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Abstract Every year, new nanomedicines are developed for diagnostic
and therapeutic applications. Antibody-tagged nanoparticles are par-
ticularly useful for targetting specific tissues. The current standard for
preclinical evaluation of new antibody nanoparticles is positron emis-
sion tomography (PET) where the animals are divided into two groups,
with one receiving the antibody nanoparticle and the other receiving a
reference nanoparticle. However, there is significant mouse-to-mouse
variation which means many mice must be scanned to make statisti-
cally significant claims about the effect of the antibody. With spectral
CT and basis material decomposition one can potentially image the
reference and antibody nanoparticles simultaneously in a single mouse.
We propose a new type of functional imaging called Immuno-Contrast
CT in which the reference nanoparticle distribution is subtracted from
the antibody nanoparticle distribution to highlight the differential im-
munofunctional impact of the antibody. In this work we use physics
simulations to jointly optimize contrast agent materials and spectral
CT instrumentation for immuno-contrast CT. Our results show this op-
timization significantly reduces noise in the immuno-contrast images.
1 Introduction
Nanomedicine is a rapidly growing field that combines nan-

otechnology, immunology, and biomedical engineering to
develop nanoparticles for diagnostic and therapeutic appli-
cations in medicine [1]. One particularly important area of
research is the development of antibody-tagged nanoparti-
cles that double as imaging contrast agents to target specific
tissues or cell populations and highlight those areas in med-
ical images [2] [3]. These antibody nanoparticles must be
well-validated in a small animal model so that we under-
stand the biological impact of the the nanoparticle before
considering clinical use. Currently, one of the standard meth-
ods to determine the biodistribution of a nanoparticle with
and without an antibody is to conduct a preclinical mouse
imaging study with positron emission tomography (PET) [4]
[5]. Typically, the mice are divided into two groups; one
group would receive the antibody nanoparticle tagged with a
radioisotope for PET imaging and the other group would re-
ceive a reference nanoparticle without the antibody. However,
one problem with this type of PET imaging study is there can
be significant mouse-to-mouse variation in the distribution of
the nanoparticles. To test a hypothesis about the immunolog-
ical function of a new antibody, one may need to use a large
number of mice in order to have sufficient statistical power.
Injecting so many mice with radioactive nanoparticles and
scanning each mouse with a PET scanner can be a difficult
and costly process and the final image results from PET of-
ten have low-spatial resolution and high-noise. In this work,
we investigate the possibility of imaging nanoparticles with
spectral x-ray computed tomography (CT). The key advan-
tages over PET are 1) the ability to image the reference and
antibody nanoparticles simultaneously in the same mouse
using basis material decomposition 2) the lack of dependence
on radioactive materials 3) higher spatial resolution with CT
over PET.

Spectral CT uses x-ray projection measurements from multi-

ple view angles and varied spectral sensitivity. This type of
data can be used for three-dimensional tomographic image
reconstruction as well as basis material decomposition. Spec-
tral CT has already been used to image gold nanoparticles
in mice [6] [7]. It has also been used to image iodine and
gadolinium nanoparticles in mice simultaneously to charac-
terize tumor vasculature [8] [9]. These studies show that
imaging nanoparticles with spectral CT is a promising pos-
sibility. However, we know that material decomposition
introduces noise relative to conventional CT images, so we
expect that sensitivity to low concentrations of nanoparticles
will be a challenging engineering problem.
We propose to investigate a new functional CT imaging
method called Immuno-Contrast CT where a mouse is in-
jected with both reference and antibody nanoparticles simul-
taneously. The two nanoparticles are labeled with two differ-
ent CT contrast materials (e.g. iodine and gadolinium). Mate-
rial decomposition permits reconstruction of separate image
volumes for 1) water, 2) calcium, 3) reference nanoparticle
concentrations, and 4) antibody nanoparticle concentrations.
We define the Immuno-Contrast Image as the difference be-
tween the antibody nanoparticle image and the reference
nanoparticle image. As a result, the immuno-contrast im-
age will show the differential impact of the antibody on the
biodistribution of the nanoparticle.
In this work, we use physical simulations of spectral CT
systems to investigate different combinations of two contrast
agent materials for immuno-contrast CT imaging and we sim-
ulate many spectral instrumentation designs and to answer
three questions: 1) To what degree can we improve immuno-
contrast CT image quality through intelligent spectral instru-
mentation design? 2) What are the optimal pair of contrast
materials? 3) What are the optimal system designs pair of
contrast materials? After this joint optimization, we evalu-
ate our optimized design by generating a three-dimensional
digital image volume with realistic mouse anatomy, simulat-
ing spectral measurements with x-ray sources and photon-
counting detectors, and applying a model-based material
decomposition algorithm to see the impact of our design
optimization on immuno-contrast CT imaging performance.
2 Materials and Methods
2.1 Spectral CT Measurement Likelihood Model
Our mathematical model of spectral CT measurements is
a random vector with a multivariate Gaussian distribution,
p(y|x), parameterized by the mean, §(x), and covariance,
Xy\x- The mean is defined as

7(x) = Sexp (—QAX), ()
where x is a column vector of basis material densities for each
voxel, A is the matrix of line integrals for each x-ray projec-
tion, Q is the basis material mass attenuation matrix, S is the
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system spectral sensitivity matrix including all information
about spectral sources and detectors, and y is a column vec-
tor of spectral CT measurements. Note, projection-domain
material decomposition is a special case of this model where
A =1 The negative log-likelihood is defined as

~logp(yl) = 5y~ ¥ Zys (v X)) +e @)
where ¢ is a constant with respect to x and y.
2.2 Spectral CT Fisher Information Matrix and the
Cramer-Rao Lower-Bound on Covariance
We aim to optimize spectral CT instrumentation by quantify-
ing imaging performance as a function of the design matrices
in (1). Specifically we are interested in jointly optimizing
spectral instrumentation, described by S, and contrast mate-
rials, described by Q. This section defines a mathematical
relationship between these design matrices and the Cramer-
Rao Lower Bound (CRLB).
The Cramer-Rao inequality states that the covariance of an
unbiased estimator is greater than or equal to inverse of the
Fisher information matrix, F. The definition of the Fisher
information matrix is the Hessian, or second derivative, of the
negative log-likelihood with respect to the vector x. Taking
the gradient of (2) yields

—Vxlogp(y[x) =ATQ'D{S'E (y—§(x)) ()

Dy = D{exp(—QAx)} 4)

and so the Fisher information matrix is

F = —Vilogp(y|x) = ATQ"D{S"E ISD:QA  (5)
In this work, we use the CRLB, ¥ > F 't optimize spec-
tral instrumentation design for immuno-contrast imaging.
This predictive mathematical model describes the best-case-
scenario for multi-material noise characteristics of unbiased
material decomposition without the need to run a full material
decomposition algorithm for each candidate design.
2.3 Simulations of Inmuno-Contrast CT in Mice
We used the MOBY phantom [10] to generate three-
dimensional digital image volumes of realistic mouse
anatomy with 0.1 mm cubic voxels. For each voxel, there
were four basis materials: water, calcium, the reference
nanoparticle, and the antibody-labeled nanoparticle. To ac-
complish this, we ran the MOBY attenuation coefficient
generator at 60 keV and 100 keV and analytically decom-
posed water/calcium basis image volumes. MOBY also has
the ability to label activity level in specific tissues (usually
for nuclear imaging simulations). We used the activity label
images to define the concentration of reference and anti-
body nanoparticles in units of percent injected dose per gram
(%ID/g). We used [5] as a rough guide for the biodistribution
of reference nanoparticles and antibody nanoparticles which
resulted in 15 %ID/g in the liver, 20 %ID/g in the spleen,
5 %ID/g in the kidney, and 2 %ID/g in the rest of the body
for both the reference and antibody nanoparticles. We also
inserted a 5 mm diameter spherical tumor into the liver which
has 70 %ID/g for the antibody nanoparticle and 2 %ID/g for

the reference nanoparticle. We assumed that the nanoparticle
injections were 200 mL at 100 mg/mL to convert between
%ID/g and mass density.
We used PYRO-NN [11], to model a cone beam forward pro-
jector, A, with 1200 mm source-to-detector distance, 600 mm
source-to-axis distance, and 0.2 mm square pixels. Our
model for Q contains the mass attenuation spectra for water
and calcium and two contrast materials. Our model for S
is a polyenergetic x-ray source using the TASMICS model
[12] with aluminium filtration as well as k-edge filtration
computed using SPEKTR [13], and a photon counting de-
tector. We do not include any model of non-ideal effects of
photon counting detectors. We assume the detector has two
energy bins per exposure and we have control over the energy
threshold for three exposures. More details about the spectral
instrumentation and contrast agent models are provided in
the following section. For some select designs, we apply
a projection-domain model-based material decomposition
algorithm on a pixel-by-pixel basis using 1000 iterations of
Newton’s method to optimize the objective function in (2).
2.4 Optimization of Spectral CT Instrumentation and
Nanoparticle Contrast Agent Materials
The goal of this work is to jointly optimize nanoparticle
contrast agent materials and spectral instrumentation for
immuno-contrast imaging. Therefore, our performance met-
ric is the CRLB on the standard deviation in an immuno-
contrast image formed by subtracting the reference nanopar-
ticle image from the antibody nanoparticle image to highlight
immuno-functional properties of the antibody.
For a given spectral design, S, and set of basis materials,
Q, we consider one detector pixel in the projection domain
and compute the cross-material Fisher information matrix
using (5). We assume the background is 30 mm of water.
Then we compute the CRLB by taking the matrix inverse
and we compute the immuno-contrast variance using the
formula (w” £,w)/(w’ w) where w is vector zero for water
and calcium, positive one for the antibody nanoparticle, and
negative one for the reference nanoparticle. This is equivalent
to the noise variance in the immuno-contrast image. This
process was repeated for the four material imaging scenario
(water, calcium, X, Y) and three-material imaging scenario
(water, X, Y). (We note that in the latter case, any calcium
in the image volume will necessarily be modeled using the
other basis materials. This model may have a potential noise
advantage with fewer material bases but will generally bias
material estimates.)
We evaluated the above performance metrics for 421,875
spectral designs and 10 combinations of two contrast ma-
terials for a total of over 4.2 million spectral CT imaging
scenarios. The design parameters for the spectral source are:
source voltage (60, 70, 80, 90, or 100 kVp), aluminium filter
thickness (0.0, 0.5, 1.0, 2.0, or 4.0 mm), and k-edge filter
(None, 250 pum Praseodymium, 250 gm Erbium, 125 ym
Tantalum, or 125 um Lead ). The design parameters for the
photon counting detector are: energy threshold for each of
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Immuno-Contrast Noise vs Designs for H20/X/Y Decomposition
with Different Combinations of Two Contrast Agents

of Immuno-Contrast Estimates (mg/mL*mm)
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Figure 1: The CRLB for 4-material decomposition for all spectral
designs and all contrast materials. Then the designs were sorted by
immuno-contrast noise levels.

the three exposures (50, 60, 70, 80, or 90% of kVp) and ex-
posure time for each of the three exposures (1, 2, or 3 relative
exposure). Exposures were normalized such that incident
x-ray fluence after source filtration is 10° photons per pixel
per view. So, for example, if the three relative exposures
are (1,1,1) then the number of incident photons is 3.33 X 10°
for all three exposures, but if the three relative exposures are
(1,1,3) then the first two exposures have 2.00 x 10° incident
photons and the third exposure has 6.00 x 10° incident pho-
tons. Finally, we repeat the evaluation for all combinations of
two contrast agent materials from among: Iron (Fe), lodine
(), Gadolinium (Gd), Ytterbium (Yb), and Gold (Gd).

3 Results

The CRLB of immuno-contrast standard deviation is summa-
rized for all designs in Figures 1 and 2. The three-material
imaging case is shown in Figure 1 and the four-material case
is shown in 2. For each contrast agent combination, we sorted
the designs by immuno-contrast noise. The x-axis shows the
design percentile and the y-axis shows our performance met-
ric, the CRLB on immuno-contrast standard deviation. The
Oth design percentile indicates the spectral designs with the
best performance. We have summarized the performance
of optimized spectral designs in Figure 3 and the optimized
design parameters have been listed in table 1. Finally, the
results of the model-based material decomposition are shown
in Figures 4 5 and 6. Figure 4 shows the ground truth material
density line integrals for this simulation. Figure 5 shows the
material decomposition results for the 50th percentile system
design and Figure 6 shows the Oth percentile top performing
system design for H20/Ca/l/Gd imaging.

4 Discussion

In Figures 1 and 2 we see that there is a wide range of perfor-
mance levels for different spectral designs and different com-
binations of materials. There is a relatively steep falloff in
performance relative to the best designs (near Oth percentile)
which indicates that fine tuning the spectral sensitivity of the
system can significantly reduce noise in the immuno-contrast
images. In Figure 2 we see that all of the cases using iron
as a contrast agent material have extremely high noise even
for the optimized design. We believe this is due to the fact

Immuno-Contrast Noise vs Designs for H20/Ca/X/Y Decomposition
with Different Combinations of Two Contrast Agents

of Immuno-Contrast Estimates (mg/mL*mm)
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Figure 2: The CRLB for 3-material decomposition for all spectral
designs and all contrast materials. Then the designs were sorted by
immuno-contrast noise levels.

Immuno-Contrast Noise vs Contrast Agent Combination

Using Optimized Spectral Instrumentation
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Figure 3: The Cramer-Rao lower bound on immuno-contrast noise
standard deviation for all combinations of contrast agents using
optimal spectral instrumentation.

that the k-edge of iron is much lower than the x-ray spec-
tra of these designs. Therefore, water, calcium, and iron,
are approximately linearly dependent on only two basis (e.g.
photoelectric effect and Compton scattering). The contrast
agents which achieved the lowest immuno-contrast noise for
four-material decomposition were iodine and gadolinium.
These are the same contrast agents used in [8, 9] so there is
already evidence it is possible to image these two materials si-
multaneously in mice. The material decomposition results in
Figures 4 5 and 6 show visible reduction of immuno-contrast
noise for the optimized design relative to the 50th percentile.
These results show that a 5 mm diameter lesion with realis-
tic nanoparticle concentrations in visible with realistic x-ray
fluence levels.

5 Conclusion

This simulation study is an early stage investigation to deter-
mine the feasibility of immuno-contrast CT imaging. There
are several areas where we have made assumptions and ide-
alized approximations about both the mouse biodistribution
model and spectral CT imaging simulation and material de-
composition. For example, we have assumed that the refer-
ence and antibody nanoparticle biodistributions are the same
with the exception of the tumor. This may not be true in
practice especially when using two different contrast mate-
rials. For the material decomposition algorithm, we used a
perfectly matched reconstruction model to the data gener-
ation model. In practice it is very difficult to calibrate the
sensitivity of spectral CT imaging systems.
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Contrast Agents Source kVp Al Filter K-Edge Filter Exposure 1 Threshold 1 Exposure 2 Threshold 2 Exposure 3 Threshold 3
H20-Ca-Fe-I 60.0 kVp 4.0 mm Al 250um Pr 2.00E+05 30.24 keV 6.00E+05 33.6 keV 2.00E+05 42.0 keV
H20-Ca-Fe-Gd 60.0 kVp 0.5 mm Al None 5.00E+05 25.92 keV 2.50E+05 28.8 keV 2.50E+05 48.0 keV/
H20-Ca-Fe-Yb 70.0 kVp 0.5 mm Al None 5.00E+05 28.35 keV 1.67E+05 31.5 keV 3.33E+05 63.0 keV/
H20-Ca-Fe-Au 60.0 kVp 0.5 mm Al None 5.00E+05 18.9 keV 3.33E+05 37.8 keV 1.67E+05 42.0 keV
H20-Ca-I-Gd 70.0kVp 4.0 mm Al None 3.33E+05 30.24 keV 5.00E+05 50.4 keV 1.67E+05 63.0 keV
H20-Ca-1-Yb 80.0kVp 0.0 mm Al 125um Pb 4.29E+05 34.56 keV 1.43E+05 57.6 keV 4.29E+05 64.0 keV
H20-Ca-I-Au 100.0 kVp 4.0 mm Al 250um Pr 2.00E+05 36.0 keV 2.00E+05 40 keV 6.00E+05 80.0 keV
H20-Ca-Gd-Yb 90.0 kVp 4.0 mm Al 125um Ta 1.67E+05 45.36 keV 3.33E+05 50.4 keV 5.00E+05 63.0 keV
H20-Ca-Gd-Au 100.0 kVp 4.0 mm Al 125um Pb 2.00E+05 44.8 keV. 2.00E+05 56 keV 6.00E+05 80.0 keV
H20-Ca-Yb-Au 100.0 kVp 4.0 mm Al 125um Pb 1.67E+05 38.4 keV 3.33E+05 64 keV 5.00E+05 80.0 keV
H20-Fe-1 100.0 kVp 0.5 mm Al None 5.00E+05 27.0 keV 3.33E+05 30 keV 1.67E+05 50.0 keV
H20-Fe-Gd 100.0 kVp 1.0 mm Al None 2.00E+05 40.5 keV 2.00E+05 45 keV 6.00E+05 50.0 keV
H20-Fe-Yb 90.0 kVp 4.0 mm Al 250um Pr 2.00E+05 51.03 keV 2.00E+05 56.7 keV 6.00E+05 63.0 keV
H20-Fe-Au 100.0 kVp 4.0 mm Al 250um Pr 2.00E+05 40.5 keV 6.00E+05 81 keV 2.00E+05 90.0 keV
H20-1-Gd 80.0kVp 0.0 mm Al 125um Ta 3.33E+05 45.36 keV 5.00E+05 50.4 keV 1.67E+05 56.0 keV
H20-I-Yb 70.0kVp 0.5 mm Al None 4.29E+05 25.2 keV 4.29E+05 28 keV 1.43E+05 35.0 keV
H20-I-Au 70.0 kVp 1.0 mm Al None 3.33E+05 30.24 keV 5.00E+05 33.6 keV 1.67E+05 42.0 keV/
H20-Gd-Yb 70.0 kVp 4.0 mm Al None 1.67E+05 39.69 keV 3.33E+05 44.1 keV 5.00E+05 49.0 keV/
H20-Gd-Au 70.0 kVp 4.0 mm Al None 2.00E+05 45.36 keV 6.00E+05 50.4 keV. 2.00E+05 56.0 keV
H20-Yb-Au 80.0kVp 2.0 mm Al 125um Pb 1.43E+05 51.84 keV 4.29E+05 57.6 keV. 4.29E+05 64.0 keV

Table 1: Optimized spectral instrumentation design parameters for low immuno-contrast noise for each contrast material combination.

Despite the idealized conditions, we can draw some conclu-
sions from the results of this preliminary investigation. First,
immuno-contrast CT appears to be physically possible for re-
alistic nanoparticle concentrations and x-ray exposure levels.
Second, iodine and gadolinium are a good choice of con-
trast agents for immuno contrast imaging. Third, optimizing
the spectral design for specific combinations materials can
significantly reduce noise in the immuno-contrast images.
Immuno-contrast CT imaging has the potential to accelerate
the development of nanomedicines because it can simultane-
ously image the reference and antibody nanoparticle biodistri-
butions, improving the statistical power of preclinical imag-
ing studies. In the future, we look forward to addressing
some of these non-ideal effects and moving on to physical
experiments with spectral CT imaging systems.
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