

(11]

[12]

[13]

(14]

[15]

[16]

REFERENCES

F. Pfeiffer et al., “Hard-x-ray dark-field imaging using a
grating interferometer,” Nature Materials, pp. 134-137,
2008.

W Yashiro, Y Terui, K Kawabata, and A Momose,
“On the origin of visibility contrast in x-ray Talbot
interferometry,” Optics Express, p. 16890, 2010.

P. Modregger, T. P. Cremona, C. Benarafa, J. C. Schittny,
A. Olivo, and M. Endrizzi, “Small angle x-ray scattering
with edge-illumination,” Scientific Reports, 2016.

K. Willer et al., “X-ray dark-field chest imaging for
detection and quantification of emphysema in patients
with chronic obstructive pulmonary disease: A diagnostic
accuracy study,” The Lancet Digital Health, €7133—e744,
2021.

A. Yaroshenko et al., “Improved In vivo Assessment
of Pulmonary Fibrosis in Mice using X-Ray Dark-Field
Radiography,” Scientific Reports, p. 17492, 2015.

K. Scherer et al., “X-ray Dark-field Radiography - In-
Vivo Diagnosis of Lung Cancer in Mice,” Scientific
Reports, p. 402, 2017.

A. Momose, “X-ray phase imaging reaching clinical
uses,” Physica Medica, pp. 93-102, 2020.

A. Velroyen et al., “Grating-based X-ray Dark-field
Computed Tomography of Living Mice,” EBioMedicine,
pp. 1500-1506, 2015.

Z. Wu et al., “Prototype system of non-interferometric
phase-contrast computed tomography utilizing medi-
cal imaging components,” Journal of Applied Physics,
p. 074901, 2021.

M. Viermetz et al., “Dark-field computed tomography
reaches the human scale,” PNAS, accepted.

M. Bech, O. Bunk, T. Donath, R. Feidenhans’l, C. David,
and F. Pfeiffer, “Quantitative x-ray dark-field com-
puted tomography,” Physics in Medicine and Biology,
pp. 5529-5539, 2010.

Multipurpose Chest Phantom N1 "LUNGMAN”, https:
//www.kyotokagaku.com/en/products_data/ph-1_01/,
(accessed 03 January 2021), 2020.

K. Taphorn, F. De Marco, J. Andrejewski, T. Sellerer,
F. Pfeiffer, and J. Herzen, “Grating-based spectral X-ray
dark-field imaging for correlation with structural size
measures,” Scientific Reports, p. 13195, 2020.

F. D. Marco et al., “Contrast-to-noise ratios and
thickness-normalized, ventilation-dependent signal levels
in dark-field and conventional in vivo thorax radiographs
of two pigs,” PLOS ONE, 0217858, 2019.

IEC 61223-2-6:2006, Evaluation and routine testing in
medical imaging departments - Constancy tests, 2006.

American Association of Physicists in Medicine, Adult
Routine Chest CT Protocols, https://www.aapm.org/
pubs/CTProtocols/, (accessed 10 December 2021), 2016.

24



The 7th International Conference on Image Formation in X-Ray Computed Tomography

Non-invasive real-time thermometry via spectral
CT physical density quantifications
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Abstract— Efficient removal of solid focal tumors is a major
challenge in modern medicine. Percutaneous thermal ablation is a
first-line treatment for patients not fit for surgical resection or
when the disease burden is low, mainly due to expedited patient
recovery times, lower rates of post-operative morbidity, and
reduced healthcare costs. While continuously gaining popularity,
~100,000 yearly thermal hepatic ablation procedures are currently
performed without actively monitoring temperature distributions,
leading to high rates of incomplete ablations, local recurrences,
and damage to surrounding structures. Recent advancements in
computed tomography (CT), especially spectral CT, provide
promising opportunities for lowering these rates. The additional
information available with spectral CT can provide the necessary
capabilities to achieve accurate, reliable, on-demand, and non-
invasive thermometry during ablation procedures. By taking
advantage of our newly developed spectral physical density maps
and their direct relation with temperature changes, we performed
experiments on phantoms and ex vivo tissue to develop, evaluate,
optimize, and refine a method for generating thermometry maps
from spectral CT scans. Our results validate the accuracy of the
spectral physical density model, allowing “whole-organ” mass
quantifications that are accurate within one percent, as well as
demonstrate an ability to extract temperature changes (linear
correlation coefficient of 0.9781) non-invasively and in real-time.

Index Terms—Dual-Energy CT, Spectral-CT, Quantitative
imaging, Image-guided therapy, Interventional oncology,
Tumor ablation, Thermometry.

I. INTRODUCTION

ITH more than 900,000 yearly new cases worldwide,

liver cancer is the fifth most common cancer in men and
the ninth most common cancer in women'. Percutaneous
thermal ablation techniques provide minimally invasive and
inexpensive focal treatment strategies for hepatic tumors®3.
They are considered a first-line treatment for patients with small
hepatocellular carcinomas (HCC)*, the most common primary
malignancy in the liver and the second leading cause of cancer-
related mortality in the world>, and are used to bridge patients
to liver transplantationS. Safe and effective ablation treatments
rely on complete coverage of the target lesion with lethal
temperatures’ (>60 °C), while sparing as much surrounding
tissue as possible and keeping safety margins to adjacent critical

This work was supported in part by the National Center for Advancing
Translational Sciences of the NIH (award #UL1TR001878), by the Institute for
Translational Medicine and Therapeutics’ (ITMAT) Transdisciplinary Program
in Translational Medicine and Therapeutics, and by Philips Healthcare.

structures®. However, despite technological advancements over
the past years, local recurrence rates are high (Figure 1),
burdening patients and healthcare systems.
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Figure 1: Our analysis of post-ablation liver cancer recurrence rates from
twenty-five past studies shows high recurrence rates of up to 17% for
microwave ablation and even higher rates, up to 37%, for radiofrequency
ablation. Disc sizes represent the number of patients included in each study.

Published clinical requirements include temperature
accuracy of <2 °C, spatial resolution of <2 mm, short
acquisition, and image generation times for volumetric
coverage (<1 minute), metal artifact suppression, and radiation
dose levels that meet safety standards®. CT-thermometry
provides the most promising solution for monitoring thermal
ablation treatments. This is mainly because most ablation
treatments are already performed under CT guidance, the
compatibility of CT with all commercially available ablation
systems®, and the ability to detect immediate complications,
e.g., bleeding. However, despite decades of CT-based
thermometry investigations'?, there is a growing demand for
solutions to monitor temperatures during ablation procedures.

Temperature dependence of CT Hounsfield units (HU) has
been observed since the late 1970s'’. Since then, several
research groups partially addressed some of the clinical
requirements for image-based thermometry listed above with ex
vivo and in vivo experiments. However, several crucial
obstacles remain for the anticipated clinical translation of CT-
based thermometry.

Temperature assessments from conventional CT rely on
attributing shifts in HU to changes in tissue density, which in
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turn are affected by temperature changes according to thermal
volumetric expansion p(T)/p,(Ty) = (1 + aAT)™!, where
p(T) is the tissue density at temperature T, p, is the tissue
density at a baseline temperature T,, AT is the change from
baseline temperature (in °C), and « is the thermal expansion
coefficient associated with the tissue!®. All previous CT-based
thermometry  studies employed linear or quadratic
approximations of the relation above (assuming small AT) to
correlate temperature and HU changes, which are assumed to
be proportional to p. While conventional HU depend linearly
on tissue density, they are also affected (non-linearly) by
changes in tissue composition, which previous studies report as
a limiting factor that corrupts temperature accuracy'®. In
addition, conventional HU are greatly affected by the scanner
model, e.g., tube filtration, and acquisition parameters, e.g.,
kVp, as well as the patient habitus. This leads to large
inconsistencies in thermal sensitivity values seen in previous
studies (Figure 2). We propose to employ the exact
mathematical relationship between tissue density and
temperature changes'®, AT « p,(T,)/p(T), by utilizing our
recently developed spectral physical density quantifications'!.
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Figure 2: Dispersity of reported thermal sensitivity values. A large range of
HU changes, from 0.5 HU to 4 HU, are associated with an increase of 2 °C.

To systematically evaluate our method, we require dedicated
phantoms designed to support the development of CT-based
solutions for thermometry applications. Tissue-mimicking
phantoms that emulate various physical properties of biological
tissue are central for the development and evaluation of novel
clinical technologies and applications. Compared to ex vivo and
in vivo experiments, phantoms simplify safety, logistical, and
cost considerations. For CT-based thermometry applications,
phantoms are required to exhibit similar thermal and x-ray to
those of human tissue, i.e., thermal conductivity and diffusivity,
linear attenuation coefficients within the entire photon energy
range relevant to clinical CT imaging. Such phantoms will
enable repeatable and controlled experiments that allow
rigorous comparisons of temperature sensitivity and reliability
on different CT platforms at different imaging protocols.

In this work we report on recent developments aimed for
making non-invasive real-time thermometry a reality. We have
previously  demonstrated accurate  physical  density
quantifications from clinical virtual mono-energetic images
(VMI) and effective atomic number (Zs) spectral results in

phantom experiments'!. Here we further validate the accuracy
of these new spectral maps by utilizing them for non-invasive
whole-organ mass estimations on ex vivo tissue. While our
excellent results attest to the high accuracy of our spectral
physical density quantifications, they also present opportunities
for novel stand-alone clinical applications. In addition, we
demonstrate high correlations between temperature changes
and physical density quantifications on ex vivo tissue and on
thermo-spectral tissue-mimicking phantoms that we developed
specifically for this purpose.

II. METHODS

A. Thermo-spectral tissue-mimicking phantom development

Our phantoms were developed by iteratively modifying the
synthesis method detailed by Negussie and Mikhail et al.'>!? in
order to match the x-ray attenuation curve to that of human liver
tissue calculated from well-accepted elemental composition
and physical density values'#. These phantoms are particularly
useful for thermal therapy experiments since they present
comparable thermal properties to those of human tissue.
Briefly, 287.5 ml of deionized water in a 1000 ml flask were
degassed by purging N, for 15 minutes. After degassing, 202.5
ml of 40% (w/v) acrylamide/bis-acrylamide solution was added
to the degassed water to achieve 490 ml solution of 16.5% (w/v)
acrylamide/bis-acrylamide. While stirring, 6 grams of calcium
chloride dissolved in 10 ml of deionized water was added to the
acrylamide solution. A single gram of ammonium persulfate in
2 ml of deionized water and a single milliliter of N,N,N’,N’-
tetramethylethylenediamine were subsequently added to the
solution. After stirring for additional 15 seconds, the final
solution was immediately transferred to a 475 ml plastic jar.

B. Physical density spectral map generation

A complete description of the development of our spectral
physical density model, its optimization, and its verification on
a tissue characterization phantom (Gammex Model 467, Sun
Nuclear) was provided before!!. Briefly, 70 keV VMI and Zesr
voxel values, which are clinically available on any spectral CT
platform, are converted into physical density values through a
parametrized Alvarez-Macovski model'>.

C. Non-invasive mass measurements

Ex vivo bovine muscle physical density quantifications were
evaluated to determine the effect of acquisition parameters on
the resulting accuracy. The specimen was weighed with a
precision balance (Fisher Scientific Education Precision
Balance, Fisher Scientific) to provide ground-truth mass values.
Next, the sample was placed on a rectangular block of polyfoam
within the 20 cm bore a multi-energy CT phantom (MECT, Sun
Nuclear) and scanned with a spectral detector dual-energy CT
(IQon spectral scanner, Philips Healthcare) (Figure 3A).

Scans were repeated three times at a tube voltage of 120 kVp
for each set of collimations {16x0.625, 64x0.625 mm}, dose
levels {15.2, 30.3, 45.5 mGy}, and acquisition mode {axial,
helical} combinations. No helical scan was acquired with
16x0.625 mm at 45.5 mGy due to tube output limitations.
Images were reconstructed with a clinical standard body kernel,
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a field of view of 350 mm, and at a slice thickness of 2.5 mm
with 2.5 mm slice intervals. 70 keV VMIs and Z maps were
reconstructed from every acquisition and corresponding
physical density maps were generated using our spectral
physical density model. Regions of interest (ROI) with a
diameter of 13.6 mm were positioned in the center of the sample
on four consecutive image slices to assess physical density
quantification and their dependence on scan parameters.
Finally, the sample was weighed after scanning to account for
any losses in blood or minor changes in temperature.

To calculate the total mass of the specimen, physical density
values were summed from non-air voxels, i.e., 70 keV VMI
values larger than -950 HU, and multiplied by the voxel volume
(0.68 x 0.68 x 2.5 mm?). Calculated mass was compared to the
average of the two weights, pre- and post-scanning, to evaluate
its accuracy with different scanning parameters.

|
Figure 3: Experimental setup for two potential applications of physical
density quantifications with spectral CT. An ex vivo muscle was (4) scanned
within a multi-energy CT phantom on a spectral detector dual-energy CT to
investigate non-invasive mass measurements, and (B) subjected to a range of

D. Non-invasive temperature monitoring

To assess the correlation between changes in temperature and
changes in physical density, relative to the physical density
values at baseline temperature, optical fiber temperature probes
were inserted into the same sample used in the non-invasive
mass measurement experiment, as well as three of our dedicated
thermo-spectral tissue-mimicking phantoms, using 13-gauge
medical trocars to continuously record local internal
temperatures (Figure 3B). The sample or the phantom was
placed in a plastic container, and pre-heated water was poured
in to completely submerge it, consequently subjecting it to a
wide range of temperatures. After the sample, or phantom,
reached an equilibrium temperature, ice was added to cool the
water. During heating and cooling, scans were performed
approximately every minute with a spectral detector dual-
energy CT at a tube voltage 120 kVp, a 16x0.625 mm
collimation, a revolution time of 0.75 seconds, and three
different radiation dose levels {15.2,30.3,45.5 mGy}. For each
scan, physical density maps were generated from 70 keV VMI
and Zr spectral results using the same reconstruction
parameters detailed in the section above.

The locations of optical fiber temperature probes were
determined by thresholding 70 keV VMIs at 90 HU. 4.1 mm
diameter ROIs were placed adjacent to the tip of the optical
fiber to measure physical density. To elucidate thermal
volumetric expansion, physical density values were normalized
by dividing the last temporal physical density value with the

physical density at a given timepoint. Similarly, the change in
temperature was determined relative to the last temporal scan.
Linear regressions were fit to the data, where the slopes were
associated with the thermal volumetric expansion coefficient.
R-values were determined to characterize the correlation
between normalized physical density and temperature change.

III. RESULTS

A. Thermo-spectral tissue-mimicking phantom development

Attenuation curves that were measured on multiple VMIs, at
energies between 40 and 200 keV, with increments of 10 keV,
are presented in Figure 4. The curves present the iterative
developmental process. It enabled us to achieve a maximum
error of 4 HU compared to human liver tissue across the entire
energy range (Iteration #0 is the scale-down formulation from
Negussie and Mikhail et al.). Since human livers differ in their
elemental compositions, e.g., different fat contents, we deduce
that these attenuation errors were sufficiently small for the
intended purposes of these phantoms, i.e., the development and
testing of spectral CT thermometry approaches.
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Figure 4: Iterative development process of a thermo-spectral tissue-
mimicking phantom, achieving errors below 4 HU across all x-ray energies.

B. Non-invasive mass measurements

Spectral physical density quantifications from scans at
different doses, collimations, and axial/helical scans revealed
that with dose matched scans and different collimations,
physical density decreased approximately by 0.003 g/ml with
increased collimation. In addition, we observed no effect of
dose and axial/helical scans on physical density quantifications.

Non-invasive “whole-organ” mass estimations of the ex vivo
bovine muscle from scans of varying collimation and dose
levels illustrated extremely high accuracies (Figure 5). Similar
to the physical density quantification, dose levels did not impact
the mass value. Between the five different combinations of
collimation and dose, estimated mass values were within +1.1
grams of ground-truth mass measurements with a scale. For
16x0.625 and 64x0.625 mm collimations, the errors in mass
were -0.34% and -0.04%, respectively. The accuracy of
estimated mass further validates our physical density results
and demonstrates a clinical application of non-invasive mass
measurements for determining the presence of pathology,
which is currently utilized only in post-mortem autopsies.
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Figure 5: Mass estimation from spectral physical density maps, in excellent
agreement with measured mass. The dashed lines represent two independent
weight measurements, and the dotted line represents their average.

C. Non-invasive temperature monitoring

In addition to non-invasive mass measurements, physical
density quantifications also enabled non-invasive temperature
monitoring as temperature changes are reflected in physical
density changes (Figure 6). Specifically, a linear fit between
normalized physical density and change in temperature
demonstrated a slope 0of 0.00042 = 0.00001 °C™! and an intercept
of 1.000 + 0.0003 for temperatures between 22.0 and 45.5 °C.
These fit parameters correspond to a 0.42% decrease in physical
density with an increase of 10 °C. High linear correlation (R =
0.9781) between normalized physical density and change in
temperature recapitulated the theoretical relation.
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Figure 6: Normalized physical density changes with heating and cooling of
ex vivo bovine muscle. The linear relationship between normalized physical
density and changes in temperature reflected thermal volumetric expansion.

IV. CONCLUSION

We have demonstrated the quantitative accuracy of our
physical density model on ex vivo tissue and on dedicated
thermo-spectral phantoms that we have developed specifically
for CT-based thermometry applications. In addition, our results
demonstrate our ability to employ a well-established and direct
relation, i.e., approximation-free, between changes in physical
density estimations obtained from spectral CT and changes in
temperature. This ability can serve as the backbone of future
non-invasive real-time thermometry that is based on non-

retrieved spectral information. With the increase in spectral CT
utilization and the foreseen replacement of conventional CT
scanners by this newer generation systems, we recognize a great
opportunity to improve the monitoring and guidance of thermal
therapy procedures, which will help reduce the currently high
rates of local recurrence.
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Cone-beam reconstruction for a circular trajectory
with transversely-truncated projections based on the
virtual fan-beam method

Mathurin Charles, Rolf Clackdoyle, and Simon Rit

Abstract—We describe a new procedure for three-dimensional
(3D) region-of-interest (ROI) reconstruction from transversely-
truncated cone-beam projections acquired with a circular source
trajectory. This method is an extension to 3D of the virtual fan-
beam (VFB) method. It is based on a VFB formula that performs
the backprojection in the acquisition geometry. Our simulation
results show that the ROI reconstruction of the 3D Shepp-Logan
phantom is very similar to the one obtained by the Feldkamp,
Davis, Kress (FDK) algorithm without truncation. However the
reconstruction of the Forbild head phantom shows artefacts
which are absent from the FDK truncation-free reconstruction.

[. INTRODUCTION

N three-dimensional (3D) cone-beam computed tomogra-

phy (CBCT), a common source trajectory is a circular
scanning around the object. The plane containing the circular
source trajectory is usually called the central plane, midplane
or source plane. From Tuy’s data sufficiency condition [1], we
know that mathematically exact reconstruction of the object
density is possible only in the midplane. In case of non-
truncated cone-beam projections, the well-known and widely
used Feldkamp-Davis-Kress (FDK) algorithm [2] provides
exact reconstruction in the central plane and approximate
reconstruction elsewhere. This algorithm, which can be seen
as a heuristic extension of the fan-beam filtered backprojec-
tion (FBP) formula for two-dimensional (2D) reconstruction,
applies a ramp filter to each projection row. Consequently, the
FDK formula is not suitable for treating transversely-truncated
cone-beam projections.

We distinguish two kinds of situations with transverse
truncation. In the first one, the detector is placed off-center
so that, even if the detector does not cover the object laterally,
each ray-line in the midplane is measured at least once during
a 360° scan. It is thus possible, in the midplane, to obtain
the missing information of a truncated projection from other
projections. Elsewhere, the same procedure is applied to all the
other rows of the projections even though the missing rays and
measured rays have a different angle with the central plane.
Using this idea, several methods have been proposed such as a
pre-convolution weighting of the projections before applying
the FDK algorithm [3] and a 3D version of a Katsevich-type
FBP [4].
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doyle are with Université Grenoble Alpes, CNRS, TIMC UMR 5525, Greno-
ble, France.

S. Rit is with Université de Lyon, INSA-Lyon, Université Claude Bernard

Lyon 1, UIM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, U1294,
F-69373, Lyon, France.

The second kind of situation with truncated cone-beam
projections is when the detector, which still does not cover the
whole object, is centered (when a ray-line passing through the
center of rotation of the source hits the center of the detector).
In that case, we define the field-of-view (FOV) as the region
imaged by every source position, and it corresponds to the
volume inside a cylinder which does not contain the whole
object. In this situation, it is not possible to obtain missing line-
integrals in the midplane from other source positions so the
previous methods cannot be applied. However, there are two
analytical methods which can perform region-of-interest (ROI)
reconstruction from truncated projections in the midplane:
the differentiated back-projection (DBP) [5], [6] method, also
called back-projection filtration (BPF) [7]; and the virtual fan-
beam (VFB) method [8]. The BPF has been extended to three
dimensions [9] but, to our knowledge, not the VFB method. In
this work, we propose to extend the VFB method to 3D ROI
reconstruction in the case of transversely-truncated cone-beam
projections acquired with a circular source trajectory.

In the usual 2D context, the principle of the VFB method is
to identify a virtual source trajectory for which we have non-
truncated projections and to rebin the truncated projections
into this geometry. Then, super-short-scan formulas [10] can
be used to perform the reconstruction. To choose the virtual
trajectory, we use the fact that acquired data can be rebinned
into non-truncated projections for any point inside the FOV
and outside the convex hull, as we have access to the integral
of any half-line extending from this point. In a previous
contribution, we proposed a VFB formula [11] for a circular
fan-beam acquisition geometry, for which the backprojection
was performed in the acquisition geometry. In this work, we
extend this approach to 3D.

II. THEORY

A. Notation

Let 6 = (cos \,sin A, 0), 7y = (—sin A, cos A, 0) and &, =
(0,0,1) (in 2D, the last component of 8 and 7}y is discarded).
Let f denote the 3D object density to be reconstructed. The
cone-beam projections of f for a circular source trajectory of
radius R4 acquired on a flat detector placed at the origin O
are defined by

oo = —Rafy — uij + V€
gRA(/\,uw):/ f (RAHHZ Rab m’”””)dz
0

(1)
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where A € A = [0,27) and S(A) = R0 is the set of vertices
(cone-beam source locations) of the trajectory (see figure 1).

o = > : .—__-:._v-f" ’:’},\
_________ _con i S g

acquisition trajectory

Fig. 1. The circular acquisition geometry of center O and radius R 4. The
point S(A) is a vertex of the trajectory. A ray passing through the point P on
the detector placed at the origin O is identified by the parameters (X, u, v).

In 2D, the fan-beam projections of f for a circular source
trajectory of radius R4 with angular parametrization are
defined by

g™ (\) = / F(RAON — t0 ) dt 2)
0

where v € (—m/2,7/2) is the usual ray-angle measured coun-
terclockwise with respect to the central ray (which is defined
by the source and the center of rotation). The parameters
and v (respectively for equispaced rays and equiangular rays)
are linked by u = R4 tan+y so, in the midplane, we have

g™ (A7) = g™ (A, Ratan7,0), 3)
G4\ u,0) = gTa (N, arctan(u/Ra)). 4

B. Configuration studied

We consider the following configuration. The FOV is the
volume inside a cylinder of center O, extended axially without
limit since we consider no axial truncation. We assume that
the support of the object function is contained within a known
ellipsoid which extends outside the FOV (see figure 2).

acquisition trajectory

Fig. 2. The ellipsoid object is partially covered by the cylindrical FOV.

C. The VFB formula used in the midplane

In the midplane, the 2D slice of the object has an elliptic
support and the FOV has a circular support. The chosen virtual
trajectory is the arc of circle at the border of the FOV and
outside the object (see figure 3). In that case, the area for
which the VFB method is mathematically exact is the convex
hull of the virtual trajectory.

We now recall our VFB formula from [11]. The rebinning
relations between two trajectories with different radius can

object

F(

virtnual trajectory

Fig. 3. Situation in the midplane: the circular FOV of center O and radius
Rp covers only a part of the elliptic object. The virtual trajectory is the arc
of circle of center O and radius Ry = Rp in blue and the vertical black
dashed line is the boundary of its convex hull.

Fig. 4. The parameters ()\;,y;) of a ray for source trajectories of radius R;
with ¢ € {1,2} are linked through s = R; sin~y; and ¢ = X\; + ;.

be seen on figure 4. The data are first rebinned from the
acquisition geometry of radius R4 to the virtual geometry
of radius Ry using

9" A =g A+ v =R RY) )
where R
’yg;f = arcsin (R—: sin 'y> . (6)

Then, differentiation and Hilbert filtering is performed on the
non-truncated projections in the virtual geometry with

us
9RO = o= [ hia(sinty =)@ -0)g™ () 0’
@)
where hp(s) = [, —1 sign(c)e* ™ * do denotes the Hilbert
filter and O; corresponds to the partial derivative with respect
to the i-th variable. As the virtual trajectory is not a full
scan, the redundancy in the filtered projections is handled
by applying a weight w®v (that we do not detail) to gl{f":
TR (7)) = whv(\,5) gRv (A, 7). Next, the filtered projec-
tions in the acquisition geometry are obtained from the filtered
projections in the virtual geometry by

R4 cosy -
gt (\) = TR A7 =72, 7R4) )
\/ R2 — RisinQ'y
where R
'ygé = arcsin <R—$ sin ’y) . )

Finally, the backprojection is performed in the acquisition

geometry. For every & in the convex hull of the virtual
trajectory, we have:

27 1
@ == [ g ) (0)
o ||Raby - "
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where

)
Yz, = arctan | ————= | . (11)
(RA — - 9>\>

We can see that this formula is designed for equiangular
data g"*4 (X, ). As we consider equispaced data g4 (\, u, v)
in this paper, an additional rebinning using equation (3) is
required before using the VFB formula above.

D. Modifying the VFB method for cone-beam projections

‘We now detail how the VFB formula above is modified to be
used on cone-beam projections. First, we perform a weighting
of the cone-beam projections:

VR Fw 12
VR% + u? +v? (12

For an object that is constant in z, (12) ensures that for all
v A\ u,v) = gt (N, u,0), so the exact reconstruction
area will be extended axially if each row of the weighted
projections is treated as the row in the midplane.

Then, for all the weighted data rows g{fVA (A, u,v) of param-
eter v fixed, we perform the following steps as if the transaxial
plane of height z = v was the source plane, using the same
virtual source trajectory as in the midplane:

g%‘()\,u, v) = gha (A, u,v)

1) Rebinning of the data rows to the virtual geometry:
g™ (A yv) = gt A=y, Ratan gy, v) (13)

2) Differentiation and Hilbert-filtering of the virtual data:

1 [" .
g O = 5= [ hatinGy =)

—T

(01 — &)™ (A, v)dy  (14)

3) Rebinning to acquisition geometry with weighting w?V :

_ R4 cos~y
grt (A u,v) =

\/ R — R%sin®y
@V GE )N+ — A A, v) (15)

where we take w? (), v, v) = wfv (A, ~) for all v, and
~v = arctan(u/Ra4).
Finally, the backprojection is performed in the acquisition
geometry to give f, the 3D VFB reconstruction :

27
. 1
f(@,2) = _/ L B\ uga ) dA (16)
0o ||Ra0x—Z||
for Z in the convex hull of the virtual source trajectory,
—RAZ -1 R
Uz = — AT and v = —AE 17)

Ray—7-0) Rp— -0,

III. EXPERIMENTS AND RESULTS
A. Simulations

The simulations were performed on a 3D version of the
Shepp-Logan phantom and on the 3D head Forbild phantom!.
The reconstructed image was computed on a cubic grid of

I'See http://www.imp.uni-erlangen.de/phantoms/head/head.html.

size [401, 401, 401] voxels. The data were acquired on a
circular trajectory of center O = (0,0, 0) and radius R 4, using
the software RTK [12]. The projections were transversely
truncated such that the FOV was a cylinder of center O and
radius Rp. The virtual source trajectory radius was Ry = Rp.
The acquisition trajectory along [0, 27) was sampled with N
vertices and each projection was composed of N, x N, ray-
lines. The virtual trajectory was composed of N, virtual
segments and each virtual projection was composed of N, .
ray-lines. For the Shepp-Logan phantom, we took Ry = 4,
Rr = 0.8, N, = 1256, N,, = 409, N, = 517, N,,, = 879
and N,, = 1257. For the head Forbild phantom, we took
Ra = 45, Rp = 9, N, = 1256, N, = 409, N, = 603,
Ny, =693 and N, = 1257.

virt

B. Results

Figures 5 and 6 show, for three slices of the 3D Shepp-
Logan phantom and the head Forbild phantom respectively, the
reference image, the reconstructed image using the FDK algo-
rithm with non-truncated data, the reconstructed image using
our modified 3D VFB method for transversely-truncated data,
and the profiles of the lines drawn in white on the reference
and the 3D VFB reconstructions. The mathematically exact
reconstruction area (convex hull of the virtual source trajec-
tory), which we also call the recoverable area, is delimited by
a black dashed line on the 3D VFB reconstructions.

Looking at figure 5, we can see that the 3D VFB recon-
struction is excellent in the recoverable area in the midplane
(left column). In the planes at x = 0 (middle column) and at
y = 0.4 (right column), the reconstruction is still very good
when we are close to the midplane. Further away from the
midplane, we observe a slow decrease of the intensity when |z|
increases, similar to that on the FDK reconstruction, although
not exactly the same. There are also slight horizontal streak
artefacts, tangent to the white ellipse, which are less marked
on the FDK reconstruction.

The 3D VFB reconstruction of the Forbild head phantom
(figure 6) is good in the recoverable area in the midplane (left
column), but far less accurate that what we obtained for the
Shepp-Logan phantom in figure 5. The difference is that the
Forbild phantom consists of many more and finer anatomical
structures than the Shepp-Logan phantom, making it a far more
challenging phantom to reconstruct. Consequently, we observe
that the FDK and 3D VFB reconstructions suffer from many
artefacts for planes at x = 0 (middle column) and at y = —1
(right column). The artefacts are stronger for the 3D VFB
reconstruction, as we observe for instance with the white area
at the right of the black ellipse at plane z = 0 (middle column),
and also with the large black horizontal streak covering the top
of the two circular structures at plane y = —1 (right column).

IV. CONCLUSION

In this work, we proposed a 3D version of the VFB method,
based on a VFB formula performing the backprojection in the
circular acquisition geometry and detailed in a previous con-
tribution [11]. This method was used for ROI reconstruction
from transversely-truncated cone-beam projections acquired

31



The 7th International Conference on Image Formation in X-Ray Computed Tomography

- N
~0.25
~0.50
~0.75 7 |

» } 0 _ 5‘ =
~0.25
~0.50
~0.75 /|

% [ : - ~J
~0.25 { ‘ ;
~0550 »
-0.75 . |

N X 5 05 00 05 . _ 05

1.04 ; r

1.02—

1.01

-05 0.0 05 -05 0.0 05 =05 0.0 05

Fig. 5. Left column: (z,y) plane at z = 0. Middle column: (y, z) plane
at z = 0. Right column: (z,z) plane at y = 0.4. Top row: 2D slices of
the reference Shepp-Logan phantom. Middle row 1: reconstruction using the
FDK algorithm without truncation. Middle row 2: reconstruction using our 3D
VFB algorithm with truncation. The black dashed line defines the boundary
of the possible reconstruction area. The plotting scale is [1.0 (black), 1.04
(white)]. Bottom row: profile corresponding to the white line, plotted with
scale [1.005, 1.045]. The reference profile is plotted in green dashed line and
the real one in red.

with a circular source trajectory. The numerical results were
satisfactory for the 3D Shepp-Logan phantom but mixed for
the more challenging Forbild head phantom, for which strong
artefacts appeared that were absent from the FDK truncation-
free reconstruction. Both the FDK algorithm and the 3D VFB
had to address the incompleteness of a circular cone-beam
trajectory, but the 3D VFB was also handling truncated data,
so it was not surprising that different artefacts appeared in the
off-plane reconstructed images.
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Iterative image reconstruction for CT with
unmatched projection matrices using
the generalized minimal residual algorithm

Emil Y. Sidky, Per Christian Hansen, Jakob S. Jgrgensen, and Xiaochuan Pan

Abstract—The generalized minimal residual (GMRES) algo-
rithm is applied to image reconstruction using linear com-
puted tomography (CT) models. The GMRES algorithm it-
eratively solves square, non-symmetric linear systems and it
has practical application to CT when using unmatched back-
projector/projector pairs and when applying preconditioning.
The GMRES algorithm is demonstrated on a 3D CT image
reconstruction problem where it is seen that use of unmatched
projection matrices does not prevent convergence, while using
an unmatched pair in the related conjugate gradients for least-
squares (CGLS) algorithm leads to divergent iteration. Imple-
mentation of preconditioning using GMRES is also demonstrated.

Index Terms—Linear iterative image reconstruction, GMRES,
unmatched projector/back-projector, preconditioning

[. INTRODUCTION

INEAR models for computed tomography (CT) play an

important role for iterative image reconstruction. The
most common approach to CT processing involves taking the
negative logarithm of the projection data, so that the line
integration model leads to a linear relation between the image
and processed data. Accordingly, the CT image reconstruction
problem can be written as a large linear system

Az = b, 1

where b, a vector of length m, represents the processed pro-
jection data; z, a vector of length n, contains the image pixel
values; and the m xn system matrix A contain the weights that
model line-integration. Linear tomographic models can include
quadratic regularization, cf. [1] and [2, Chapter 12], or more
sophisticated modeling such as noise correlation and blur due
to accurate detector physics [3]. Even when non-linear models
for CT [4] are considered for iterative image reconstruction,
there is usually a large linear system that is involved in the
algorithm. Novel techniques for solving large linear systems
may thus be of practical use for iterative image reconstruction
in CT.

The most common iterative algorithm for solving lin-
ear CT models, excluding row-action, sequential, or SIRT-
type data processing methods, is the conjugate gradients
(CG) algorithm [2, Chapter 11]. For least-squares problems
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with non-symmetric system matrices, in particular, there is
the conjugate-gradients least-squares (CGLS) algorithm that
solves the optimization problem

1
min §||A1:—b|\§ 2)

The minimizer of this optimization problem can also be found
from solving the normal equations directly

AT Az = AT, (3)

which are derived from (2) by taking the gradient of the
objective function and setting it to zero. In applying CGLS,
the implementation for back-projection B must be the matrix
transpose AT. If B # AT then the resulting method is not
well defined, there is no convergence theory, and if it does
converge it does not solve Egs. (2) and (3). Nevertheless
there are practical motivations for considering back-projection
implementations B different than AT. These motivations are
outlined in Ref. [5] in connection with SIRT-type iterative
solvers, where the authors explain that B can be a precondi-
tioner, B may be an efficient but approximate implementation
of AT, or A may involve complex physics modeling that may
make computer implementation of AT prohibitively expensive.
As shown in [6] we can guarantee convergence of SIRT-
type methods with B # AT (but not CGLS) by shifting the
complex eigenvalue spectrum of BA so that eigenvalues with
negative real part are eliminated; but it forces a modification
of the problem that is being solved.

Use of the GMRES algorithm allows for use of back-
projectors B that are not equal to AT without modification of
the desired reconstruction model. Furthermore, the algorithm
does not involve any parameters other than the iteration
number. In Sec. II we present the ABBA framework [7]
which involves two forms of GMRES called AB-GMRES
and BA-GMRES. In Sec. IIl we demonstrate use of BA-
GMRES for unmatched projector/back-projector pairs and for
preconditioning. We conclude this abstract in Sec. IV.

II. THE ABBA FRAMEWORK
The GMRES algorithm solves a linear system

Sx =w,

where the coefficient matrix S is a square matrix that is not
necessarily symmetric. The relevance for CT image recon-
struction is that a square non-symmetric matrix arises when
multiplying unmatched back-projection B and projection A
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Fig. 1. Mid-slice images of QA phantom. (Left) FBP reconstructed image

from 720 views. (Right) FBP reconstructed images from 180 views, a 4-fold

sub-sampling of the original CBCT dataset. The grayscale window is [0.,0.25]
-1

cm™ .

matrices; i.e., both AB and BA are square non-symmetric
matrices. The original linear system of interest, Eq. (1), cannot
be directly solved with GMRES because A is not necessarily
square for CT, but this equation can be modified to

ABy =0b, == By, 4)

where the unknown vector y has the same length as the
projection data b and the resulting m x m matrix AB is square.
Also, the normal equations in Eq. (3) can be modified by
replacing AT with B

BAz = Bb, &)

and again the resulting n x n matrix BA is square. See [8]
for details. Modeling CT with Eq. (4) is similar to the use
of natural pixels [9]-[11] as the image is expressed as the
back-projection of a sinogram.

We refer to the GMRES algorithms for solving Egs. (4)
and (5) as AB-GMRES and BA-GMRES, respectively. The
pseudo-code for both algorithms is given in Ref. [7], and
we briefly describe the algorithms here. Similar to CGLS,
GMRES is a Krylov subspace method, where the basis vectors
of the subspace are generated by choosing an initial vector and
repeatedly applying the coefficient matrix (AB or BA) to ob-
tain new linearly independent basis vectors. For AB-GMRES
or BA-GMRES with a zero initial vector, the first basis vector
is b or Bb, respectively, and subsequent basis vectors are
generated by applying the matrix AB or BA, respectively. The
GMRES algorithm involves orthonormalization of the Krylov
subspace vectors to obtain a orthonormal basis set that spans
the subspace. At each GMRES iteration the dimension of the
subspace is increased by one and the minimum residual that
can be expressed by the Krylov basis set is found.

The computational burden of GMRES lies with the fact
that the Krylov basis set must be stored and the number of
basis vectors is the same as the number iterations. For AB-
GMRES and BA-GMRES the size of one basis vector is the
same as the size of a sinogram and image, respectively. In
our implementation, the basis set is stored on the computer
disk. Restart methods [12] can reduce the basis vector storage
burden, but for this work we demonstrate the basic GMRES
implementation.

Az b |

-=- GMRES, B=B,,
— GMRES, B= Bpgp
— CGLS, B=B,,

0.08

data RMSE
o
&

0.04 ‘ ‘ ‘ ‘

10 20 30 40 50
iterations
107 | BAz — Bbl|, ‘
— GMRES, B=B,,
— GMRES, B= Bppp
10!

10°

data RMSE

101

102 . | " "
10 20 30 40 50

iterations

Fig. 2. Data RMSE in the form of (Top) |[Az — b|j2 and (Bottom)
|BAz — Bb||2. In the top graph unmatched CGLS is also shown to
demonstrate divergence of the data RMSE with unmatched projector/back-
projector pairs. The other two curves correspond to use of voxel-driven back-
projection B = Bun, and FBP B = Bpgp. The projector A is a ray-driven
implementation.

The AB-GMRES and BA-GMRES algorithms are guaran-
teed to minimize different data discrepancy measures. In the
case of AB-GMRES, the algorithm minimizes

|ABy — b]|2,
while BA-GMRES minimizes
|BAz — Bb|,.

Note that BA-GMRES is not necessarily minimizing
|Az — b|l2.

In this work we focus on BA-GMRES and we demonstrate its
use on cone-beam CT image reconstruction.

III. BA-GMRES APPLIED TO CONE-BEAM CT IMAGE
RECONSTRUCTION

We apply BA-GMRES to a cone-beam CT (CBCT) data
set acquired on an Epica Pegaso veterinary CT scanner. The
particular scan configuration for the data set is 180 projections
taken uniformly over one circular rotation. The detector size
is 1088 x 896 detector pixels, where each pixel is (0.278mm)?
in size. The 180-view dataset is sub-sampled from a 720-view
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scan of a quality assurance (QA) phantom. Image volumes
are reconstructed onto a 1024 x 1024 x 300 voxel grid, and
a reference volume is generated by use of filtered back-
projection (FBP) applied to the full 720-view dataset and
shown in Fig. 1. Also shown in the figure is FBP applied
to the 180-view sub-sampled dataset.

To demonstrate application of BA-GMRES to CBCT im-
age reconstruction, we use a ray-driven cone-beam projector
where the matrix elements for A are computed by the line-
intersection method. We consider two implementations of B:
(1) Byn voxel-driven back-projection using linear interpolation
to determine the appropriate projection value on the detector,
and (2) Brpp = BunF filtered back-projection, where F'
represents the ramp filter. See [2, Chapter 9] for details about
these discretization models. The first BA-GMRES implemen-
tation tests unmatched back-projector/projector pairs where
Bu ~ AT, and the second implementation includes the
additional ramp-filtering step for preconditioning. Use of By,
and A is also shown for CGLS, which requires that B = AT,

The data root-mean-square-error (RMSE) curves for both
forms of BA-GMRES and CGLS using By, and A are shown
in the top panel of Fig. 2. The CGLS result initially shows
convergence of the data RMSE, but after 20 iterations the data
RMSE begins to diverge with increasing iteration number, as
expected, since this algorithm is not designed to work for un-
matched matrix transpose implementations. The corresponding
BA-GMRES result does show a decreasing data RMSE with
iteration number. For the preconditioned form of BA-GMRES,
the decrease in data RMSE is even more rapid. The decreasing
trends in || Az — b||2 for BA-GMRES occur even though this
algorithm is not guaranteed to reduce this data norm. Also
shown in Fig. 2 is the data RMSE curves for | BAz — Bb||o,
which is guaranteed to decrease with iteration number and
they do indeed show decreasing trends for BA-GMRES. These
issues are elaborated in [7].

The mid-slice images for BA-GMRES using both B imple-
mentations are shown in Fig. 3 at different iteration numbers.
Preconditioning has a clear effect on the convergence as all the
phantom structures are clearly visible in the early iterations
and the gray-level is stabilized already at the fifth iteration.
The BA-GMRES result without preconditioning is also fairly
efficient as the main features of the QA phantom are visible
at 20 iterations.

One measure of image quality is to compare the recon-
structed volumes to a ground truth image. Employing the
720-view FBP reconstructed volume as a surrogate for the
ground truth, the image RMSE is plotted in Fig. 4 for both
versions of BA-GMRES. The BA-GMRES implementation
with B = By, achieves a minimum image RMSE of 0.0201 at
iteration 29, while the preconditioned version with B = By,
achieves a minimum image RMSE of 0.0210 at iteration 4. For
comparison the 180-view FBP result has an image RMSE of
0.0347. To appreciate the various image qualities, ROI images
of the mid-slice are shown at the minimum image RMSE
iteration numbers in Fig. 5.

That the image RMSE has a minimum at finite iteration
number is a well-known phenomenon in iterative image recon-
struction and it is known as semi-convergence [2, Chapter 11].

Fig. 3. Mid-slice BA-GMRES images for voxel-driven back-projection B =
Bun (Left column) and FBP B = Bgpp (Right column). The shown iteration
numbers are 2, 5, 10, and 20 going from the top row to bottom row. The

grayscale window is [0.,0.25] cm~ 1.

Early stopping in such algorithms is a form of regularization
because the components associated with large singular values
of A converge fast, while the unwanted noisy components as-
sociated with smaller singular values — that cause strong image
artifacts — appear after more iterations. Semi-convergence is
observed in the image RMSE curves of Fig. 4 and visually
in the preconditioned BA-GMRES series of Fig. 3 where
the image at 20 iterations clearly shows strong artifacts from
iterating too far. The semi-convergence issue also presents a
practical dilemma for preconditioning. With the shown pre-
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Fig. 4. Using the 720-view reconstructed volume (see mid-slice image on the
left of Fig. 1 as a reference), the BA-GMRES reconstructed image RMSE is
plotted as a function of iteration number for B = Bun and B = Brpp.

Fig. 5. Mid-slice ROI images of QA phantom. (Top, Left) FBP reconstructed
image from 720 views. (Top, Right) FBP reconstructed images from 180
views. (Bottom, Left) BA-GMRES image for B = Bun at iteration 29.
(Bottom, Right) BA-GMRES image for B = Bppp at iteration 4. The
grayscale window is [0.,0.25] cm ™.

conditioned BA-GMRES results, the minimum image RMSE
result is obtained already at the fourth iteration; thus the
iteration number provides only coarse control over its image
quality. The un-preconditioned BA-GMRES implementation
achieves its image RMSE minimizer at the 29th iteration,
which is computationally less efficient, but on the other hand
the iteration number provides a finer control over the image
quality. In any case, the BA-GMRES framework provides a
flexible means for implementing back-projectors or precondi-
tioning schemes, and optimizing the B implementation and
iteration number will depend on the imaging task of interest.

IV. CONCLUSION

This work presents an iterative image reconstruction frame-
work for linear CT problems that allows for the use of
unmatched back-projector/projector pairs in a straight-forward
manner. This possibility is convenient for implementation of
efficient back-projectors, linear modeling of complex physics,
and preconditioning. Also, because it is clear what equation
is being solved when B # AT, BA-GMRES can be used
for solving linear sub-problems that may arise in non-linear
iterative image reconstruction. The BA-GMRES algorithm
does present a challenge for computer memory because the
Krylov basis set needs to be stored during the iteration, but
the present demonstration on CBCT image reconstruction
does show that BA-GMRES can be applied to large-scale CT
systems of clinical interest.
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Deep Learning-Based Detector Row Upsampling
for Clinical Spiral CT

Jan Magonov, Julien Erath, Joscha Maier, Eric Fournié, Karl Stierstorfer, and Marc Kachelrief3

Abstract—Due to longitudinal undersampling multislice spiral
computed tomography (MSCT) scans may suffer from windmill
artifacts in reconstructed images. To fulfill the sampling condition
and achieve double sampling in z-direction, some CT scanners
use the z-flying focal spot (zFFS) technique, a hardware-based
solution that effectively doubles the number of detector rows. To
obtain a software-based solution we developed a convolutional
neural network that is trained in a supervised manner with
clinical projection raw data that were acquired with zFFS en-
abled. We presented this approach as the row interpolation with
deep learning (RIDL) network. In this work we simplified the
network architecture, extended the clinical dataset and generated
an experimental synthetic dataset consisting of two-dimensional
projection data. We were able to observe a reduction in windmill
artifacts for both datasets used for training. Especially the
synthetic dataset is very promising as we could observe an
increased reduction of artifacts with this dataset.

[. INTRODUCTION

Multislice spiral computed tomography (MSCT), also

known as multidetector CT, has become an integral part of
modern medical imaging after the theoretical introduction of
spiral CT in 1989 [1]. The most common application of these
systems is spiral scanning, in which the patient is continuously
moved through the gantry, resulting in shorter scan times
and higher temporal resolution [2]. Nevertheless, artifacts can
occur with this modality that degrade quality of reconstructed
images. The windmill artifact is an image distortion in the
axial plane whose appearance is characterized by bright streak-
like patterns emerging from high contrast structures along the
longitudinal axis [3]. When scrolling through the reconstructed
slices these streaks appear to rotate. The cause of this artifact
can be attributed to inadequate data sampling in the z-plane
resulting in not satisfying the Nyquist condition and thus
leading to aliasing [3], [4].
A hardware-based method to fulfill the sampling condition and
reduce windmill artifacts is provided by the z-flying focal spot
(zFFS) [2], [4]. This technique doubles the effective number of
detector rows acquired during the scan by periodically deflect-
ing the X-ray focal spot in longitudinal direction. The resulting
higher sampling rate in z-direction reduces the occurrence of
windmill artifacts. Figure 1 shows a scan acquired without
zFFS compared to a corresponding scan with zFFS enabled.
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Fig. 1: Reduction of windmill artifacts by using zFFS. The
left image was taken without zFFS (32 x 0.6 mm collimation,
pitch 1.4) while for the right reconstructed image (2-32 x 0.6
mm collimation, pitch 1.4) zFFS was enabled for acquisition
(C =0 HU, W =200 HU).

However, this method also has some drawbacks, as it is
technically complex and thus prevents the use of zFFS in
CT systems that do not meet these requirements. Previous
works, such as in [5], focus on the reduction of windmill
artifacts in the image domain. In contrast we try to solve the
problem in projection domain. In [6] we presented the row
interpolation with deep learning (RIDL) network, which was
similar to the zZFFS designed to double the effective number of
acquired raw detector rows in projection domain. The network
was based on the SRResNet presented in [7] to compute
super-resolution images, i.e. very high-resolution images. In
this paper we simplified the network architecture in order
to reduce complexity of training process while maintaining
existing results. Furthermore, the clinical dataset used for
network training was extended and an experimental synthetic
dataset was generated. Two separate networks were trained
with the individual datasets and the network predictions were
compared in image domain by reconstructing two clinical
spiral CT scans.

II. METHODS AND MATERIAL
A. Clinical Data Preparation

For the clinical dataset, we selected raw projection data
from a total of 40 clinical CT scans from different patients.
The scans covered different body regions such as head, thorax
and abdomen and were acquired with Somatom Flash and So-
matom Force dual source CT scanners (Siemens Healthineers,
Forchheim, Germany) with zFFS enabled. The dataset was
split into two disjoint subsets so that 32 of the scans were used
as training dataset and 8 scans served as validation dataset. It
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was ensured that the different body regions and CT systems
used in the images were equally distributed in both datasets.
Before training, some preprocessing steps were performed, i.e.
instead of using the complete projection data of the scans as a
whole, randomized image patches were generated to simplify
the training process.

B. Synthetic Data Preparation

In addition to the clinical dataset, the acquisition of syn-
thetic data for training the RIDL network was investigated.
An advantage of using synthetic data would be that any
number of data could be generated without requiring a CT
scanner with zFFS. For the simulation we used the software
package CT_SIM which is based on the deterministic ray
propagation simulation software Deterministic Radiological
Simulation (DRASIM). These tools allow to simulate the
radiation properties in a defined X-ray imaging setup through
geometrically defined phantoms [8]. In our first experimental
setup, we generated two-dimensional projection data contain-
ing projections of overlapping water spheres with varying
densities (0.5 - 3.0 g/cm?®) and diameters (1 - 20 cm). Each of
these water spheres was overlaid with a smaller water sphere
of density 1.0 g/cm?, resulting in narrow circular edges with a
width of 0.3 to 2 mm. These structures are particularly difficult
to interpolate. Figure 2 shows an example representation of
a projection from the synthetic dataset. A total of 200,000
projections with 80 detector rows and 800 channels containing
randomly arranged water spheres were simulated. Comparable
to real clinical projection data acquired with zFFS, the detector
rows were simulated overlapped. No noise was added to the
data. The dataset was split into a training dataset with 160,000
projections and a validation dataset with 40,000 projections. In
addition, the range of values of the synthetic projection data
was linearly scaled to the value range of the clinical data.
Similar to the clinical dataset, random image patches were
selected from the projection data for network training, as we
will describe in more detail below.

C. Row Interpolation with RIDL-CNN

In the previous approach of our work, a neural network
was trained that received raw projection data and generated a
prediction of the input with interpolated rows to effectively
double the number of rows. The clinical projection data
used to train the network were obtained after the rebinning,
which is the rearrangement of the measured fan-beam data to
parallel-beam geometry. These projections were then divided
into alternative rows so that projections containing all rows
(acquired with zFFS) were used as the desired output y, and
every other row from the corresponding projections was used
for the network input z in training. In order to predict an
upsampled version of the input data using the network, a
so-called subpixel convolutional layer [9] was used, which
essentially performs an upsampling of the generated feature
maps within the network by a specific type of image reshaping.
However, this procedure is time-consuming in network train-
ing, as well as in the subsequent use of the trained network
for the prediction of rows.

Fig. 2: Example projection from the synthetic dataset with
different sized water spheres consisting of 80 overlapped
detector rows and 800 channels.

In further experiments, we could observe that a much simpler
convolutional neural network without subpixel convolution is
able to produce results comparable to the RIDL-SRResNet.
In the following, we will refer to this network architecture
as RIDL-CNN. Similar to the previous architecture, random
patches with the size of 64 x 32 x 1 pixels were generated from
the underlying projection data to train the network. Also in this
case, every other row from these patches serves as network
input so that it has a size of 32 x 32 x 1. The desired output has
the same dimension and is obtained from the intermediate rows
in the generated patches. Before network training, all patches
were linearly normalized to a value range in the interval from
0 to 1. Slope and offset were set according to the minimum
and maximum value of the clinical dataset. After network
prediction, the input and output rows have to be interlaced
to obtain corresponding interpolated projections. Furthermore,
the value range of these projections must be denormalized
to the original range of the clinical data. In total, the RIDL-
CNN consists of an input layer followed by 12 convolutional
layers with 128 filters and 3x3 kernels. The network output
is computed by a final convolution. The number of trainable
parameters is 1,625,857.

D. Implementation and Training

The RIDL-CNN was trained on both the clinical and syn-
thetic dataset, resulting in two separately trained networks.
For both datasets, 500,000 examples were selected from the
corresponding training dataset and 125,000 from the corre-
sponding validation dataset. For the training we used the Adam
optimizer and a combined loss function that is described by:

Leombv(y,9) = o Lms-ssim(y, 9) + (1 — ) - Lmae(y, 9)

This loss function was proposed in [10] and takes into
account the pixel-wise computed error between the network
output ¢ and ground truth y by the mean absolute error (MAE)
but also the structural similarity between the two images by
the multi-scale structural similarity index (MS-SSIM). The
weighting factor was empirically determined as a = 0.84.
The networks were trained with a batch size of 256 and an
initial learning rate set to 1x107°, which was halved if the
error could not be minimized after 25 consecutive epochs.

E. Evaluation and Validation

In order to evaluate and validate the results, two scans of
a skull phantom with real human bones were acquired with a
Somatom Force system. For the first scan, a basic scan mode
with a collimation of 96 x 0.6 mm and activated zFFS was
used. For the second scan we used a scan mode of the CT
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a) Ground Truth
with zFFS

b) Without zFFS

RMSE: 4.73 HU
SSIM: 0.9625

c) RIDL-CNN trained

with clinical dataset
RMSE: 4.42 HU
SSIM: 0.9648

d) RIDL-CNN trained

with synthetic dataset
RMSE: 3.69 HU
SSIM: 0.9657

Fig. 3: Qualitative and quantitative comparison of a reconstructed slice (1. scan) without zFFS, with the RIDL-CNN trained
with the clinical dataset and the RIDL-CNN trained with the synthetic dataset compared to the ground truth scan with zFFS
(C =60 HU, W = 360 HU). Below the difference images to the ground truth are shown (C = 0 HU, W = 150 HU).

system with a collimation of 48 x 1.2 mm. In this mode, no
zFFS can be enabled and the acquired images show very strong
windmill artifacts due to the lower sampling in the z-direction.
In both scans the pitch factor was set to 1, since especially
scans with pitch values in this range suffer from windmill
artifacts [2], [3]. A summary for both scan settings can be
found in table I.

Scan  Collimation Pitch zFFS  Reconstructed slices
1 96 X 0.6 mm 1.0 yes 1.0 mm
2 48 x 1.2 mm 1.0 no 1.5 mm

TABLE [: Summary of the settings for the two scans used to
evaluate and validate the results.

As in our previous work, the trained networks were applied
to reconstruct these clinical CT scans. For this purpose, the
plugin we developed for the Siemens-specific reconstruction
software was used to adjust the raw projection data after
the rebinning. In the first scan, every second row, i.e. the
zFFS-generated rows were replaced by rows predicted by
the RIDL networks. In addition, a reconstruction with linear
interpolated rows was performed, which should correspond
to an acquisition without zFFS. For all reconstructions, the
error measures RMSE and SSIM were calculated in relation
to the ground truth reconstruction with zFFS enabled. Since
no zFFS can be used in the acquisition setting employed in the
second scan, there is no ground truth data. The results in these
reconstructions can therefore only be evaluated qualitatively.
In this case, the number of rows in the raw data was doubled
by extending them with predictions from the RIDL networks.

III. RESULTS
A. Scan with 96 x 0.6 mm Collimation

Figure 3 shows reconstructions of a specific slice with
differently modeled projection row data from the first scan.
Difference images are calculated to the ground truth data
acquired with zFFS. Comparing the reconstruction without
zFFS to the result of the RIDL-CNN trained on the clinical
dataset, only a very slight reduction of the windmill artifacts
can be seen in the image domain. Furthermore, there are noisy
structures noticeable in the difference image in Figure 3c in the
area of the bones. However, MSE and SSIM indicate a quan-
titatively slightly better result compared to omitting the zFFS.
Looking at the reconstruction with the network trained with
synthetic data (see Figure 3d), we find an improvement in the
image quality both in the image domain and in the difference
image. Especially the problem with the noisy structures in the
bone areas does not occur. With regard to the error measures,
this reconstruction also provides the best result quantitatively.

B. Scan with 48 x 1.2 mm Collimation

Figure 4 compares the results for two reconstructed slices
from the second scan. In both slices reconstructed with
WEBP without zFFS, very dominant windmill artifacts can
be observed. Comparing these slices with the results of the
network trained with clinical data, a slight reduction of the
artifacts can be seen qualitatively. The results obtained with the
network trained with the synthetic dataset can most effectively
reduce the occurring windmill artifacts and provide superior
image quality compared to the network trained with clinical
data. The comparison of the reconstructions can only be
performed qualitatively due to missing ground truth data, since
the applied scan mode does not allow for enabling zFFS.
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a) Standard WFBP
without zFFS

b) RIDL-CNN trained
with clinical dataset

c) RIDL-CNN trained
with synthetic dataset
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Fig. 4: Qualitative comparison of two selected slices (2. scan) without zFFS, with the RIDL-CNN trained with the clinical
dataset and the RIDL-CNN trained with the synthetic dataset (C = 60 HU, W = 360 HU).

IV. D1sCcUSSION AND CONCLUSION

In this work, we further adapted our RIDL network and
simplified the network architecture. In addition, we extended
the clinical dataset and generated an experimental synthetic
dataset. This was done by simulating two-dimensional raw
data containing different sized overlapping spherical struc-
tures. In our experiments presented here, we observed that the
results with the synthetic data are very promising. Although no
clinical data were included in this dataset, windmill artifacts
were reduced more effectively than with the RIDL-CNN
trained with the current setup of clinical data. This observation
suggests that training with clinical data can still be optimized.
One problem could be the noise in clinical projection data.
Denoising the clinical data before network training could be
considered. However, it is valuable that training with synthetic
data can address the problem of windmill artifacts, without
having to rely on raw clinical projection data acquired with a
CT system that supports zFFS. The next step is to investigate
how the synthetic dataset can be adapted more efficiently to
our task. In addition, data with a concrete CT system geometry
will be simulated. Furthermore, we will optimize the training
with clinical data and investigate whether the results can be
improved by a combination of synthetic and clinical data.
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DL-Recon: Combining 3D Deep Learning Image Synthesis and
Model Uncertainty with Physics-Based Image Reconstruction

Xiaoxuan Zhang, Pengwei Wu, Wojciech B. Zbijewski, Alejandro Sisniega, Runze Han, Craig K. Jones, Prasad
Vagdargi. Ali Uneri. Patrick A. Helm., William S. Anderson. Jeffrev H. Siewerdsen

Abstract— High-precision image-guided neurosurgery — especially
in the presence of brain shift — would benefit from intraoperative
image quality beyond the conventional contrast-resolution limits of
cone-beam CT (CBCT) for visualization of the brain parenchyma,
ventricles, and intracranial hemorrhage. Deep neural networks for
3D image reconstruction offer a promising basis for noise and artifact
reduction, but generalizability can be challenged in scenarios
involving features previously unseen in training data.

We propose a 3D deep learning reconstruction framework (termed
“DL-Recon”) that integrates learning-based image synthesis with
physics-based reconstruction to leverage strengths of each. A 3D
conditional GAN was developed to generate synthesized CT from
CBCT images. Uncertainty in the synthesis image was estimated in a
spatially varying, voxel-wise manner via Monte-Carlo dropout and
was shown to correlate with abnormalities or pathology not present
in training data. The DL-Recon approach improves the fidelity of the
resulting image by combining the synthesized image (“DL-
Synthesis”) with physics-based reconstruction (filtered back-
projection (FBP) or other approaches) in a manner weighted by
uncertainty — i.e., drawing more from the physics-based method in
regions where model uncertainty is high.

The performance of image synthesis, uncertainty estimation, and
DL-Recon was investigated for the first time in real CBCT images of
the brain. Variable input to the synthesis network was tested —
including uncorrected FBP and precorrection with a simple
(constant) scatter estimate — hypothesizing the latter to improve
synthesis performance. The resulting uncertainty estimation was
evaluated for the first time in real anatomical features not included
in training (abnormalities and brain shift). The performance of DL-
Recon was evaluated in terms of image uniformity, noise, and soft-
tissue contrast-to-noise ratio in comparison to DL-Synthesis and FBP
with a comprehensive artifact correction framework. DL-Recon was
found to leverage the strengths of the learning-based and physics-
based reconstruction approaches, providing a high degree of image
uniformity similar to DL-Synthesis while accurately preserving soft-
tissue contrast as in artifact-corrected FBP.

Index Terms—Cone-beam CT, deep learning, artifact correction,
image-guided intervention, image synthesis

1. INTRODUCTION

eurosurgical approaches to cancer, trauma, or neuro-

degenerative disease require a high degree of geometric
precision to safely avoid vessels and eloquent brain and achieve
effective treatment. The state of the art in intraoperative cone-
beam CT (CBCT) is sufficient for visualization and registration of
high-contrast objects (e.g., bone, surgical instruments), but it does
not provide contrast resolution suitable to soft-tissue, brain
parenchyma, or intracranial hemorrhage. Factors limiting CBCT
image quality include image biases (e.g., scatter, beam hardening)
and quantum and electronic noise.

This work was supported by NIH U01-NS-107133.

X Zhang, P Wu, W Zbijewski, A Sisniega, R Han, CK Jones, P Vagdargi, A Uneri, WS
Anderson, JH Siewerdsen are with Johns Hopkins University, MD, USA. PA Helm is with
Medtronic Inc, MA, USA.

Existing methods for improving CBCT image quality include
artifact corrections [1] and model-based iterative reconstruction
(MBIR) [2] that leverages physical knowledge of the imaging
chain and image formation process. Recent developments in deep
learning approaches provide another means of mitigating artifacts
and reducing noise, including image synthesis from CBCT to
approximate diagnostic-quality CT [3]. Such approaches offer
improvements in computational runtime compared to MBIR, but
the performance of image synthesis is subject to uncertainties
arising from features not present in training (e.g., pathology,
anatomical variations, and unmodeled imaging conditions). The
fidelity of the synthesized image hence cannot be guaranteed [4].

Recognizing the potential pitfalls in generalizability of image
synthesis to highly variable anatomical structures in image-guided
surgery, we propose a deep learning reconstruction framework
(referred to as “DL-Recon”) that integrates image synthesis with
physics-based reconstruction mediated by model uncertainty.
Previous work [5] proposed a 2D U-Net for image synthesis and
combined the result with FBP and MBIR reconstruction via model
uncertainty in simulation studies. In this work, we developed a 3D
generative adversarial network (GAN) for image synthesis and
evaluated the performance of DL-Recon for the first time in real
CBCT images, including anatomical abnormalities unseen in
training data.

II. METHODS

A. Image synthesis and uncertainty estimation

A 3D conditional GAN was developed for CBCT-to-CT image
synthesis. For training (Section II.C), a high-fidelity, physics-
based forward projection framework (including an accurate beam
model, absorption / scatter characteristics, and model of the
imaging chain) was used to generate simulated CBCT images
from corresponding CT images. Two alternative inputs to the

synthesis network were investigated: (i) an uncorrected FBP
(uCBET CBCT
ﬂuncorr precorr

(constant) scatter correction was applied, hypothesizing that the
precorrection to improve synthesis performance.

As illustrated in Fig. 1, a 3D GAN was implemented with a U-
Net with a residual block at each level of the encoding / decoding
path as the generator, and a convolutional pixel-wise classifier [6]
as the discriminator. The objective function combined GAN and
L1 loss as follows:

G = arg min max Looan (G, D) + 2L, (6G) €))
G D

), and (ii) a precorrected FBP (u ) for which a simple

where
LCGAN(G' D) = E[IOgD(#CBCT; HCT)]
+E [log (1 _ D(MCBCT, G(#CBCT)))]

£,,(6) = E[Jlu“" = 6("DIl] 3)

@)
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G and D denote the generator and discriminator, and u‘T and
uCBCT represent paired CT and CBCT images. The L1 loss helps
avoid over smoothing, and the balance between the GAN and L1
loss is controlled by A.

As described in [7], dropout applied during network training is
equivalent to a Bayesian approximation of the Gaussian process,
and uncertainty in the model output can be estimated by
computing the voxel-wise variance of multiple forward passes.
Following such an approach, we added dropout layers (dropout
rate = 0.2) prior to the skip connection in each encoder and decoder
block and to the final output. Both training and inference were
performed with dropout. The predictive mean computed from a
collection of 8 network outputs yields the synthesized image (DL-
Synthesis, uS¥™), and the predictive variance (0?) serves as a
proxy for model uncertainty.

B. The DL-Recon framework

The proposed method (termed DL-Recon) integrates 3D image
synthesis with physics-based reconstruction via uncertainty
associated with the synthesis model. The method involves three
steps: (i) generation of a 3D synthetic CT image (u5¥™) from a
CBCT volume with estimation of model uncertainty (o) as
described above; (ii) physics-based 3D image reconstruction of
projection data, including artifact corrections — for example, the
pipeline described in [1] — to yield an artifact-corrected CBCT

image (denoted uSEST); and (iii) voxel-wise combination of uS¥™

and uCBST weighted by the estimated uncertainty to yield the DL-

Recon image (denoted uPL~Recom) The resulting image is:
e = [1 = p(@)]u™™ + p(oducyy,” “)
where uncertainty is contained within a spatially varying map (3,
with values in the range [0, 1]) related by a sigmoid function:
B(o) = 1T eo-@ored (5)

where ¢; and c, specify the range and level, respectively, of the
sigmoid, and 8 controls the contribution of yuSY™ ¢BeT

and Ugyr ina
voxel-wise manner. When predictive uncertainty is high, the
map draws more from the physics-based reconstruction.

The underlying premise in this approach is that the synthesis
image (u5Y™) carries particular benefits (e.g., uniformity and noise
reduction) but may be subject to systematic error — for example,
in structures unseen in the training data. The uncertainty map
[o(x,y,z), alternatively B(x,y,z)] were shown previously in
simulation studies [5] to correlate with deviations from ground
truth. The “uncertainty map” therefore offers insight on where the
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synthesis image may be subject to error and where it is
advantageous to draw more from the physics-based 3D image
reconstruction (uSECT).

Note that the physics-based method incorporated in DL-Recon
could be FBP or any particular form of MBIR, recognizing that
the latter may invite disadvantages of computational load
associated with conventional iterative optimization. Alternatively,
the synthesis image could be incorporated as a prior within a
penalized optimization, as in [5]. In any of these scenarios, the
voxel-wise weighting of synthesis and physics-based image
reconstructions is intended to leverage the strengths of each,
mediated by the model uncertainty. In the work reported below,
DL-Recon incorporates (artifact-corrected) FBP reconstruction as
a practical implementation that may be compatible with the rapid
runtime requirements of image-guided surgery, focusing here on
intracranial neurosurgery.

C. Training data generation

To obtain a large training dataset of matched CT and CBCT
images, CBCT projection data were simulated from 35 real,
helical CT volumes of 35 healthy subjects using a high-fidelity
forward projector [5]. CBCT system geometry and image
acquisition were simulated to match data (~745 views over 360°)
acquired from the O-arm (the O-arm™ “02” imaging system,
Medtronic) using nominal head scan protocols (100—120 kV and
75-240 mAs). Volumes were reconstructed with isotropic 0.7 mm
voxels via FBP without artifact correction. Signal normalization
linearly transformed the CBCT intensity histogram within the
brain parenchyma to [-1, 1]. Volumetric patches (64x64x64
voxels) were stochastically sampled from the brain volume and
fed to the network, and a total of 875 patches were used for
training. The Adam optimizer (learning rate = 5x107°, §; = 0.5,
B> =10.999, L1 regularization A=100, and batch size = 2) was used
and early stopping at 800 epochs was applied.

Figure 2. Experimental setup for cadaver studies using the O-arm.
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D. Experimental studies
D1I. Image synthesis of simulated and real brain CBCT images

The proposed image synthesis method was validated on both
simulated and real CBCT data. Simulated CBCT projections of 5
test CT volumes were generated and reconstructed in the same
manner as the training set. Intensity differences between
synthesized images and ground truth were measured within the
brain region for each volume. Experiments were conducted using
the O-arm™ system illustrated in Fig. 2. Real projection data for
3 cadaveric heads (denoted below as cadaver #1-3) were collected
at 120 kV and 150 mAs. Volumetric images were reconstructed
on a grid of 320x320x280 voxels with isotropic 0.7 mm voxels.
The runtime of DL-Synthesis was ~1 min per prediction (NVIDIA
TITAN Xp). DL-Synthesis images were evaluated with

uncorrected CBCT as input (denoted u5"

uncorr

) and with a basic
(constant-scatter) precorrection (denoted uiﬁcoﬂ). Method

performance was quantified in terms of image non-uniformity
(NU), the difference in mean voxel value between region of
interests (ROIs) in the parenchyma near the dural surface /
sphenoid bone and about the lateral ventricles.

D2. Uncertainty estimation in real anatomical abnormalities

Previous work [5] has shown correlation between synthesis
error and uncertainty for simulated lesions (not exist in the training
cohort) of difference location, size, and contrast. In this work, the
accuracy of uncertainty estimation was evaluated in cadaver
images, including specimens exhibiting true abnormalities that
were not present in the training data. Specifically, abnormalities
included a large intraparenchymal calcification, a loss of
cerebrospinal fluid, and brain shift in which the brain cortex
collapsed from the interior surface of the cranium.

D3. Cadaver studies on an intraoperative CBCT system

Imaging performance was evaluated in terms of visual image
quality as well as image uniformity, noise, and soft-tissue contrast-
to-noise ratio (CNR) in cadavers imaged on the O-arm™ system
(Fig. 2). FBP reconstructions were evaluated with and without
artifact correction. DL-Recon was evaluated in comparison to FBP
and DL-Synthesis, and uncertainty maps were displayed to
understand how physics-based and deep learning-based
approaches contributed to the final result.

III. RESULTS
A. Performance of image synthesis

Fig. 3 shows results of image synthesis on simulated data (high-
fidelity CBCT projections generated from CT). DL-Synthesis
demonstrated good overall correspondence with the ground truth
CT, yielding high image uniformity and reduced noise compared

(a) Uncorrected FBP DL-Synthesis

Syn
u(ncorr - "

G

Cadaver #1

(b) Precorrected FBP

to the uncorrected FBP image. In 5 test volume images, DL-
Synthesis exhibited a difference in overall mean intensity (in the
brain) of less than 1 HU (compared to > 12 HU for FBP) to the
ground truth, with residual differences owing mainly to image
noise. The estimated uncertainty highlights regions with
anatomical variations such as the lateral ventricles and sulci in the
cerebral cortex, which is susceptible to error (e.g., contrast loss) in
the synthesis mage.

(a) Ground Truth (b) Uncorrected FBP

B CBCT
100 Huncorr,

Figure 3. Synthesis performance in simulated CBCT data. (a) Sagittal
slice of a test CT image volume. (b) Corresponding CBCT
reconstruction (network input). (c) Resulting synthesized image. (d)
Violin plot quantifying the respective difference in voxel values of
uncorrected FBP and DL-Synthesis to the ground truth measured for
5 test data. (e) Sagittal and (f) axial slice of the estimated uncertainty.

Fig. 4 illustrates the performance of image synthesis on real
data, in which the input to the synthesis network was either
uncorrected or precorrected image data. DL-Synthesis acting on
uncorrected FBP input exhibits performance degradation in
regions affected by severe artifacts, yielding a higher degree of
non-uniformity near the sphenoid bone (yellow arrow). A simple
(constant) scatter correction was shown to partially account for
biases that were not modeled by the forward projector (e.g.,
variation in bone density) and improve the overall image
uniformity (2—4 HU). As a result, precorrected FBP yielded more

DL-Synthesis (c)

Syn :
Hpreforr™ !s

s

g

Non-Uniformity (HU)

v '
Syn Syn
Hyneorr ﬂyrm'ur(

Figure 4. Synthesis performance for (a) uncorrected and (b) precorrected FBP of real CBCT images. (c) Boxplot quantifying image non-uniformity

in synthesized images of 3 cadavers.
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accurate synthesis, reducing image NU by ~50% compared to
synthesis acting on uncorrected FBP. However, DL-Synthesis
exhibited a loss in contrast in structures such as the lateral
ventricles (cadaver #1, magenta arrows), demonstrating potential
pitfalls in the generalizability of image synthesis to real and highly
variable image data.
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Figure 5. Uncertainty estimation in cadaver CBCT head images.
Precorrected FBP and the estimated uncertainty (8 map) within the
brain parenchyma for (a-b) cadaver #1 with calcium deposit and (c-
d) cadaver #3 with brain shift.

B.  Uncertainty estimation in cadaver studies

Fig. 5 demonstrates the performance of uncertainty estimation
on real data with unseen features (calcium deposit in cadaver #2
and brain shift in cadaver #3). For both cases, the uncertainty map
highlights the location of the unseen structure as well as at the
lateral ventricles, suggesting a lack of reliability in the synthesis
result and the need for input from physics-based reconstruction.

C. Performance of DL-Recon

Fig. 6 shows reconstructed images from conventional methods
(FBP and DL-Synthesis) and the proposed DL-Recon framework.

(a) Uncorrected FBP  (b) Fully Corrected FBP (c)

CBCT CBCT
piBer. ullhe!
uncorr 7s ((”l" 23 ”-~

DL-Synthesis

NU:  21.6 HU NU: 3.0 HU

8.9 HU NU:
Noise: 7.6 HU Noise: 10.5 HU Noise: 6.7 HU
CNR: - CNR: 26+13 CNR: 18=21

(d)

NU: 41 HU

As shown in Fig. 6(b), the comprehensive artifact correction
pipeline reduced NU by 59%, but led to 38% increase in image
noise. DL-Synthesis yielded the lowest NU value and noise but
suffered from loss in soft-tissue contrast. In comparison, DL-
Recon was able to reduce both NU and noise while preserving
image contrast of the ventricles, providing ~15% increase in soft-
tissue CNR compared to fully corrected FBP.

The intensity profile of a curve across the brain [yellow dashed
curve shown in Fig. 6(b)] was plotted in Fig. 7 for fully corrected
FBP, DL-Synthesis, and DL-Recon. Fully corrected FBP
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Figure 7. Intensity profiles of FBP, DL-Synthesis, and DL-Recon.
The DL-Recon image leverages the improved uniformity of DL-
Synthesis (region just inside the cranium) and the improved
(accurate) contrast of fully corrected FBP (in the ventricles).
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exhibited residual nonuniformity, especially just inside the
cranium due to residual beam-hardening effects, as indicated by
the nonuniform intensity profile between the ventricle and
cranium. DL-Synthesis improved uniformity in these regions but
reduced the contrast in the ventricle, similar to the effects shown
above in relation to model uncertainty. By comparison, DL-Recon
maintained the benefits of image uniformity from DL-Synthesis
while achieving contrast in the ventricles similar to the fully
corrected FBP.
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DL-Recon (d)-(a)
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Figure 6. Example axial and sagittal slices of FBP, DL synthesis, and DL-Recon in cadaver CBCT data. Measurements of image non-
uniformity (NU), noise, and contrast-to-noise ratio (CNR) of the lateral ventricles are listed below each image. Difference images show
the contributions of the physics-based [(d)-(a)] and image synthesis [(d)-(c)] methods to the DL-Recon image (approximate Hounsfield Units).
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Abstract—Learned iterative reconstruction algorithms for in-
verse problems offer the flexibility to combine analytical knowl-
edge about the problem with modules learned from data.
This way, they achieve high reconstruction performance while
ensuring consistency with the measured data. In computed
tomography, extending such approaches from 2D fan-beam to
3D cone-beam data is challenging due to the prohibitively high
GPU memory that would be needed to train such models. This
paper proposes to use neural ordinary differential equations
to solve the reconstruction problem in a residual formulation
via numerical integration. For training, there is no need to
backpropagate through several unrolled network blocks nor
through the internals of the solver. Instead, the gradients are
obtained very memory-efficiently in the neural ODE setting
allowing for training on a single consumer graphics card. The
method is able to reduce the root mean squared error by
over 30% compared to the best performing classical iterative
reconstruction algorithm and produces high quality cone-beam
reconstructions even in a sparse view scenario.

Index Terms—Inverse problems, computed tomography, itera-
tive reconstruction, known operators.

[. INTRODUCTION

XTENDING analytical or iterative reconstruction algo-

rithms for computed tomography (CT) by deep learning
modules has shown to improve the quality of the reconstructed
images, especially in challenging cases like high noise levels
or insufficient projection data [1], [2]. For CT reconstruction,
the input and output data of the problem are connected in
a non-trivial geometrical manner. This is the reason why
most deep-learning-based reconstruction approaches, instead
of learning direct mapping from sinogram to image domain,
incorporate knowledge about the physical operator connecting
both domains and replace single components in the reconstruc-
tion pipeline by their learned counterpart, mostly operating in
one domain only [3].

Unrolled iterative approaches seek to solve the reconstruc-
tion problem by loosely mimicking known iterative algorithms
for inverse problems. This is done by unrolling a fixed number
of iterations in depth as a deep learning architecture and
incorporating learnable components in each step which are
trained end-to-end. The exact architecture and the role of
the trainable modules can vary giving rise to a number of
approaches for MRI [4], [5] and CT [1], [6], [7].

While these unrolled iterative algorithms have achieved
superior performance for the reconstruction of 2D images,
their extension to the 3D case is challenging. Training requires

All authors are with the Pattern Recognition Lab, Friedrich-
Alexander University Erlangen-Nuremberg, Erlangen, Germany (e-mail:
mareike.thies @fau.de).

gradient backpropagation through the entire unrolled sequence
of trainable and known operators, thereby consuming a large
amount of memory on the graphics card (GPU). In the
3D case, the amount of memory occupied by intermediate
representations needed during backpropagation exceeds the
memory of modern GPUs making the direct application of
iterative approaches infeasible.

Previous work addressed the prohibitively high memory
consumption of unrolled 3D models. Greedy training of each
iteration independently reduces memory consumption and al-
lows training on patches but does not result in an optimal joint
weight configuration [8]. When increasing the volume resolu-
tion with network depth, memory consumption is dominated
by the single final iteration on full scale, but image quality is
coupled to the expressiveness of the last iteration [9]. Further,
the use of invertible networks avoids storing intermediate
representations which makes the memory requirement constant
in depth but requires the network architecture to meet certain
criteria for invertibility [10], [11].

In this work, we propose to interpret the series of unrolled
iterations as a continuous residual process and formulate the
problem in terms of an ordinary differential equation (ODE).
This allows us to map the reconstruction problem onto an
initial value problem which can be solved and trained memory-
efficiently using recently proposed neural ODEs [12]. The key
idea is that the memory requirement does not depend on the
number of iterations, i.e., network depth. Instead, the forward
pass is replaced by a call to an ODE solver and gradients are
obtained by solving another adjoint ODE without storing the
intermediate representations of the forward pass. Whereas a
similar idea has been applied to MRI reconstruction [13], to
the best of our knowledge we are the first ones to apply neural
ODE:s to CT reconstruction. We show that using this method
we obtain 3D cone-beam CT reconstructions from few angles
with superior image quality compared to classical analytic and
algebraic algorithms.

II. METHODS
A. Learned Iterative CT Reconstruction

The forward model of a CT acquisition can be written as
p=Ax+e, 1)

where x € RM is the volume, p € R is the projection data,
A € RV¥XM g the forward operator defined by the imaging
geometry (cone-beam in this case), and € € RY is additive
noise. Typically, recovering the volume x from the measured
data p is an ill-posed inverse problem meaning that A is
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Fig. 1: Comparison of an unrolled network (a) and a neural ODE-based version (b). While the unrolled version explicitly
repeats the same network block for a fixed number of steps, the ODE solver receives only one network block parameterizing
the temporal derivative of the volume. The solver computes the numerical integration internally. All trainable parts of our

architecture are highlighted in yellow, the fixed parts are gray.

not square and there are multiple solutions for x which are
consistent with the measured data p. Hence, the reconstruction
is formulated as a regularized optimization problem

x* = argmin{D(x,p) + pR(x)} . 2)

Here, D : RM x RN — R is a function which measures the
consistency of volume x and measured data p. We choose
the data consistency term in a least squares sense given as
D(x,p) = 3|Ax—p|3. R : RM — R is a regularizer
which helps finding a favorable solution x* and is weighted
against the data consistency term by a scalar ¢ € R. Using
a simple gradient descent optimization scheme, the resulting
update formula is

x"T = x" — A\V{D(x,p) + pR(x)}
=x" — AA"(Ax - p) + uVR(x)) ,
RMxN

3

where AT ¢ is the adjoint operator of A, X\ € R is
a sufficiently small step size, and n is the iteration index. To
learn a flexible regularizer from data, we replace its gradient
by a network Ny : RM — RM with free parameters § which
allows to fit the regularizing component directly from data.
The final update formula is given as

= x" — NAT(Ax — p) + puNp(x)) . )

X =X
If x represents a 2D image, this equation could inspire an
unrolled network architecture (Fig. 1a) and the parameters 6
can be trained from pairs of input projection data and ground
truth reconstruction for a fixed number of unrolled iterations
[1]. This is infeasible for 3D cone-beam data due to extremely
high GPU memory requirements.

B. Neural Ordinary Differential Equations

Equation 4 has a residual form of the type

X" =x"+ fo(x,p) . ®)

with fo(x,p) = —A(AT(Ax — p) + uNy(x)). The function
fo describes how the volume x” changes incrementally. Chen
et al. [12] proposed to regard such residual neural network
architectures as the numerical integration of some underlying
continuous ordinary differential equation. Here, the continuous

differential equation would be ‘fl—’t‘ = fo(x(t), p). Following

that idea, a full unrolled iterative reconstruction is similar to
the solution of an initial value problem of the given ODE
starting from an initial condition x° integrated until some end
time 7'

T
f:ﬂ+/tmqmmm. (6)
0

There exist a number of different numerical solvers to ap-
proximate solutions of such initial value problems. In this
work, we use a fixed step-size Runge-Kutta solver of order
4 which integrates Eq. 6 by dividing the interval [0, .., T into
a fixed number of steps S to solve the integral numerically.
This highlights the analogy to residual networks of depth S.

To be able to combine this ODE-based problem formulation
with a trainable network architecture, we need to compute
a loss that is based on the output of the ODE solver and
use its gradient to update the weights 6 contained in fy. As
demonstrated in [12], this gradient can be obtained without
backpropagating through the internals of the solver. Instead,
the solver is regarded as a black box and the gradient with
respect to 6 is computed by solving another ODE backward
in time (adjoint sensitivity method). This allows to obtain gra-
dients with a memory cost that is independent of the number of
steps S taken by the solver. Coming back to the analogy with
residual networks, we can unroll the reconstruction problem
in many steps using neural ODEs without further increasing
the memory cost.

C. Network Architecture

In the neural ODE setting, a neural network defines the
dynamics of the system, i.e., its temporal derivative. Following
the classical problem formulation in Eq. 4, we design this net-
work using two branches: (1) A data consistency branch with
no trainable parameters incorporating the system’s forward and
backward model as known operator and (2) a regularization
branch which is trained from data. Figure 1b illustrates the
proposed network architecture. The data consistency branch
implements the term A7 (Ax — p). Operators A and A7 are
the CT forward and backprojection under the correct cone-
beam geometry, respectively. We use the differentiable version
of these operators described in [14] which computes analytical
gradients and allows for a direct embedding of these operators
in neural networks. For the regularization branch, we use a
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standard 3D U-Net [15] with depth 4 and 8 feature maps
on the first level which are doubled in each stage, ReLU
activation function, and instance normalization. In total, this
leads to a network with 255000 free parameters. We further
introduce an additional single trainable parameter ~y (referred
to as data consistency weight) which is multiplied to the output
of the data consistency branch before adding the output of both
branches together in order to enable a data-optimal weighting
between the data consistency and regularization component.
This network together with the initialization x° is passed to
the ODE solver.

III. EXPERIMENTS
A. Data

The data set consists of 42 walnuts scanned under cone-
beam CT geometry (cone angle: 40°) [16]. It contains the
raw projection data and a corresponding ground truth recon-
struction. The projection images are acquired on three circular
trajectories on different heights along the walnuts’ long axes
with a full rotation of 360° divided into 1200 angular steps
each. The ground truth reconstruction is computed iteratively
from the full set of acquired projections. As input to our
algorithm, we use projection data from only the central one
of the three trajectories and downsample the projections by a
factor of 10 in angular direction and 2 in the spatial directions.
This results in 120 projection images of size 384 x 486 pixels
with an angular increment of 3° covering a full rotation of
360°. Hence, the algorithm has much less projection data
available than has been used for computing the ground truth
reconstruction which serves as learning target and is down-
sampled by a factor of 2 resulting in volumes of size 2513.
We use walnut number 1 for validation and walnut number
2 for testing. The rest is used for training. The used data, its
preprocessing and the train-test-splits are identical to [10].

B. Training Details

We use the neural ODE solver provided by [12]. Integration
of Eq. 6 is performed from 0 to 7' = 1 with a fixed step size
of 0.05. This results in 20 steps and 80 evaluations of the
network per forward and backward pass as the fourth order
Runge-Kutta solver takes four evaluations per step. The initial
volume x° is a Feldmann-Davis-Kress (FDK) reconstruction
of the projection data. The last layer of the U-Net is initialized
with zeros such that the regularizer has no influence upon
initialization and the data consistency weight is initialized
with v = 0.01. The parameters are optimized by an Adam
optimizer with learning rate 1 x 10~% for the U-Net and
1x 1072 for the data consistency weight. Training is performed
with batch size 1 for 80 epochs and an LI-Loss evaluated
only inside the cylindrical scan field of view (FOV) captured
in each projection. The model weights corresponding to the
lowest validation loss during training are selected for further
evaluation.

C. Reference Methods

The reconstruction of the proposed method is compared
to (1) an FDK reconstruction, (2) a SIRT reconstruction

Fig. 2: Reconstructed center slices of the test walnut along
each dimension using an analytical FDK algorithm, two clas-
sical iterative algorithms (SIRT, TV) and the proposed method.
The gray value window is 0 to 0.06 mm™'. Zoomed regions
are indicated in red.

with non-negativity constraint (500 iterations) [17] and (3) a
total variation (TV) regularized reconstruction using gradient
updates (300 iterations) [14].

IV. RESULTS

The proposed model requires a maximum of 13 GB GPU
memory during training. Reconstruction results of the test
walnut are shown in Fig. 2. The FDK reconstruction exhibits
strong streaking artifacts in the xy-plane as well as cone-
beam artifacts at the top and bottom of the walnut visible
in the xz- and yz-planes. The iterative SIRT algorithm only
partly removes these artifacts. The TV regularized algorithm
produces a very smooth image with homogeneous gray values
for different structures inside the walnut. Nevertheless, cone-
beam artifacts in the xz- and yz-plane are still visible. In
contrast, our method achieves images with no noticeable cone-
beam artifacts. Additionally, it performs well in removing
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TABLE I: Quantitative results in terms of root mean squared
error (RMSE), peak signal-to-noise ratio (PSNR), and struc-
tural similarity index measure (SSIM).

FDK SIRT vV Ours
RMSE [-1073] |  3.735 2.321 2.688 1.586
PSNR 1 25.682  29.813  28.539  33.121
SSIM 1 0.562 0.813 0.777 0.904

the streaks in the xy-plane and produces images which are
visually closest to the ground truth. The proposed method
also performs best regarding all quantitative metrics (Tab. I).
Compared to the SIRT which is the second-best performing
method, the RMSE is reduced by 31.7% and PSNR and
SSIM are increased by 11.1% and 11.3 %, respectively. All
metrics have only been evaluated inside the cylindrical scan
FOV captured in each projection. Concerning reconstruction
time, our method lies between the two investigated iterative
methods with a run time of 43.4 s. The data consistency weight
converges to a value of v = 0.036.

V. DISCUSSION

Our proposed method is able to train a network inspired
from classical iterative reconstruction for 3D cone-beam data
incorporating a trainable regularizer with a GPU memory con-
sumption which is independent of the number of incremental
update steps on the volume. We can reconstruct volumes of
practically relevant size (251%) while using only 13 GB of
GPU memory during training. This is feasible with a single
recent consumer graphics card.

The considered reconstruction problem is severely ill-posed
due to the strong undersampling of projection data in angular
direction. Hence, the analytical FDK reconstruction leads
to strong artifacts in the reconstructed images. The trained
algorithm removes the noise and streak artifacts successfully.
While the classical TV-regularized iterative reconstruction also
performs well in this regard, the proposed algorithm is the
only one which is able to remove the cone-beam artifacts. We
hypothesize that one main advantage of the learned regularizer
parameterized by the U-Net over hand-crafted ones such as TV
is its larger receptive field. It can suppress artifacts with non-
local extent such as the cone-beam artifacts while TV depends
only on the local gradient information in the image. A detailed
comparison of our method to other learning-based approaches,
such as [10], will be performed in future work.

Once trained, the reconstruction time of the presented
method is comparable to that of classical iterative algorithms.
Training time is rather high due to the high number of network
evaluations. Potentially, using an adaptive ODE solver instead
of the fixed step size solver can shorten training and inference
times by adaptively adjusting the step size and hence the
number of network evaluations to a given tolerance.

VI. CONCLUSION

This paper presents a method which uses neural ODEs
to train a cone-beam reconstruction algorithm inspired by
iterative reconstruction schemes. It ensures consistency with

the measured data by incorporating a data consistency branch
which exploits analytical knowledge about the physical op-
erator connecting sinogram and image domain along with a
trained regularizer. The proposed method outperforms well-
known FDK and iterative reconstruction algorithms on the
used walnut data set and is able to remove artifacts with
non-local extent such as the cone-beam artifacts while being
tractable concerning GPU memory.
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LaBr3:Ce and Silicon Photomultipliers: Towards the
Optimal Scintillating Photon-Counting Detector

Stefan J. van der Sar, David Leibold, Stefan E. Brunner, and Dennis R. Schaart

Abstract: We investigate ultrafast silicon photomultiplier (SiPM)-
based scintillation detectors for (medical) X-ray photon-counting
applications, e.g., photon-counting computed tomography (CT). Such
detectors may be an alternative to CdTe/CdZnTe (CZT) and Si detectors,
which face challenges related to cost-effective growth of detector-grade
material and detection efficiency, respectively. Here, we experimentally
study energy response and count rate performance of a 1 mm x 1 mm
single-pixel detector consisting of the commercially available LaBr;:Ce
scintillator and a fast SiPM prototype.

We used three radio-isotopes and an X-ray tube for the experiments.
Raw detector signals were processed by a second-order low-pass filter
with a cut-off frequency f. equal to 25 MHz or 100 MHz.

The detector pulse height was shown to be proportional to photon
energy. We measured FWHM energy resolutions of 20% (f=25 MHz)
and 22% (f-=100 MHz) at 60 keV. The measured X-ray tube spectra
showed signs of the expected features of such spectra. The best count rate
performance was achieved using =100 MHz. In case of paralyzable-like
counting and a 30 keV counting threshold, the maximum observed count
rate (OCR) was 10.5 Mcps/pixel. For nonparalyzable-like counting and
the same threshold, the OCR appeared to approach an asymptotic value
greater than 20 Mcps/pixel. These numbers are close to those of
CdTe/CZT detectors highly optimized for photon-counting CT.

In conclusion, we show promising spectral X-ray photon-counting
performance of an LaBr;:Ce scintillation detector with SiPM readout.
Depending on the application-specific requirements, miniaturization of
the pixel size may be necessary, for which we discuss potential dose-
efficient implementations.

Keywords: Count rate performance, energy response, scintillator,
silicon photomultiplier (SiPM), X-ray photon-counting.

1. INTRODUCTION

PHOTON-COUNTING detectors (PCDs) for X-ray imaging,
e.g., for medical computed tomography (CT), are heavily
investigated [1,2]. A PCD counts X-ray photon-induced
detector pulses and registers them in one of at least two energy
bins. This enables energy-resolved X-ray imaging. However,
the task at hand is formidable, because the impinging photon
fluence rate may exceed 103 mm2s! [3], so pulse pile-up is
likely to distort the measurement of counts and energies.

The main detector concept under consideration at the
moment is based on the mechanism of direct conversion, i.e.,
each X-ray photon absorbed in a semiconductor is directly
converted into a number of electron-hole (e-h) pairs. This

This manuscript was submitted on 23 January 2022. The SiPMs and the
scintillation crystals were provided for free by Broadcom Inc and Saint
Gobain Crystals, respectively.
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number is proportional to the absorbed energy. Under the
influence of an electric field, the e-h pairs are separated and
guided towards (pixelated) electrodes on which they induce a
current pulse. The pulse processing chain then outputs pulses
of which the height is a measure of the energy of the X-ray
photon. The semiconductors used in the existing prototype CT
scanners are CdTe [4], CdZnTe (CZT) [5], and Si [6].

Although such a detector outputs short pulses and allows
for pixel size miniaturization (both help to reduce pile-up), the
cost-effective growth of CdTe and CZT detectors with a
sufficiently low density of charge trapping centers (necessary
to guarantee stable and reliable performance over time)
remains an issue [2], [7]. On the other hand, Si detectors face
challenges related to low mass density (p) and atomic number
(Z). Thus, it is not clear what the best choice of detector is,
leaving room for developing other detector concepts.

We are investigating fast scintillation detectors with silicon
photomultiplier (SiPM) readout for X-ray photon-counting
applications. This detector concept is based on the mechanism
of indirect conversion, i.e., an X-ray photon is first converted
into a pulse of optical scintillation photons, which is then
converted into a current pulse by an SiPM (see Fig. 1a). The
light pulse incident on the SiPM as a function of time #, after
the X-ray interaction may be described as A4iexp(-ti/zq), with
amplitude A4; depending on deposited energy and 74 the
scintillation decay time constant. In order to minimize pile-up,
shorter 74 than those of CsI (1 ps) and GOS (2.5 ps), the
scintillators used in integrating detectors, are needed [8].

Each scintillator pixel must be coupled to its own SiPM.
This light sensor consists of a two-dimensional array of single-
photon avalanche diodes (SPADs, see Fig. 1b). The absorption
of a single optical photon in a SPAD creates an e-h pair that
can trigger an avalanche multiplication process providing a
gain in the order of 10°. The time profile of the SPAD current
pulse as a function of time #, after the detection of an optical
photon may be described as Asexp(-t>/tr), with amplitude A4,
and recharge time constant 7,. Since the SPADs on an SiPM
are connected in parallel, the time profile of an X-ray photon-
induced pulse is essentially a convolution of 4;exp(-t1/74) and
Asexp(-t2/t) (see Fig. 2). The high internal gain assures that
the signal due to a single X-ray photon exceeds the noise level
of the electronics (difficult to accomplish using conventional
photodiodes) and allows for a processing chain relying only on
current-to-voltage conversion and pulse height discrimination.

Since the detector is based on transport of photons rather
than charges and scintillators with high p and Z exist, this X-
ray photon-counting detector concept may provide a solution
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for the aforementioned issues of direct conversion detectors.

Here, we experimentally investigate the count rate
performance of an ultrafast SiPM-based scintillation detector
irradiated by a 120 kVp X-ray beam. The scintillator used in
this study is LaBr;:Ce, a commercially available scintillator
that we previously identified as having favorable properties
for high-rate, energy-resolved X-ray photon-counting [8]. We
compare the results with data from CdTe- and CZT-based
PCDs and study the energy response of the detector.

II. MATERIALS AND METHODS

LaBr3:Ce (5% Ce-doping, Saint Gobain Crystals) combines
high X-ray detection efficiency (p=5.1 g cm?, Z,=57, and
Zg=35) with a short and intense scintillation pulse (zs=16 ns
and a high light yield of 63 photons per keV). Using optically
transparent glue, we coupled a 1 mmx1 mm LaBr3:Ce crystal
to a 1.0 mmx1.0 mm prototype SiPM (provided by Broadcom
Inc., 7=7 ns). The LaBr;:Ce crystal was 3.5 mm thick
(equivalent to 2.5 mm CdTe in terms of detection efficiency in
the diagnostic energy range). We also covered the crystal in
reflective powder. Since LaBr;:Ce is a hygroscopic
scintillator, we applied an epoxy coating to our single-pixel
detector, such that it can be used outside the moisture-free
glovebox in which it was built. Note that the hygroscopic
nature of a scintillator does not limit its applicability. The
commonly used Nal: Tl scintillator is hygroscopic, and applied
in detectors for medical SPECT scanners, for example.

The current signals from the SiPM were converted into
voltage signals by a trans-impedance amplifier (gain=10)
before being digitized by a TeledyneLeCroy HDO9404
oscilloscope (sampling rate = 1 GHz, bandwidth = 200 MHz).
Due to the finite number of optical photons in the scintillation
pulse, the raw detector pulses are not perfect convolutions of
Arexp(-ti/tq) and Arexp(-t2/t;), but show random fluctuations.
In order to prevent double counting of single pulses due to
these fluctuations, all digitized signals were first smoothened
by a second order low-pass filter with a cut-off frequency
fe=25 MHz or f:=100 MHz. The former is expected to provide
better energy resolution at low rates, the latter should yield
faster pulses (see Fig. 2a) and better count rate performance.

In order to calibrate (mean) pulse height as a function of
energy, we recorded pulses while exposing the detector to
three low-activity radioactive sources with the following five
photon emissions: 14 keV (Co-57), 32 keV (Ba-133), 60 keV
(Am-241), 81 keV (Ba-133) and 122 keV (Co-57).

We performed X-ray tube experiments using an Yxlon
Y.TU 320-DO03 tube, which had a tungsten target and an anode
angle of 20°. We selected a tube voltage of 120 kVp. The
beam was filtered by 3.0 mm Be and 7.5 mm Al in total. The
resulting spectrum ranges from 20 keV to 120 keV. We
performed a tube current sweep starting at 0.5 mA and ending
at 20 mA at a fixed source-detector distance. For each value of
the tube current, we recorded ten pulse trains of 100 ms each.

We determined the number of counts for counting
thresholds at 15 keV and 30 keV, because such low-energy
thresholds usually limit the count rate capability of PCDs.
Additionally, we determined the number of counts for two

counting algorithms. The first one is paralyzable-like (p-like)
counting. Here, every positive threshold crossing leads to a
count and the maximum signal before the subsequent negative
threshold crossing is considered a measure of the energy. The
second one is nonparalyzable-like (np-like) counting. In this
case, we determine, after a fixed time period z,, following the
registration of a count, whether or not the signal from the
detector is still above threshold. If yes, a second count will be
registered, and so on. If not, the next count will only be
registered when the next positive threshold crossing occurs.
The maximum signal within the time period z,, is considered a
measure of the energy. The value of 7, should exceed the
time-over-threshold of the highest-energy pulses in order to
prevent double counting of pulses. We therefore used the
pulses caused by 122 keV photons from the Co-57 source to
determine proper values of z,, for the detector (see Fig. 2b).

III. RESULTS AND DISCUSSION

Fig. 3a and Fig. 3b show pulse height spectra obtained by
exposing the detector to the Am-241 source and setting f; to 25
MHz and to 100 MHz, respectively. From right to left, we
observe: The main photopeak corresponding to the full
absorption of 60 keV photons in the crystal. It overlaps with a
Br K-escape peak at approximately 48 keV. A La K-escape
peak at about 26 keV is also visible, which overlaps with a
peak caused by an 11-22 keV X-ray emission from Am-241.

We used Gaussian fits to determine the mean pulse heights
corresponding to the five main peaks (photon energies) in the
spectra of the three radioactive sources. The results are
summarized in Fig. 3¢ and indicate that the detectors have a
proportional response in the energy range of interest. As Fig.
3a and Fig. 3b show, a double Gaussian fit with a constraint
on the distance between both peaks was used if a K-escape
peak clearly overlapped with the photopeak. We derived the
energy resolutions at 60 keV from the fits and found 19.9%
FWHM for f=25 MHz and 22.3% FWHM for £:=100 MHz.

Based on linear interpolation of the data points in Fig. 3c,
we determined that the 15 keV and 30 keV thresholds are at
31.0 mV and 58.4 mV, respectively, for fc =25 MHz. In case

f=100 MHz, these thresholds are at 41.8 mV and 77.2 mV.

Based on the mean shape of the pulses due to the 122 keV
photons from Co-57 (see Fig. 2b), the time-over-the x keV
threshold for fe=y MHz (To0T,) was found to be as follows:
TOT15,25:68 ns, T0T30525:55 ns, TOT|5,|00:53 ns, and
ToT30,100=42 ns. Thus, we used these values of znp: Tnp,15,25=70
ns, ‘L’np,30,25:60 ns, an,15,100:55 ns, and ‘L’np,30,1oo:45 ns.

Fig. 4 shows the observed count rate (OCR) as a function of
tube current Zpe. We estimated an incident count rate (ICR)
for each value of Iube by taking into account that ICR and Ziupe
are proportional to each other and by assuming that
ICR=OCRup,15,100 for luwe=0.5 mA (the selected source-
detector distance was such that the pile-up level was limited
for lupe=0.5 mA). The estimated ICRs are displayed on the top
horizontal axes in Fig. 4 and indicate that we characterized the
detector up to ICR=31 Mcps/pixel. As expected, the curves for
p-like counting feature a maximum OCR, which lies between
6 Mcps/pixel and 7.5 Mcps/pixel for f;=25 MHz, and between
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8 and 10.5 Mcps/pixel for /=100 MHz, depending on the
threshold value. The curves for np-like counting should
approach asymptotes defined by OCR=1/t,, for high values of
Tube, 1.€., they should approach OCRs of 14.3-16.7 Mcps/pixel
for f=25 MHz and 18.2-22.2 Mcps/pixel for ;=100 MHz,
again depending on the threshold value. However, Fig. 4
shows that, especially for /=100 MHz, we did not reach these
asymptotic values at the maximum available tube current of 20
mA yet. Thus, we plan to take measurements at shorter source
-detector distances and show the results at the conference.

To put the results into perspective, existing CdTe and CZT
detectors that have been highly optimized for medical photon-
counting CT aim for a maximum OCR of 10-15 Mcps/pixel in
case of p-like counting (e.g., the CZT detector in the prototype
scanner of Philips [5]) or an OCR approaching 25-30
Mcps/pixel in case of np-like counting (e.g., the CdTe detector
in the prototype scanner of Siemens [4]). Our prototype
LaBr3:Ce detector already approaches these numbers closely.

The rate capability per mm? can be further improved by
having multiple pixels of 0.5 mm X 0.5 mm or smaller on a
square millimeter. However, the reflective isolation between
pixels (see Fig. 1a) then starts to become a relatively large X-
ray insensitive area that limits the achievable OCR and dose
efficiency. However, Canon managed to manufacture an
energy-integrating detector for its Aquilion Precision CT
scanner that has scintillator pixels of such small dimensions
with very thin reflective septa. Even dead area-free options
exist, such as a columnar microstructure of the scintillator (cf.
the Csl scintillator in flat panel detectors) [9], and laser-
induced optical barriers [10].

Lastly, examples of X-ray tube spectra measured using the
LaBr3:Ce detector under low fluence rate conditions (Znbe=0.5
mA) are shown in Fig. 5. The typical shape of such spectra is
clearly present in the data, including signs of the characteristic
X-rays from the tungsten target of the tube. For photon
energies exceeding 80 keV, the spectral intensity gradually
decreases towards the maximum energy of 120 keV, with
some overflow to higher energies because of the finite energy
resolution of the detector and some pulse pile-up.

(@)

Scintillation
crystal
Scintillation
photon

' Optical
isolation

Light
Sensor

P

IV. CONCLUSIONS

We are investigating ultrafast scintillation detectors with
SiPM readout as alternatives to direct-conversion detectors for
(medical) X-ray photon-counting applications. In this work,
we built a 1 mmx1 mm single-pixel detector consisting of the
fast and commercially available LaBr;:Ce scintillator and an
ultrafast SiPM prototype. We measured energy resolutions in
the range 20%-22% at 60 keV, depending on the cut-off
frequency of the filter used in the pulse processing. Moreover,
we were able to measure an X-ray tube spectrum with signs of
its characteristic features. We also measured count rate curves
and found a maximum observed count rate (OCR) of 10.5
Mcps/pixel for paralyzable-like counting, a threshold of 30
keV, and a cut-off frequency of 100 MHz. In case of
nonparalyzable-like counting, the OCR seemed to approach an
asymptotic value exceeding 20 Mcps/pixel. This means the
performance of our prototype detector already approaches that
of CdTe/CZT detectors optimized for photon-counting CT.
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Fig. 1. a) Schematic side view of a scintillation detector. Each pixel consists of a scintillation crystal, in which an X-ray photon is converted into a pulse of
optical scintillation photons, one-to-one coupled to a light sensor, which converts the light pulse into a current pulse i(¢). The isotropically emitted photons are
guided towards the light sensor by a reflective optical isolation around the pixel, which also prevents light sharing among pixels (cf. charge sharing in
semiconductor detectors). b) Schematic top view of the light sensor in our case, i.e., a silicon photomultiplier (SiPM). An SiPM is a 2D array of single photon
avalanche diodes (SPADs) connected in parallel. When a SPAD detects an optical photon, an avalanche multiplication starts, which the resistor R quenches [8].

51



The 7th International Conference on Image Formation in X-Ray Computed Tomography

200 200 400
S ‘ S
E | E 380- b)
= 100 1w 100
= C
o 2l
%) J )
0 e
-50 0 50 100 150 -50 100 150
Time (ns) Time (ns)
200 -
S >
t |z
= 100
c =
2 2
%) d 7]
0 h e ol 0 H 0 i N ~
-50 0 50 100 150 -50 0 50 100 150 -100  -50 0 50 100 150 200

Time (ns) Time (ns) Time (ns)

Fig. 2. a) Four examples of pulses due to 60 keV photons. The solid curves are the raw detector pulses, whereas the dashed and dash-dotted curves describe these
pulses after they have been smoothened by second-order low-pass filters with cut-off frequencies f; of 25 MHz and 100 MHz, respectively. b) The mean pulse
shape for 122 keV photons and f=100 MHz. Start and end points of the time-over-threshold (7oT) at 15 and 30 keV used to determine z,, are visualized, too.
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Fig. 3. a) An Am-241 pulse height spectrum measured using the LaBr;:Ce detector and a second order low-pass filter with cut-off frequency f=25 MHz. The
double Gaussian fit accounts for the K-escape peak at approximately 48 keV in order to determine the FWHM pulse height resolution at 60 keV. b) The same
Am-241 spectrum measured using the same detector, but with £;=100 MHz. ¢) Results of the pulse height calibration, showing highly proportional behavior.
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Fig. 5. X-ray tube spectra (120 kVp, tungsten anode, anode angle of 20°, 3.0 mm Be and 7.5 mm Al filtration) measured using a) the LaBr;:Ce detector and a
second order low-pass filter with cut-off frequency ;=25 MHz and b) the same detector, but a filter with f=100 MHz, for p-like counting and a 15 keV threshold
under low fluence rate conditions (i.e., a tube current of 0.5 mA). The energy-axes are based on the pulse height calibrations shown in Fig. 3c).
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Preliminary Investigations of a Novel Dynamic CT
Collimator

J. Webster Stayman, Nir Eden, Yiqun Q. Ma, Grace J. Gang, Allon Guez

Abstract—In this work we describe a new dynamic x-ray
collimator that may be used to collect sparse computed tomog-
raphy projection data. Data sparsity may be user-specified and
controlled both angularly and radially - allowing a broad range
of acquisition strategies. We consider protocols that have fully
sampled projection data for a volume-of-interest with a sparsely
sampled background. Model-based reconstruction methods are
adapted to process the non-uniformly sampled projections. We
demonstrate the ability of a CT system with this novel dynamic
collimator to provide user controllable regional image quality
and dose reduction in a set of phantom experiments.

Index Terms—Dynamic Bowtie Filter, X-ray Modulation, Dose
Reduction, Region-of-Interest Imaging

[. INTRODUCTION

Image quality and radiation exposure are closely related in
x-ray computed tomography (CT). In general, higher expo-
sures are used to produce higher quality images. This is par-
ticularly true when image quality is largely driven by quantum
noise associated with the incident x-ray beam. Thus control
over the intensity of x-ray beam provides an important control
over the balance between radiation dose and image quality.
Modern clinical CT systems provide control over the overall
beam intensity through tube current modulation. Dynamic
current control can be optimized to provide minimum noise
variance in images.[1] The spatial distribution of fluence may
also be shaped - typically through bowtie filters that attenuate
the beam more at the periphery of the patient where less
fluence is required. Current clinical systems often have the
capability to select between a small number of static filters.

There have been many research efforts to construct modu-
lators to permit dynamic control of the spatial distribution of
the x-ray beam. Such devices are often described as dynamic
bowtie filters and have taken many forms. Several designs
based on variable beam attenuation have included actuated
split filter designs, fluid-filled filters[2][3], piece-wise linear
filters with independently controlled leaves[4], and grid-like
structures that shape the beam based on angle of incidence[5].
Other designs have leveraged binary filters that block x-rays
on a fine scale (below system resolution)[6] or that reduce
fluence at a position based on dwell time.[7][8]

With the advent of advanced reconstruction algorithms,
another widely researched strategy for altering the dose-
image quality trade-off is sparse sampling. Angular under-
sampling has been widely explored and is straightforward to
implement in pulsed cone-beam CT systems[9]. Combined
angular and radial undersampling has been explored with the
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use of moving, structured collimators[10] and with alternate
system geometries (e.g. a moving line detector with a pulsed
source[11]).

Such dynamic beam control permits increased control
over radiation dose and image quality. For example, the
beam profile may be dynamically controlled to avoid radi-
ation sensitive organs or to provide a customized regional
dose deposition[12]. Customized regional image quality may
also be specified or optimized for particular imaging tasks
or anatomical locations [Gang]. This includes specialized
volume-of-interest (VOI) scans that focus on a particular organ
or region (e.g. cardiac, spine, etc.). With some acquisition
approaches, only a small region-of-interest is exposed leading
to increased complexity in data processing/local tomography
due to truncated projections. Other approaches are able to
provide very low exposure outside the VOI avoiding full
truncation of projection data.

This work considers a new dynamic modulator that incor-
porates many of the ideas mentioned above. Specifically, the
device uses a multitude of individually actuated “fingers” that
locally block the x-ray beam. This enables various acquisition
protocols including a fully sampled VOI surrounded by a
background with angularly and radially sparse projection data.
In this paper we describe the construction of the device and its
installation in an x-ray imaging test-bench. Model-based image
reconstruction is adapted and applied to the sparse projection
data acquired from the experimental bench in two phantom
experiments.

II. METHODS
A. Dynamic Collimator Design and Integration

A photograph of the proposed dynamic collimator is shown
in Figure 1A. The device consisted of 26 independently
actuated beam blockers. Each “finger” is made of a lead
compound and is approximately 3 mm wide and 1.5 mm
thick. This thickness stops > 99% of x-rays to provide a
nearly binary beam profile. The blockers are connected to a
linear solenoid which is computed controlled. The array of
blockers is contained in a 3D-printed housing with a lead-
shielded entrance and exit slot (approximately 6 mm in height)
on either side of the housing.

The collimator was mounted on an experimental x-ray test-
bench comprised of a flat-panel detector (Varex 4343CB,
Salt Lake City, UT), a radiographic/fluoroscopic x-ray tube
(Varex Rad-94, Salt Lake City, UT), and a motion stage
(Physik Instrumente, Auburn, MA). The dynamic collimator
was placed with the blockers at ~30 cm from the x-ray focal
spot. This permitted full lateral coverage of the 43 cm detector
in a CT system with 785 mm source-to-axis distance and
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Fig. 1. (A) Photograph of the fabricated dynamic collimator with 26 independently controlled blockers. (B) Integration of the dynamic collimator on an

experimental x-ray imaging test-bench.
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Fig. 2. Illustration of fully sampled and dynamically controlled sampling. (A) Full sinogram data. (B) Dynamically collimated data with full sampling in an
off-center VOI and 1:4 sampling outside the VOI. (C) A data mask generated for model-based reconstruction of the dynamically collimated data. (Note that

there are four faulty blockers in this data which are stuck open.)

1050 mm source-to-detector distance. The x-ray tube was fitted
with 2.1 mm of aluminum and 0.2 mm of copper filtration
without any bowtie filter.

Computer controls for the collimator have been developed
and integrated within the x-ray test-bench so that blocker
motion occurs (with rotary stage motion) between acquisition
frames in a step-and-shoot acquisition. Control software per-
mits arbitrary positioning of blockers (e.g. open or closed) for
every projection frame.

B. Data Acquisition and Processing

While the dynamic collimator permits arbitrary actuation
of each blocker over each data frame, in this work we have
focused on fully sampling a VOI surrounded by an under-
sampled background. This acquisition should provide image
quality within the VOI that is comparable to fully sampled
data and (generally) lower image quality in the background.
We note that the sparse background sampling should help to
avoid the complexity of local tomography and fully truncated
data. Moreover, even if the background is lower image quality,
this provides additional context for clinical tasks that would
be absent from fully truncated data.

In these preliminary studies, we have opted to apply a duty
cycle of 1:4 with respect to the background sampling. That is,

outside the VOI, blockers were open for 1 frame followed by
4 closed frames. Moreover, open blockers were shifted frame-
to-frame providing a combination of sparsity both angularly
and radially. Thus, the exposure and sampling outside the VOI
should be approximately 1/5 of the fully sampled case. This
protocol for data collection is illustrated in Figure 2.

To reconstruct data acquired using this protocol, we used
a modified penalized weighted least-squares (PWLS) recon-
struction approach. Specifically, the mean measurement model
was

y(x) =Tpexp (- Ap), (1)

where I denotes the incident x-ray intensity, A is the system
matrix representing forward projection, and g denotes the
vector of attenuation coefficients we wish to estimate. The
PWLS objective is

ﬂ:argmuin (Al —u)TW(Al —u) —|—5H\I/,uH )

I = —log(y/To) 3)

where [ denotes an estimate of the line integrals from the
measurements y. The weighting matrix W is a modified
version of the standard PWLS weighting by the inverse of
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Fig. 3. Summary of head phantom experiments. (A) Photograph of head phantom with three inserts. (B) Comparison of fully sampled and VOI+1:4 sparse
sampling reconstructions. Two rectangular regions are identified over which sample noise variance is computed. The VOI is indicated by a dashed yellow

circle. (C) Dose measurements for each acquisition protocol.

the variance. A total variation penalty with weighting 8 and
first-order difference operator ¥ was applied.

To account for the sparse sampling pattern, a projection
mask was estimated from a system gain scan. Specifically,
the same actuation pattern was applied with no object in
the scanner. A mask was formed using simple thresholding
followed by a dilation operation to increase the size of mask.
Dilation was applied only in the radial direction of the sino-
gram. A modified diagonal weighting matrix was formed such
that W = D{y © mask}. In essence this informs the PWLS
algorithm that blocked measurements should be ignored for
reconstruction.

For all experiments in this work, a single central row of
flat-panel data was used to form a sinogram. This projection
data was comprised of 2x2 binned pixels (0.556 mm) and
360 projections. Reconstructions were formed using 200 it-
erations of the separable paraboloidal surrogates method[13]
using 20 angular subsets and 0.75 mm voxels.

C. Physical Experiments

Two different physical experiments were conducted. Both
use the system geometry and processing scheme described
above. Acquisitions were conducted using an x-ray technique
of 120 kVp and 20 mA. Exposures of 1 ms yield 0.02
mAs/frame. With 360 frames the total exposure was 7.2 mAs.

The first experiment used an ATOM head phantom (CIRS,
Norfolk, VA) and two sampling strategies: 1) fully sampled
data, and 2) the VOI plus 1:4 background sampling scheme
described above. Data were reconstructed using the above
processing with 5 = 1 for fully sampled data and § = 1.3
for the dynamically collimated data. Noise was measured at
location both inside and outside the VOI.

Radiation dose was measured for each scan using a standard
16 cm CTDI head phantom and a 0.6 cc Farme