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Abstract Spectral CT has been investigated widely for a range of
diagnostic applications with increasing potential interest for cone-beam
CT (CBCT) applications. Current CBCT technology has largely focused
on flat-panel detectors due to their relatively small form factor and ease
of integration within a compact gantry that fits well in an interventional
suite. The recent commercial availability of triple-layer flat panel
detectors has provided a new avenue for spectral CBCT. In particular,
while many spectral systems are limited to two channels with different
energy sensitivity (e.g. dual layer detectors, kV-switching systems, etc.),
a triple-layer system has the potential to be able to perform three material
decomposition without additional constraints. Unfortunately, the spectral
separation of a triple-layer panel is modest leading to a relatively ill-
conditioned material decomposition problem (which consequently can be
highly noise magnifying). In this work, we explore the possibility of three
material decomposition and CBCT using a triple-layer panel and two
sophisticated processing approaches: 1) model-based projection-domain
material decomposition and 2) deep-learning-based projection-domain
decomposition. Both approaches use simple filtered-backprojection of
material line integral estimates to form 3D material maps. A simulation
study with realistic measurement models is conducted using
anthropomorphic phantoms and three material bases (water, calcium, and
exogenous gadolinium contrast agent). A preliminary performance
evaluation of reconstructed phantom data is provided to illustrate the
potential of spectral CBCT using triple-layer detectors.

1 Introduction

Spectral x-ray imaging has the potential to enable a number
of novel clinical diagnostics and CT image quality
improvements [1] including non-contrast-enhanced image
synthesis, virtual monoenergetic images, beam hardening
and metal artifact reduction. The capability of spectral
method to provide material separation similarly has the
potential to enhance various clinical tasks like artery
calcification detection and visualization, uric acid
characterization/quantification, etc. Such applications are
increasingly being developed and translated using
diagnostic CT scanners. Research into the application of
spectral imaging is also being investigated in cone-beam
CT[1]. Cone-beam CT (CBCT) applications often target
specific interventional procedures and their associated
diagnostics. Applications include hemorrhage detection
(including contrast agent extravasation), revascularization
assessments, and vascular lumen characterization[2].

Tube voltage switching[3] and multi-layer flat-panel
detector[4] are two approaches that have been investigated
for spectral cone-beam CT data acquisitions. Tube voltage
switching can provide large spectral separation and is
compatible with the conventional flat-panel detectors
(FPDs). However, this strategy requires a more complex X-
ray generator and may have increased sensitivity to patient

and gantry motion due to projection mismatches between
different energy channels. In contrast, recently available
multi-layer flat-panel detectors provide projection data
where spectral channels are collected simultaneously,
minimizing cross-channel geometry mismatches and
motion-induced artifacts. Dual-layer flat-panel detector [4]
has been explored for radiography and interventional
imaging systems. Strictly speaking, such two channel
systems only permit differentiation between two materials.
While a volume constraint could be added to permit a third
material estimate, such a constraint does not hold
universally (e.g. in the lungs).

Three-material decomposition is particularly important for
separation of exogenous contrast agents and from
anatomy[5]. Applications include angiography [6],
perfusion studies, and lesion enhancement.

Recently available triple-layer flat panel detectors provide
one potential avenue to produce three-material
decompositions without an explicit volume constraint.
However, such technology is challenged by the relatively
poor spectral separability of these detectors (and
consequent ill-conditioning of the decomposition problem).
In this work, we conducted a study to investigate the
potential of creating accurate water, calcium, and contrast
density images using triple-layer CBCT. We developed and
evaluated two processing schemes to produce 3D material
estimates: 1) a model-based iterative approach; and 2) a
deep-learning-based decomposition. Both approaches
consider a projection domain decomposition followed by
FDK reconstruction. Preliminary evaluations comparing the
two approaches are provided.

2 Materials and Methods

The two material decomposition approaches are introduced
in the following sections.

2.1. Model-based projection-domain decomposition

The general forward model for a multi-layer flat-panel
detector can be written in matrix notation as [7]:

y(q) = BSexp(—QAp) = BSexp(—=Q) (D)
where | € R/¥ is the vectorized material density projection
(i.e., the physical density p of each basis material forward
projected by operator A ) with j pixels and k basis
materials, Q stacks the mass attenuation coefficients of
each basis material, and exp(—QIl) represents the total
attenuation in each energy bin. The matrix S characterizes
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the overall spectral sensitivities of the system and B models
the (potentially) layer-dependent blur kernels.

Assuming measurements y follow a multivariate Gaussian
distribution, y~N'(y,X) , the regularized likelihood
objective function for material decomposition can be
written as:

[ = argmax, (®(L; ¥)) (2)
where (1) = (y —y(I)"Z7 &y - y(1)) + IR

A quadratic regularization functin (I"Rl) is used in this work
that penalizes the differences between the 4-nearest
neighboring pixels within each material map. We applied
Newton’s method to solve the objective. Within the n'
iteration, the material maps are updated according to:
lnsr = L — a(V20) 'V, 3)
where the gradient, V,® , and Hessian, Vflfb , of the
objective are given by:
V,® = Q™D;STBTE 1 (BSexp(—Ql) —y) + BRI (4)
Vid ~ Q"D,;S"BTE"'BSD,Q + SR (5)
where Dy = diag{exp(—QI)}. The update step size, a, is
empirically chosen to be 0.5.
We additionally adopted the following strategies to model
additional physical effects, improve performance, and
accelerate convergence: 1) The middle and bottom layer
projections were registered to that of the top layer using an
affine transformation to account for geometry mismatch and
pixel grid misalignment among the layers; 2) The
projections were pre-processed by deconvolving the blurs
B using the Richardson—Lucy method [8], thus making the
pixels approximately separable; 3) An initial material
decomposition was first performed on 8x downsampled
projection data, upsampled to the full resolution, and then
used as initialization for the Newton update. The latter
strategy increased robustness against local minima induced
by image noise.
The application in this work focuses on contrast-enhanced
studies using gadolinium as the contrast media. The three
basis materials were therefore chosen to be water, calcium,
and gadolinium. The material-specific regularization
strength parameters, 3, were chosen to minimize the error
in the gadolinium images. The values are set to 2 X
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1076,2x107°, and 2 x 107* for water, calcium, and
gadolinium, respectively.
2.2. Deep-learning projection-domain decomposition
We have previously developed a deep learning network
capable of performing three material decomposition using
simulated data generated from a realistic forward model of
the triple layer detector (Eq.1). The network architecture is
shown in Fig. 1 The input to the network consists of a three-
channel input formed by concatenating the three projections
from the triple-layer detector, while the output consists of
three basis material maps. Material decomposition is
performed by a network following the ResUnet architecture
with 9 residual blocks (ResBlock) [9]. Each block consists
of two 3x3 convolution layers separated by a LeakyReLU
activation layer, one residual connection adding the block
input to output, and a final LeakyReLU activation layer.
Each ResBlock in the encoder portion of the network
reduces the dimension of the input by half and doubles the
number of feature channels, while each ResBlock in the
decoder portion does the opposite. A final 1x1 convolution
layer is applied to reduce the number of channels to three -
the number of basis materials.
For training, we adopted the following loss function:

L= ['p + AlLedge + Az[fconsistency (6)
The first term, Lp(l, i) = ||l - i”z, is a typical MSE loss
which quantifies the difference between the predicted
material density projections, [, and the ground truth, I. We
additionally included a gradient-based loss term,
Ledge(l, f) = ||Vl - VlA||1 , which has been explored to
preserve spatial resolution[10]. The third term is a data
consistency loss that penalized differences in the
measurement (y) domain rather than the material density
line integral ( ! ) domain, i.e., Leonsistency (Y, D=

||BS exp(—Qi)—y”z . Such loss functions have been

investigated in previous work to incorporate a physics-
driven constraint to the network output[11]. The scalars,
A4, 5, control the relative weight of each term. Different
combinations of 44, 1, were investigated for their impact on
imaging performance. The optimal weighting was selected
to minimize the MSE over all three material maps (4; = 10
and 1, = 1). The network was implemented in PyTorch.
We used the Adam optimizer with a batch size of 4 and
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Figure 1: ResUnet network architecture with triple layer projection data (y) as an input, and predicted material projections (§) as the output.
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Figure 2: Spectral sensitivities (A) and MTFs for each channel (B).

terminated after 400 epochs based on empirical observation.
The loss function typically decreased by <0.1% in the last
100 iterations.

2.3 Phantoms and data simulation

Imaigng phantoms in this work were generated using the
XCAT package[12]. High resolution volumetric chest
phantoms were genereated at a voxel size of 0.4 mmx0.4
mmx0.4 mm. The ground truth density of water and calcium
are obtained using an image-domain decomposition method
applied to two attenuation images generated at 60 keV and
100 keV. Vessels are uniformly assigned to 20 mg/ml of
gadolinium. The ventricles and atria in the heart were
intentionally not enhanced for better visualization of
overalying vessels.

To generate simulated projection data for both the model-
and learning-based methods, we used the detector blurs, B,
and spectral sensitivities, S, shown in Fig.2. These
characteristics are intended to model a realistic triple-layer
panel comprised of three stacked indirect flat-panel
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detectors with ~250 pm of Csl in each layer. Projection data
were simulated according to Eq.1 using a pixel size of
0.28mmx0.28mm. Noisy projections was obtained by
adding independent Poisson noise before applying B.

To generate training data for the learning-based
decomposition algorithm, we used 24 XCAT patient models
to obtain different realizations of chest phantoms. We
simulated 100 projections evenly distributed over 360° for
each phantom to obtain 2400 projections, of which 2000
were used for training while the remaining 400 were used
for validation. We randomly extracted 32 patches (256
pixels X256 pixels) from each projection, and randomly
applied horizontal or vertical flips for data augmentation.
2.4 Reconstruction

The model-based and learning-based algorithms were
applied to 360 projections uniformly distributed over 360°.
The resulting estimated material density line integrals [
were reconstructed using an in-house FDK algorithm to
obtain the 3D density distribution (p).

2.5. Evaluation

We evaluted the structural similarity index measure (SSIM)
and root-mean-square error (RMSE) of the estimated 3D
density distribution with ground truth. Note that the ground
truth here is the FDK reconstruction of the ground truth
mateiral density line integrals from the XCAT phantom. We
further compared line profiles through anatomical
structures for spatial resolution comparison.

3 Results

Figure 3 shows the 3D density distribution of water,
calcium, and gadolinium following the model- and
learning-based decomposition methods.

1.2g/ml 0.1g/ml

§ 0.8g/ml 0g/ml

0.25g/ml 0.02g/ml

0g/ml 0g/ml

25mg/ml 2mg/ml

0g/ml 0g/ml

IM -Gl

IL -G

Figure 3: FDK reconstruction of material projections obtained by model-based decomposition, learning-based decomposition, and ground
truth projections. The color images display the pixel-wise absolute error. RMSE unit: mg/ml.
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Figure 4: 1D profiles of the line segments in Fig. 3

From visual observation, the model-based method exhibits
significant bias in all three material images — the water
image appears overly smooth; lung parenchyma is absent in
the water images but present on the calcium image; chest
wall and patient boundary are present in the gadolium
image. Larger errors are observed around tissue boundaries,
consistent with previous observations of cross talk effects
amongst material maps. Careful tuning and design of
regularization can potentially mitigate such biases[13].

The learning-based method, on the other hand, is able to
achieve low bias in the calcium and gadolinium images. The
water image presents significant artifacts, likely from the
propagation of different estimation bias from individual
projections. The advantage of the learning-based method
over model-based method is also reflected in the higher
SSIM and lower RMSE in all three material images.

To further evaluate algorithm performance, we plotted the
line profiles across anatomical structures in each material
image. Consistent with visual observation, the model-based
method produced blurred water and calcium images. The
gadolinium image has comparable spatial resolution with
the ground truth but exhibits an over-estimation of
concentration by ~25%. The learning-based method shows
better performance, with line profiles closely resembles
those from the ground truth in both spatial resolution and
density estimates.

4 Discussion and Conclusion

We have presented a simulation study to explore the
potential of three material decomposition using a triple-
layer panel. Such a system would fit within the current
interventional imaging paradigm that largely uses flat-panel
detectors for imaging. In our preliminary studies, we find
that both model-based and deep-learning methods can
provide three material estimates in a water-calcium-
gadolinium decomposition problem, though imaging
performance is significantly improved with the deep
learning approach. We note that the deep learning approach

has a significantly faster processing speed making it more
appropriate for the workflow of an interventional suite.

A number of limitations of this preliminary work are noted
including the focus on gadolinium contrast (as opposed to
the more popular iodine contrast agent) due to the greater
potential for separation from calcium; a limited
investigation of regularization strategies for the model-
based approach; and a limited phantom evaluation. Despite
these limitations, the technology appears to hold promise
and we seek to continue to address these limitations in
ongoing simulation studies and physical experiments.
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