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Abstract Nonlinear reconstruction algorithms have demonstrated
superior resolution to noise tradeoffs compared to traditional linear
reconstruction methods. However, their nonlinear, shift variant, and
data-dependent nature complicates performance analysis. Furthermore,
there usually lacks a predictive framework for image properties that al-
lows efficient control and optimization of imaging performance. In this
work, we quantify the system response of general nonlinear reconstruc-
tions using a quantitative perturbation response metric and develop a
data-driven approach for prospective prediction of such properties as a
function of varying perturbations (size, shape, contrast, and contrast
profile), patient anatomy, and algorithmic parameter. The feasibility
of prediction framework is demonstrated for a penalized-likelihood
reconstruction algorithm with a Huber penalty (PLH). We incorporated
a compact representation of the imaging system and the perturbation as
the input to the network and used a three-layer perceptron network for
image property prediction. The predicted perturbation response shows
good agreement with those obtained from empirical measurements.
The prediction accuracy is generalizable to all perturbations, anatom-
ical locations, and regularization parameters investigated. Results
in this work suggest that the data-driven method and training strate-
gies developed herein is a promising approach for prospective image
property prediction and control in nonlinear reconstruction algorithms.

1 Introduction
The recent proliferation of nonlinear reconstruction algo-

rithms have presented tremendous opportunities for image
quality improvement and dose reduction. However, despite
promising results in the research setting, clinical translation
of these algorithms have met a number of challenges. Due
to their nonlinear, shift-variant, and data-dependent nature,
traditional image quality assessment metrics rooted in linear
system analysis (e.g., impulse response, noise power spec-
trum) may no longer apply. For example, the appearance of
a lesion of interest in an MBIR reconstructed image can be
highly dependent on its location in the anatomy. Lesions of
different contrast may also result in different edge profiles
[1]. Furthermore, the performance of nonlinear algorithms
often rely on careful tuning of algorithmic parameters (e.g.,
regularization strength). The relationship between these pa-
rameters and image properties, however, is often opaque. As
a result, image properties are often analyzed in a retrospec-
tive fashion via empirical measurements. Optimization of
nonlinear algorithms therefore frequently relies on exhaus-
tive evaluations overs the parameters of interest, which is
time consuming due to the large number of dependencies
mentioned previously.

In previous work [2, 3], we proposed a novel image quality
analysis framework capable of prospective predictions of im-
age properties in general nonlinear reconstruction algorithms.
Leveraging the universal approximation theorem, we trained
an artificial neural networks model to map the nonlinear
transfer functions of an example model-based reconstruction

algorithm. In this work, we present further development of
the framework focusing on efficient training strategies that al-
lows the predictive capability of the model to be generalized
to arbitrary stimuli, anatomy, and imaging conditions.

2 Materials and Methods

2.1 Generalized system response

In linear shift-invariant imaging systems, the system response
can simply be characterized by the impulse response func-
tion which is dependent on the system parameters, S. For
general nonlinear algorithms, the system response carries
additional dependencies on the measurement data, y, and the
stimulus/perturbation, u,. Following Ahn and Leahy[4], we
define the generalized system response of a reconstruction
algorithm, 52 (s; 1,S), as the difference between the mean
reconstructions ({1) with and without the perturbation:

H(pss ) = L0+ psS)) — A0 (w:S)). (D

The generalized system response extends the characterization
of the dependencies on the background anatomy p and the
stimuli Y introduced in nonlinear algorithms in addition
to the dependencies on imaging system characterizations
and reconstruction approach including regularization designs
demonstrated in locally linearizable algorithms.

2.2 Penalized-likelihood reconstruction with a Hu-

ber penalty

In this work, we demonstrate methods for developing the
predictive analysis framework on an example MBIR algo-
rithm based on a penalized-likelihood objective with a Huber
penalty. The objective function is given by:

CID(/.L,y):L(/,t;y)—R(/.L,ﬁ,5) 2
where L(u;y) is the log-likelihood term that presumes the
measurements follow an independent Poisson distribution,
and R(u, 3, 8) is the Huber penalty active in the 4-nearest
neighborhood:
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The term contains two regularization parameters, where 3
controls the overall regularization strength and & controls the
threshold in voxel differences where the potential function
transitions from quadratic to linear. The interaction between
B and § results in a complex tradeoff between overall smooth-
ness and edge preservation. Examples of such dependencies
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Figure 1: Generalized system response of two lung nodules with
different regularization values. The green line circumscribes the
“good” perturbation responses. (Unit: mm™!)

are illustrated in Figure 1 with two lung nodules in the Lung
Image Database Consortium (LIDC) [5]. Each subplot on
the right shows the generalized system response (Eq.1) corre-
sponding to PLH reconstructions at different combinations of
B and . From visual inspection, the perturbation response
can be distorted with poor regularization parameters com-
binations. Moreover, because the system is nonlinear, a set
of regularization parameters that can achieve good response
with one perturbation may not work for other perturbations.
The spiculated lung nodule (top) shows less tolerance of high
regularization strength compared to the smooth lung nod-
ule (bottom). As a quantitative measure of how faithfully
nodules are represented in the reconstructions, we circum-
scribed the region of “good” (8, §) where the perturbation
response has less than 30% relative root mean square error
(rRMSE) compared to the ground truth (rRMSE is defined
as the normalized RMSE over the root mean square of the
ground truth ). While the regions in Fig.1 were identified
through empirical measurements, the following sections aim
to establish a model to predict perturbation responses without
the need for reconstructions.

2.3 Prediction Framework Implementation

The prediction framework leverages the universal approxi-
mation theorem which states that a fully-connected neural
network with a single hidden layer that is of arbitrary number
of nodes or an arbitrarily deep fully-connected network with
a finite number of nodes in each hidden layer can approx-
imate any well-behaved continuous function f : RY — RP
with a arbitrarily small residual distance.[6, 7] In this section,
we discuss the efficient information for perturbation response
prediction, space sampling strategy, and prediction neural
network architecture setup.

2.3.1 Efficient information for prediction

We leveraged prior knowledge of the image properties of
PLH to devise efficient network inputs. Ahn and Leahy [4]
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derived an explicit closed-form expression of the perturbation
response in locally linearizable algorithms:

H(1;) = [ATWA +R] ' ATWA Q)
where W is the covariance matrix of the measurements and
R denotes the Hessian of the regularizer. For Huber penalty,
the Hessian term is image dependent and therefore difficult
to evaluate. However, the Fisher information term A7 WA g
efficiently characterizes the dependencies on system geome-
try (through A), data statistics (through W), and perturbation
(through pg). Therefore, as a compact representation of the
imaging system, the anatomical background, and the pertur-
bation, the Fischer information term A7 WA i, along with the
regularization parameters are used as inputs to the network to
provide sufficient information to determine the generalized
system response of the PLH. This expression also informs
the range of training data required to achieve generalizable
predictive capability.

2.3.2 Parameter space sampling in training data

In a data-driven method, the range of training data is directly
related to network performance. In this work, we seek to
build a predictive model for the generalized system response
as a function of (A) perturbation, (B) background anatomy
and locations, and (C) regularization. We propose the follow-
ing sampling strategies for each parameter in the context of
lung imaging:

(A) Sampling the perturbation (1t,): The perturbations, or
lung lesions, have large variabilities in terms of their size,
contrast, shape, and contrast profiles. To efficiently sample
the perturbations, we adopted a parametric model for realistic
lesion simulation developed by Solomon and Samei [8]:

c(8,r) =C(1—(r/Rg)*)" (6)

where C is the peak contrast value, n describes the steepness
of the profile, and Ry is the distance from the center to the
edge along the radial direction 6. This type of model allows
us to systematically represent perturbations by sampling com-
binations of (C,n,Rg). We sampled scalars C and n with the
range described in [8]. For the vector Rg, we sampled Ry
along 8 radial directions according to a normal distribution of
mean R and variance ORr), and used interpolation to achieve
smoothly varying Ry for arbitrary 6.

(B) Sampling the anatomy and locations (W): We used the
XCAT chest digital phantom [9] as the background anatomy
in the simulation study and manually selected locations to
insert lesions. These locations represent various profiles of
statistical weights W pertaining to lung imaging.

(C) Sampling the regularization (3,6): We sampled the
different combinations of regularization parameters (8, 0)
using a 2D sweep. The range of the regularization parameters
are selected to sufficiently include a variety of reconstruction
outcomes illustrated in Fig.1.

2.3.3 Efficient network architecture

With the efficient input proposed in Sec. 2.3.1, we seek to
approximate the following function with a neural network:

A (W, 1t) = f(ROIAT WAL, B, 8). (7
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Figure 2: Structure of the multi-layer perceptron neural network.

Dataset | C (HU) | n | R(mm) | or/R
Training | 600:200:1400 | 0.5,0.75,1.0 3,4,5,6 0.2,0.5
Testing ‘ 700,1100 ‘ 0.6,0.9 ‘ 354555 | 0.35

Dataset |  log(B) | log(d)

Training 2.0:0.8:6.0 2.4:0.8:5.6

Testing ‘ -5.0:0.8:-1.0 ‘ -4.6:0.8:-1.4

Table 1: Lesion synthesis and regularization parameters in data
generation.

According to the universal approximation theorem, a per-
ceptron network with a single hidden layer can approximate
arbitrary functions give enough nodes in the hidden layer.
When using more hidden layers, each layer requires a smaller
number of nodes. Through empirical experimentation, we
adopt a perceptron network that has three hidden layers as
shown in Figure 2. The input stacks the Fisher information
term the regularization parameters. The corresponding output
is the measured system response as the difference between
PLH reconstructions with the perturbation and without the
perturbation. Furthermore, for this investigation, we assumed
a well-sampled imaging geometry where the perturbation re-
sponse is contained in a local region. This assumption allows
us to truncate AT WA, and y; to reduce the dimensional-
ity of the network. All Fisher information term (A7 WA 1)
and outputs (7 (U, 1)) of the network is contained with in
a 21x21 grid. Each hidden layer has 441 nodes that is of
the same size as the output layer. To feed the regularization
parameters to the network, we concatenate (f3, ) to the first
two hidden layer. All nodes are fully connected. The first
two layer is activated with a rectified linear unit (ReL.U), and
the last layer with a sigmoid function.

2.4 Experiment setup

Following the sampling strategies proposed in Sec. 2.3.2,
we generated training and testing datasets according to the
various dependent parameters. The lung nodule parameters
and (B3, 8) are shown in Table 1. With each set of parameters,
we generated 50 nodules for training and 10 nodules for
testing, resulting in 6000 nodules in the training dataset and
120 nodules in testing dataset. Figure 3 illustrates example
nodules corresponding to nodule parameters in both training
and testing. The simulated lung lesions are inserted in 19
locations on a 2D slice in the chest phantom as shown in

Fig.4. For initial investigation, we performed training and
testing on the same anatomical background. Generalizing the
prediction framework to varying anatomical background is
the subject of ongoing work.

The perceptron neural network was trained by minimizing
the mean square error between the predicted perturbation
responses and the measurements using the ADAM optimizer.
Prediction feasibility was validated through qualitative com-
parison and quantitative evaluation using structural similarity
index measure (SSIM). We raised one example application
of the proposed prediction framework in efficient prospec-
tive regularization selection, where the boundaries of proper
regularizations that can produce “good response” with small
rRMSE (akin to Fig. 1) were determined using measured re-
sponse through a retrospective exhaustive parameters sweep
or prospective evaluation using the prediction model. The
comparison between the measured and predicted boundaries
demonstrated the efficacy of prospective approach.

3 Results

Prediction accuracy of the proposed framework was validated
through comparisons between predicted and measured per-
turbation responses. Pairs of measurement and prediction
are shown in Figure 5 with varying regularization parame-
ters (B, 0), perturbations, and locations, respectively. The
predictions show good agreement with the measurements
and are capable of characterizing all dependencies investi-
gated. The agreement between prediction and measurement
is further quantified in terms of the SSIM metric. The mean
SSIM among all testing cases is 0.9991. Over 99% of the
predictions achieves 0.995 of SSIM when compared to the
measured ground truth.

An example application of the proposed predictor is demon-
strated in efficient selection of “good” regions of regular-
ization parameters, i.e., a quantitative alternative to Fig.1
without the need for additional reconstructions. Figure 6
shows two maps of rRMSE with varying regularization com-
binations. The ground truth plot (top left) were computed
from measured perturbation response through an exhaustive
sweep. The bottom left plot shows the predicted rRMSE map
computed with finer sampling of regularization parameters.
The green lines circumscribed the “good response” areas
where the rRMSE is smaller than 30%. The plots on the
right show two examples of perturbation responses from the
“good response” region circumscribed in green and the “bad
response” region circumscribed in red. We notice that de-
spite the predicted rRMSE values deviate from the measured
values in the highly-regularized region, the predicted “good
response” region shows great agreement with the outcome
of retrospective evaluation, demonstrating the capability of
using this predictor for regularization parameters selection.
4 Discussion and Conclusion

In this work, we propose a prediction framework that quanti-
fies the perturbation response of a nonlinear reconstruction
algorithm, where a multi-layer perceptron network is used
to approximate the perturbation response in a data-driven
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Figure 3: Examples of synthesized lung nodules for training. Figure : XCAT stmlatedl anatomical back

ground. The yellow crosses indicate the loca-
tions to insert perturbations.
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Figure 5: Comparisons between measurements and predictions with varying regularizations, perturbations, and locations. Unit: mm™".
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Measured rRMSE map Ground Truth the tool towards regularization tuning for reliable system
response. Ongoing work includes incorporating variability
in background anatomy and refine the perturbation model to
achieve good agreement for more realistic perturbations in
clinical dataset.
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